Buscar

Práticas de Química Analítica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 61 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 61 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 61 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE DE SÃO PAULO 
 
INSTITUTO DE QUÍMICA 
 
 
 
 
 
 
 
 
 
RELATÓRIO FINAL DA DISCIPLINA 
QBQ5825-6 - PRÁTICA DO ENSINO 
DE QUÍMICA E BIOQUÍMICA 
 
 
 
 
 
 
 
 
DOCENTE: Profa. Dra. Denise Petri 
 
 
DISCENTE: Gisele André Baptista Canuto 
 
 
 
 
 
 
São Paulo 
2009 
 
 2 
SUMÁRIO 
 
 
 
1. INTRODUÇÃO ................................................................................................ 
 
3 
2. ATIVIDADES DESENVOLVIDAS ................................................................... 
 
4 
3. PROPOSTA PARA MELHORAMENTO DA DISCIPLINA ONDE FOI 
DESENVOLVIDA A MONITORIA VOLUNTÁRIA ............................................... 
 
 
4 
4. DISCUSSÃO ................................................................................................... 
 
6 
5. CONCLUSÃO ................................................................................................. 
 
7 
6. REFERÊNCIAS BIBLIOGRÁFICAS ............................................................... 
 
8 
7. ANEXO – APOSTILA PROPOSTA PARA A DISCIPLINA: QFL 2241 – 
PRINCÍPIOS DE ANÁLISE QUÍMICA ................................................................ 
 
 
9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3 
1. INTRODUÇÃO 
 
 
O professor é o elemento fundamental e ideal na execução das propostas 
pedagógicas. A busca da qualificação do corpo docente não está restrita 
simplesmente em sua titulação, mas sim na construção, realizada em um 
processo contínuo. Na busca da qualificação do ensino de excelência, o 
planejamento, o conteúdo, a seleção das disciplinas e atividades complementares 
diversas precisam estar em conformidade com a formação do docente. 
O artigo 66 da LDB (Lei de Diretrizes e Bases da Educação Nacional) trata 
especificamente da formação de professores para a educação superior: 
 
“Art. 66. A preparação para o exercício do magistério superior far-se-á em nível de 
pós-graduação, prioritariamente em programas de mestrado e doutorado. 
Parágrafo único. O notório saber, reconhecido por universidade com curso de 
doutorado em área afim, poderá suprir a exigência de titulo acadêmico”. 
 
Observa-se primeiramente que a lei não afirma que qualquer pessoa que 
possua pós-graduação esteja habilitada para ministrar aulas no ensino superior, 
mas sim que a formação, ou a preparação, para o exercício do magistério 
superior, será feita em nível de pós-graduação. 
O docente enquanto profissional do ensino superior, deverá estar em 
contínuo aperfeiçoamento; desenvolvendo habilidades cognitivas voltadas à 
resolução de problemas, sabendo comunicar-se eficazmente e forme um conceito 
de seu trabalho, consciente de seus valores e normas, sempre fundamentado na 
concepção de educação. 
A prática no ensino; no caso, realizada em forma de monitoria, visa levar o 
aluno de pós-graduação à realidade da sala de aula oportunizando uma vivência 
que o levará a encontrar métodos e técnicas que nortearão seu trabalho no 
momento em que exercerá o magistério. Para isso, é necessário que o indivíduo 
acompanhe de perto uma sala de aula e observe seus problemas rotineiros e qual 
o modo de trabalho utilizado por docentes já experientes. 
 4 
2. ATIVIDADES DESENVOLVIDAS 
 
 
A disciplina QFL 2241 – Princípios de Química Analítica foi ministrada aos 
alunos pertencentes ao segundo ano do curso de química diurno, no primeiro 
semestre de 2009. A equipe de trabalho foi composta por dois professores, quatro 
técnicos, que preparavam as aulas práticas e três monitores, que acompanharam 
diretamente os colóquios e as aulas práticas, além de tirarem dúvidas em datas 
próximas às duas provas teóricas aplicadas. 
Nas aulas práticas, a participação dos monitores era auxiliar os alunos em 
seus experimentos, bem como cuidar para que nenhum tipo de acidente ocorresse 
no decorrer do desenvolvimento prático. 
Para a avaliação dos alunos os monitores auxiliaram os docentes na 
aplicação de Provas/Exames, correção de projeto e correção dos resultados 
apresentados pelos discentes em cada aula prática. 
 
 
3. PROPOSTA PARA MELHORAMENTO DA DISCIPLINA ONDE FOI 
DESENVOLVIDA A MONITORIA VOLUNTÁRIA 
 
 
Aulas práticas de química analítica qualitativa e quantitativa são 
fundamentais na formação de um químico, principalmente para compreender o 
mundo das reações químicas e como se procede um equilíbrio químico. Conteúdo 
este, muitas vezes, incompreendido pelo aluno, visto ser entendido como algo 
muito abstrato. 
Com as aulas de análise qualitativa, o equilíbrio químico torna-se algo mais 
palpável ao aluno, deixando de ser apenas descrito no papel, passando a ser algo 
observável, pois o aluno percebe as reações químicas “indo e voltando” através 
das diferentes análises de identificação e separação de íons (cátions e ânions). 
Nas aulas de análise quantitativa, o objetivo fundamental é a identificação de um 
ponto final de uma reação, com ênfase nos cálculos de concentração da amostra 
de interesse e padronização de soluções. 
 5 
Com base em tais justificativas sobre a importância das aulas práticas de 
química analítica e analisando-se o método didático aplicado, foi proposta uma 
reformulação das aulas práticas, concentrando a atenção nas aulas de análise 
qualitativa, visando contribuir para melhor aprendizagem de princípios básicos de 
química, como reações químicas e equilíbrio químico. 
Para elaboração da nova apostila a ser utilizada no curso, bem como o 
cronograma das aulas, foram consultados livros didáticos de química analítica e a 
apostila que foi utilizada neste semestre durante as aulas. 
O formato e a ênfase dada em alguns tipos de análises descritas na 
apostila formulada foram desenvolvidos de acordo com sugestões dos professores 
responsáveis pela disciplina, bem como os próprios alunos, que apresentaram aos 
monitores suas maiores dificuldades no desenvolvimento das aulas, bem como o 
que os monitores julgavam ser essenciais no aprendizado em química analítica. 
Abaixo são descritos o formato das aulas ministradas e a proposta neste 
trabalho: 
Currículo atual: Conteúdos de química analítica qualitativa e quantitativa 
divididos em um semestre, sendo apresentado inicialmente as aulas de análise 
quantitativa, incluindo aferição de materiais de laboratório, padronização de 
soluções e doseamento de amostras formuladas pelo professor e técnicos. Em um 
segundo momento, aulas práticas de analítica qualitativa; onde, durante duas 
horas de aula foram realizados testes prévios para identificação de íons e nas 
outras duas horas de aulas seria feita uma análise de identificação dos íons 
presentes em uma amostra fornecida pelo professor. Todos os resultados obtidos 
nas duas etapas da disciplina foram utilizados como forma de avaliação das aulas 
práticas, fazendo-se média simples de cada nota obtida nas análises. 
Currículo proposto: Iniciar as atividades laboratoriais com as aulas de 
química analítica qualitativa, fazendo no decorrer das aulas teste prévios de um 
grupo de cátions e ânions e conforme o andamento dos testes, uma análise de 
amostra desconhecida, sendo os resultados passados para o professor. Após as 
aulas de quali, os alunos terão uma semana para fazer aferição de vidrarias. As 
aulas de quanti serão divididas em padronização e doseamento de amostras reais, 
 6 
onde na primeira semana seriam realizadas as padronizações devidas para 
auxiliar nos doseamentos das semanas subsequentes e nas três semanas 
seguintes serão realizadas análises em amostra real, trazida do cotidiano do 
aluno. Após cada análise, tanto qualitativa comoquantitativa, os alunos devem 
passar os resultados aos monitores, que analisarão os resultados. Como forma de 
avaliação final, os alunos devem escolher um produto qualquer para realizar um 
conjunto de análises: devem ser identificados os íons contidos no produto e 
escolher algum deles e fazer seu doseamento através de uma titulação simples. 
Os resultados encontrados na titulação devem ser comparados com o pré-dito no 
rótulo do produto e uma conclusão a cerca da análise deve ser proferida pelo 
aluno. A nota final da parte prática da disciplina será feita uma média aritmética de 
cada avaliação em aula e do projeto final. 
 
 
4. DISCUSSÃO 
 
 
Esta disciplina é de grande importância para o estudante de pós-graduação, 
já que assim ele tem como aprimorar conceitos básicos já esquecidos e ainda ter 
um contato direto com o aluno e professor, acompanhando a relação professor-
aluno e ensino-aprendizagem em nível de graduação, com professores 
experientes e qualificados. 
 A disciplina foi desenvolvida de acordo com os procedimentos elaborados 
pelos professores responsáveis pela mesma. Para as aulas práticas, os alunos 
eram avaliados a partir dos resultados obtidos em cada análise e no projeto final. 
 A turma era formada por cerca de sessenta e cinco alunos, em uma única 
turma de laboratório. A participação dos monitores foi de grande importância para 
auxiliar os professores na aula prática, dando uma maior atenção para os alunos 
dentro do laboratório, esclarecendo eventuais dúvidas, evitando acidentes e 
obtendo maior segurança. 
 O maior problema identificado durante as aulas foi com relação a apostila 
utilizada, onde tanto os professores como os alunos não se encontravam 
totalmente satisfeitos com o planejamento da mesma. De acordo com o decorrer 
 7 
das aulas práticas foi identificado que as mudanças realizadas na nova apostila 
(Anexo deste) seriam a melhor alternativa para um ótimo aproveitamento das 
aulas, bem como do conteúdo de química analítica necessário á alunos de 
graduação em química. 
 Após término da preparação da apostila, a mesma foi apresentada aos 
professores responsáveis pela disciplina e ambos apreciaram o modo como o 
curso prático foi reestruturado, sugeriram algumas pequenas alterações no 
cronograma de aulas proposto, visando melhor aproveitamento do tempo da aula, 
essas alterações já foram efetuadas. 
 Os professores afirmaram que quando esta disciplina for novamente 
ministrada por ambos, gostariam de utilizar a nova apostila proposta. Indicaram 
como pontos fortes as aulas de análise quantitativa, onde se faz uso de amostras 
reais, tornando a aula mais interessante e próxima do que virá a ser a vida 
profissional de um químico, seja no meio acadêmico, trabalhando com pesquisa 
ou na indústria. Também demonstraram grande satisfação pelo modo como foram 
colocadas as análises qualitativas: a divisão de cátions e ânions por grupos de 
análise e algumas análises de amostras reais no decorrer do curso auxiliam no 
entendimento de equilíbrio químico e faz com que os alunos se mobilizem a 
procurar alternativas para resolver problemas decorrentes de um trabalho prático 
na vida de qualquer químico. 
 
 
5. CONCLUSÃO 
 
 
Esta disciplina foi muito importante para a minha preparação didática, já 
que, com esta monitoria pude ter contato direto com os professores e alunos de 
graduação, bem como a formulação de uma apostila para ser utilizada como 
guia de estudo em uma aula prática. 
Acredito que a monitoria seja uma prática fundamental na formação do pós-
graduando, já que nos tornaremos os responsáveis diretos na formação de 
futuros profissionais. Como uma futura pesquisadora e professora, esta 
monitoria pôde estruturar minha base profissional e auxiliar no aprendizado de 
 8 
como ministrar e preparar uma aula de maneira eficiente e adequada às 
necessidades dos alunos. 
 
 
6. REFERÊNCIAS BIBLIOGRÁFICAS 
 
 
Artigo 66 – Lei de Diretrizes e Bases. Disponível em: 
<http://www.planalto.gov.br/ccivil_03/LEIS/l9394.htm>. Acessado em junho, 2009. 
 
AYRES, G.H. Quantitative Chemical Analysis, Harper and Row, 2a ed., 1968. 
 
BACCAN, N.; ANDRADE, J.C.; GODINHO. O.E.S.; BARONE, J.S. Química 
Analítica Quantitativa Elementar, Editora E. Blücher, 1979. 
BRASIL. Plano Nacional de Extensão Universitária. Fórum de Pró-Reitores de 
Extensão das Universidades Públicas Brasileiras e Secretaria do Ensino 
Superior/MEC, 2000. 
Docente Universitário. Disponível em: 
<http://recantodasletras.uol.com.br/artigos/1186472>. Acessado em junho, 2009. 
 
VOGEL, A.I. A Textbook of Quantitative Inorganic Analysis, Longmans, 3a ed., 
1960. 
MACHADO, J. L. A. Pastores e Rebanhos. Revista Planeta Educação. São 
Paulo,2005. 
OHLWEILER, O.A. Química Analítica Quantitativa, Livros Técnicos e Científicos 
Editora S.A., 3a. ed., 1982. 
 
SKOOG, D.A., WEST, D.M.; HOLLER, F.J. Fundamentals of Analytical Chemistry, 
6a ed., Saunders, Philadelphia, 1992. 
 
 
 
 
 
 
 
 
 
 9 
 
 
 
 
 
 
ANEXO 
 
 
APOSTILA PROPOSTA PARA A DISCIPLINA 
QFL 2241 – PRINCÍPIOS DE QUÍMICA ANALÍTICA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10 
UNIVERSIDADE DE SÃO PAULO 
 
INSTITUTO DE QUÍMICA 
 
 
 
 
 
 
 
 
 
GUIA DE ESTUDO PRÁTICO DE ANÁLISES 
QUALITATIVAS E QUANTITATIVAS 
 
 
 
 
 
 
Disciplina: QFL 2241 – Princípios de Química Analítica 
 
 
 
 
 
 
 
 
 
 
 
 
 
São Paulo 
2009 
 11 
 
 
CRONOGRAMA DAS ATIVIDADES DESENVOLVIDAS 
2° SEM - 2009 
 
 
 
 
DIA AULA PRÁTICA 
3ª feira – 14:00 – 18:00 
04/08 Instruções gerais. Normas de segurança. Organização de 
armários. Lavagem de materiais. 
11/08 Reações de identificação – Na+, K+, NH4
+, Mg2+ 
18/08 Reações de identificação – Ba2+, Sr2+, Ca2+ 
Análise (entregar resultados) 
25/08 Reações de identificação – Ag+, Pb2+, Hg2
2+ 
01/09 Reações de identificação – Fe2+, Fe3+, Cr3+, Al3+ 
08/09 Reações de identificação – Co2+, Ni2+, Mn2+, Zn2+ 
Análise (entregar resultados) 
15/09 Reações de identificação – SO4
2-, PO4
2-, CO3
2-, SO3
2- 
22/09 Reações de identificação – NO2
-, NO3
-, Ac- 
29/09 Reações de identificação – Cl-, Br-, I- 
06/10 Análise de todos os íon estudados (entregar resultados) 
13/10 Aferição de materiais de laboratório 
20/10 Padronização – NaOH, HCl ,KMnO4 e EDTA. 
27/10 Doseamento de hidróxido de magnésio do leite de magnésia 
Entrega dos resultados 
03/11 Doseamento de água oxigenada 10V 
Entrega dos resultados 
10/11 Doseamento de magnésio em água de torneira 
Entrega dos Resultados 
17/11 Projeto: Determinação qualitativa e quantitativa em amostras 
reais 
24/11 Projeto: Determinação qualitativa e quantitativa em amostras 
reais 
01/12 Projeto: Determinação qualitativa e quantitativa em amostras 
reais 
08/12 Entrega do relatório do projeto 
 
 
 
 
 
 
 
 12 
RECOMENDAÇÕES INICIAIS 
 
 
O curso de Princípios de Análise Química constará de aulas teóricas e 
trabalhos práticos individuais, compondo um conjunto de atividades, previamente 
programadas, com o objetivo de permitir ao aluno a aprendizagem de técnicas 
fundamentais utilizadas nas análises qualitativas e quantitativas e a compreensão 
dos fundamentos teóricos em que se baseiam esses métodos. 
O trabalho individual no laboratório envolverá a identificação de espécies 
(cátions e ânions inorgânicos) em amostras fornecidas aos alunos e a 
determinação da concentração desconhecida de diferentes analitos. 
O aluno deve estudar previamente as etapas envolvidas no procedimento 
que utilizará, a fim de que os fundamentos envolvidos em cada uma delas sejam 
perfeitamente assimilados e compreendidos,além da melhor utilização do tempo 
destinado às aulas práticas. 
Os únicos materiais de limpeza fornecidos serão água régia ou potassa 
alcóolica; outros materiais necessários à limpeza, tais como detergente líquido, 
lenços de papel, escovas e panos deverão ser providenciados pelos próprios 
alunos. 
Após cada período de aula prática, os locais de trabalho deverão ser 
limpos, com os materiais e reagentes de uso comum deixados em seus devidos 
lugares durante todo o tempo de trabalho. 
Os laboratórios serão franqueados aos alunos apenas no horário 
correspondente às aulas práticas. Só é permitida a permanência de alunos 
matriculados na disciplina 
 
 
 
MATERIAL DE LABORATÓRIO (individual) 
 
 
1 pipeta de 25 mL 1 pissete de plástico 
1 Erlenmeyer de 50 mL (ou de 125 mL) 1 proveta de 100 mL 
1 balão volumétrico de 100 mL 1 proveta de 10 mL 
2 béquers de 250 mL 3 conta-gotas 
2 béquers de 400 mL 2 vidros de relógio grandes 
1 béquer de 100 ml 2 vidros de relógio pequenos 
1 funil de vidro 1 bureta de 50 mL 
1 pinça madeira 3 Erlenmeyer de 250 mL 
1 tubo em U 1 pesa-filtro 
1 cápsula de porcelana 12 tubos de ensaio 
2 bastões de vidro 1 suporte para tubo de ensaio 
 
 
O aluno é responsável pela conservação do material acima, necessário à 
realização das análises, sendo que o mesmo deverá ser devolvido em ordem, no 
final do curso. 
 13 
GUIA DE LABORATÓRIO - 2009 
 
QFL 2241 – PRINCÍPIOS DE QUÍMICA ANALÍTICA 
 
 
BIBLIOGRAFIA 
 
1. A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longmans, 3a ed., 
1960. 
2. G.H. Ayres, Quantitative Chemical Analysis, Harper and Row, 2a ed., 1968. 
3. O.A. Ohlweiler, Química Analítica Quantitativa, Livros Técnicos e Científicos 
Editora S.A., 3a. ed., 1982. 
4. N. Baccan, J.C. Andrade, O.E.S. Godinho, J.S. Barone, Química Analítica 
Quantitativa Elementar, Editora E. Blücher, 1979. 
5. D.A. Skoog, D.M. West, F.J. Holler, Fundamentals of Analytical Chemistry, 6a 
ed., Saunders, Philadelphia, 1992. 
 
 
 
MANUTENÇÃO DO MATERIAL DE VIDRO 
 
 
Todo material de vidro que vai ser utilizado em análise quantitativa e 
qualitativa deve estar rigorosamente limpo. Para isso, deve-se lavá-lo com água e 
detergente, enxaguá-lo várias vezes com água de torneira e, por último, com 
pequenas porções de água destilada (5 a 10 mL). Após isso, se for observada a 
presença de gordura (pequenas gotículas de água nas paredes) ou outro resíduo 
na inspeção visual, pode-se recorrer ao tratamento com mistura sulfocrômica ou 
potassa-alcoólica 10%. Esses materiais de limpeza são altamente corrosivos e 
devem ser manuseados com o máximo cuidado. Qualquer respingo deve ser 
abundantemente lavado com água. 
Materiais volumétricos não devem ser secados em estufa. A secagem da 
pipeta deve ser feita por sucção a vácuo (trompa d'água). 
 
 
 
AFERIÇÃO DE MATERIAL VOLUMÉTRICO 
 
 
A) Aferição de balão volumétrico 
 
Estando o balão limpo enxuga-se externamente com papel absorvente, 
deixa-se o mesmo de boca para baixo, sobre papel absorvente apoiado no suporte 
de funis. Após 24 horas ele deve estar seco. Tapa-se com a rolha e, sem tocá-lo 
diretamente com as mãos, coloca-se sobre o prato de uma balança semi-analítica. 
Anota-se a massa. Após isso, enche-se com água destilada, até o menisco, leva-
 14 
se até a balança, medindo-se a massa resultante. Anota-se a temperatura da água 
e calcula-se o volume do balão através da multiplicação da massa de água obtida 
pelo fator de conversão tabelado correspondente à temperatura de trabalho. A 
aferição destes materiais deve ser feita pelo menos duas vezes. Caso não haja 
concordância dentro de 0,1 g, repetir. 
 
 
B) Aferição de pipeta 
 
A pipeta previamente limpa é cheia com água destilada, após acerto do 
menisco, verte-se a quantidade de água da mesma em Erlenmeyer de 125 mL 
previamente limpo e pesado em balança analítica (a pesagem do Erlenmeyer deve 
ser efetuada com um pequeno vidro de relógio tapando-o). 
O escoamento da pipeta no Erlenmeyer deve ser efetuado estando a ponta 
da pipeta encostada na parede do recipiente (tempo de escoamento mínimo: 30 
segundos). Após o escoamento, afasta-se a extremidade da pipeta da parede do 
recipiente com cuidado. A quantidade de líquido restante na ponta da mesma não 
deve ser soprada para o interior do recipiente. A seguir, mede-se a massa do 
conjunto Erlenmeyer + água cobrindo-o com o mesmo vidro de relógio usado na 
pesagem do Erlenmeyer vazio. Repete-se a aferição descrita. A seguir, calcula-se 
o volume da pipeta. A diferença entre as duas determinações não deve exceder 
0,025 mL. Caso não haja concordância entre duas aferições, repetir. 
 
 
C) Aferição da bureta 
 
Feita a limpeza, enche-se a bureta até um pouco acima do traço 
correspondente ao zero. Verifica-se a ausência de bolhas de ar na região da 
válvula. As bolhas deverão ser eliminadas mediante escoamento de líquido. A 
seguir, acerta-se o zero. Deixa-se escoar, lentamente, a água da bureta num 
Erlenmeyer de 125 mL previamente pesado em balança (coberto com vidro de 
relógio). Ao alcançar exatamente a marca dos 10,0 mL, fecha-se a válvula e 
determina-se a massa de água. Em seguida, escoa-se a bureta até a marca dos 
20,0 mL no mesmo Erlenmeyer. O mesmo procedimento é repetido até 30 e até 
40 mL. A aferição deve ser repetida para comparação dos volumes relativos a 
cada intervalo. Caso não haja concordância dentro de 0,02 mL entre duas 
aferições do mesmo intervalo, repetir. 
 
 
 
 
 
 
 
 
 
 
 15 
GUIA DE LABORATÓRIO - 2009 
 
QFL 2241 – PRINCÍPIOS DE QUÍMICA ANALÍTICA 
 
 
QUALITATIVA 
 
 
 A análise qualitativa tem por finalidade identificar os componentes de uma 
substância, mistura de substâncias ou soluções, e em que forma o elemento 
componente ou grupo de elementos estão combinados entre si. 
 A identificação de uma substância implica na sua transformação em um 
composto novo que possui propriedades características. Esta transformação 
chama-se reação química. Sabe-se que produziu uma reação: 
 1. Por formação de um precipitado; 
 2. Por desprendimento de gás; 
 3. Por mudança de coloração; 
 4. Por liberação ou absorção de calor (exotérmica/endotérmica). 
 
 
Classificação Analítica dos Cátions: 
 
 
 É conveniente dividir os cátions em diferentes grupos analíticos com a 
finalidade de simplificar e tornar mais rápida a identificação desses íons. Cada um 
desses grupos analíticos possuiu um reagente característico que é capaz de 
precipitar todos os cátions pertencentes a este grupo sem que haja precipitação 
de nenhum outro cátion que pertença a outro grupo (vide Tabela 1), desde que se 
trabalhe em condições adequadas. 
 Nesta disciplina, será adotada a classificação dos cátions em cinco grupos 
analíticos, que se baseia na diferença de solubilidade dos cloretos, sulfetos, 
hidróxidos e carbonatos em água, ácidos, bases e alguns sais. 
 Para utilizar a classificação abaixo é absolutamente necessário que 
adicionamos os reagentes de grupo sistematicamente em uma ordem 
determinada, com a finalidade de que não existam cátions de grupos anteriores na 
solução ao adicionar-se o novo reagente, pois caso contrário, haverá uma grande 
confusão e perda de amostra. 
 
 
 
 
 
 
 
 
 16 
Tabela 1. Esquema de identificação analítica dos 26 cátions mais comuns. 
 
Grupo Reagente de 
Grupo 
Cátions do 
Grupo 
Fórmula do 
pptado 
Propriedades 
Características 
I – Prata HCl Ag+ 
Pb2+ 
Hg2
2+ 
AgCl 
PbCl2 
Hg2Cl2 
São insolúveis 
em HCl diluído. 
II-A – Cobre H2S em 
presença de 
HCl diluído. 
Cu2+ 
Cd2+ 
Hg2+ 
Pb2+ 
Bi3+ 
CuS 
CdS 
HgS 
PbS 
Bi2S3 
São insolúveis 
em HCl diluído 
(~0,3 M) a frio. 
II-B – Arsênio H2S em 
presença de 
HCl diluído. 
As3+ 
Sb3+ 
Sn2+ 
Sn4+ 
As2S3 
Sb2S3 
SnSSnS2 
São insolúveis 
em (NH4)2S a 
quente e NaOH 
(~2 M) a quente. 
III-A – Ferro NH4OH em 
presença de 
excesso de 
NH4Cl. 
Al3+ 
Cr3+ 
Fe3+ 
Fe2+ 
Al(OH)3 
Cr(OH)3 
Fe(OH)3 
Fe(OH)2 
Os hidróxidos de 
Al e de Cr 
dissolvem-se em 
NaOH. 
III-B – Zinco (NH4)2S em 
presença de 
NH4OH e 
NH4Cl. 
Mn2+ 
Ni2+ 
Co2+ 
Zn2+ 
MnS 
NiS 
CoS 
ZnS 
Os sulfetos de 
Mn e Zn são 
insolúveis em 
HCl diluído a frio. 
IV – Cálcio (NH4)2CO3 em 
presença de 
NH4OH e 
NH4Cl. 
Ca2+ 
Sr2+ 
Ba2+ 
CaCO3 
SrCO3 
BaCO3 
São facilmente 
solúveis em 
ácido acético 
diluído. 
V - Alcalino Não possui 
reagente 
precipitante. 
Na+ 
K+ 
Mg2+ 
NH4+ 
......... 
........ 
........ 
........ 
Não precipitam 
com reagentes 
dos grupos 
anteriores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 17 
PROVAS RECOMENDADAS PARA IDENTIFICAÇÃO DOS ÍONS SÓDIO, 
POTÁSSIO, AMÔNIO E MAGNÉSIO (GRUPO V) 
 
 
 
A) Sódio – Na+ 
 
 
- Coloração de chama: 
 
Esta prova é feita utilizando-se um fio de Pt ou Ni-Cr limpo (deixá-lo por 
alguns minutos na chama até perceber que a mesma mantém sua coloração 
natural) e a chama oxidante de um bico de Bunsen, da seguinte maneira: toca-se 
com o fio de Pt a solução cujo cátion se quer identificar e coloca-se a ponta desse 
fio na região mais fria da chama oxidante. A prova será positiva se a chama 
azulada tornar-se amarela. 
 
 
 
B) Potássio – K+ 
 
 
- Coloração de chama: 
 
 Em amostra sólida contendo apenas K+ repita o teste utilizando vidro azul 
de cobalto para observar a chama. 
 
 Observe a cor da chama: sem o vidro: _______________ 
 com o vidro: _______________ 
 
 
OBS: O teste de coloração de chama é conclusivo apenas para o Na+. Para o K+ 
fornece apenas uma indicação. Faça uma mistura de Na+ e K+ e repita o teste de 
chama, utilizando também o vidro azul de cobalto e responda: 
 
Cor da chama: sem o vidro: ___________ 
 com o vidro: ___________ 
 
 
 - Ácido perclórico: 
 
 Ao sal de potássio adicionar algumas gotas de etanol; em seguida, 
adicional ácido perclórico (teste a frio), observe a formação de um precipitado 
branco: 
 
K+ + ClO- ↔ KClO4 
 18 
OBS: essa reação não é afetada pela presença de amônio. 
 
 
 - Cobaltonitrito de sódio: 
 
 Preparar a solução de cobalto nitrito de sódio tomando 4 ou 5 gotas de 
nitrato de cobalto e adicionando-se um tampão acetato (ácido acético/ acetato de 
sódio) e um pouco de sal de nitrito de sódio, adicione esta ao sal de potássio e 
observe a formação de um precipitado amarelo. 
 
3 K+ + [Co(NO2)6]
3- ↔ K3[Co(NO2)6] 
 cobaltonitrito de potássio 
 
 
 Divida o produto formado em duas partes: 
 
 - em 1: adicione HCldil gota a gota e aqueça brandamente. 
 Oservação: _______________________________________________ 
 
 - em 2: adicione NaOH gota a gota e aqueça brandamente. 
 Observação: ______________________________________________ 
 
 
 
 
C) Amônio – NH4
+ 
 
 
- Bases fortes: 
 
Adicionar base forte em sal de amônio e aquecer. Colocar em cima do tubo 
de ensaio um papel de tornassol úmido e observar a mudança de cor de rosa para 
azul, indicando a saída de NH3. 
 
 
 - Cobaltonitrito de sódio: 
 
 Preparar a solução de cobalto nitrito de sódio, como descrito anteriormente 
e adicione a mesma ao sal de amônio e observe a formação de um precipitado 
amarelo. 
 
3 NH4
+ + [Co(NO2)6]3- ↔ (NH4)3[Co(NO2)6] 
 cobaltonitrito de amônio 
 
 
 
 19 
 Divida o produto formado em duas partes: 
 
 - em 1: adicione HCldil gota a gota e aqueça brandamente. 
 Oservação: _______________________________________________ 
 
 - em 2: adicione NaOH gota a gota e aqueça brandamente. 
Observação:________________________________________________ 
 
 
- Reagente de Nessler: 
 
Adicionar ao sal de amônio uma base forte e montar o sistema 
demonstrado logo abaixo. Observe a mudança de cor no reagente de Nessler, que 
passa de incolor para marrom, com a possível formação de precipitado. 
 
NH4
+ + 2 [HgI4]
2- + 4 OH- ↔ Hg.Hg(NH2)I + 7 I
- + 3 H2O 
 aminoiodeto básico de mercúrio (II) 
 
 
 
 
 
OBS: Caso haja amônia em sua amostra o mesmo deve ser totalmente eliminado 
antes de se fazer outros testes de identificação. Para isso, aqueça 
cuidadosamente até eliminação completa de NH3. Faça o aquecimento pondo e 
retirando o tubo de ensaio da chama. Mantenha a agitação permanente, confira se 
houve a completa eliminação da amônia colocando papel de tornassol na boca do 
tubo de ensaio. 
 
 
 
 
 
 
 20 
D) Magnésio – Mg2+ 
 
 
- Coloração de chama: 
 
Em amostra sólida contendo apenas Mg2+ faça o teste de chama e observe 
a coloração azul (pouco intenso) predominante. 
 
 
- Base forte: 
 
Adicionar ao sal de magnésio uma base forte e observar a formação de 
precipitado branco gelatinoso. 
 
Mg2+ + 2 OH- ↔ Mg(OH)2 
 
 
- Base fraca: 
 
À amostra sólida de magnésio, adicionar gota a gota hidróxido de amônio e 
observar a formação de um precipitado branco gelatinoso. 
 
Mg2+ + 2 NH4OH ↔ Mg(OH)2 + 2 NH3 
 
Pegue outra amostra sólida de magnésio e adicione 6 gotas de cloreto de 
amônio; em seguida, adicione hidróxido de magnésio gota a gota e observe que 
não há formação de precipitado. 
 
Mg2+ + 2 NH4OH + NH4
+ ↔ não precipita 
 
Obs: NH4OH ↔ NH4
+ + OH- 
 
 
 - Carbonato de amônio: 
 
 Adicionar, gota a gota, carbonato de amônio à amostra sólida de magnésio 
e observar a formação de um precipitado branco. 
 
5 Mg2+ + 6 CO3
2- + 7 H2O ↔ 4 MgCO3.Mg(OH)2.5H2O + HCO3
2- 
 carbonato básico de amônio 
 
OBS: Se ao precipitado formado adicionar sal de amônio (cloreto de amônio) 
observe sua solubilização. 
 
 
 
 21 
PROVAS RECOMENDADAS PARA IDENTIFICAÇÃO DOS ÍONS BÁRIO, 
ESTRÔNCIO E CÁLCIO (GRUPO IV) 
 
 
 
A) Bário – Ba2+ 
 
 
- Coloração de chama: 
 
A amostra sólida contendo apenas Ba2+ é colocada sob a chama. Observe 
a coloração verde amarelada da chama, indicando a presença de íons Ba2+. 
 
 
- Íons Sulfato: 
 
 Adicionar gota a gota solução de sulfato de sódio sob a amostra, aquecer 
brandamente e observar o precipitado branco gelatinoso formado. Se adicionar ao 
precipitado algumas gotas de ácido clorídrico diluído, observa-se que o mesmo 
solubiliza. 
 
Ba2+ + SO4
2- ↔ BaSO4 
 
 
- Íons carbonato: 
 
 Adicionar a amostra carbonato de amônio gota a gota, aquecer de forma 
branda e observar a formação de um precipitado branco gelatinoso. Caso adicione 
ácido forte ao precipitado o mesmo irá solubilizar, exceto ácido sulfúrico que 
acaba precipitando sulfato de bário. 
 
Ba2+ + CO3
2- ↔ BaCO3 
 
 
- Íons oxalato: 
 
 Adicionar, gota a gota, oxalato de amônio na amostra, aquecer 
brandamente e observar a formação de um precipitado branco de oxalato de bário. 
Este precipitado por ser solubilizado com a adição de ácido acético a quente. 
 
Ba2+ + C2O4
2- ↔ BaC2O4 
 
OBS: oxalato de bário é o único produto de precipitação de íons oxalato que 
solubiliza com ácido acético, sendo este um bom teste para discriminação de 
cátions do grupo IV. 
 
 22 
- Íons cromato: 
 
 Adicionar cromato de potássio gota a gota a amostra de interesse, aquecer 
de forma branda e observar a formação de um produto amarelo gelatinoso. 
 
Ba2+ + CrO4
2- ↔ BaCrO4 
 
 
- Íons dicromato: 
 
 Adicionar dicromato de potássio a amostra em estudo, aquecer e observar 
a formação de um precipitado alaranjado. 
 
Ba2+ + Cr2O7
2- + H2O↔ 2 BaCrO4 + 2 H
+ 
 
Para acelerar o processo de precipitação e garantir que todo o bário 
presente estará na forma de cromato de bário, basta adicionar algumas gotas de 
acetato de sódio, que agirá como um tampão e precipitará todo o bário mais 
rapidamente. 
 
2 Ba2+ + Cr2O7
2- + H2O + 2 Ac
- ↔ 2 BaCrO4 + 2 HAc 
 
 
 
B) Estrôncio – Sr2+ 
 
 
- Coloração da chama: 
 
A amostra sólida contendo apenas Sr2+ é colocada sob a chama. Observe a 
coloração vermelho carmim da chama (muito intensa), indicando a presença de 
íons Sr2+. 
 
 
- Íons carbonato: 
 
 Adicionar carbonato de amônio, gota a gota, na amostra analisada. Aquecer 
de forma branda e observar a formação de precipitado branco de carbonato de 
estrôncio. 
 
Sr2+ + CO3
2- ↔ SrCO2 
 
 
 
 
 
 23 
- Íons sulfato: 
 
 Na amostra, adicionar, gota a gota, solução de sulfato de sódio e aquecer. 
Observar a formação de precipitado branco gelatinoso de sulfato de estrôncio. 
 
Sr2+ + SO4
2- ↔ SrSO4 
 
 
- Íons carbonato: 
 
 Adicionar carbonato de amônio, gota a gota, na amostra em estudo. 
Aquecer brandamente e observar o precipitado branco formado. 
 
Sr2+ + CO3
2- ↔ SrCO3 
 
 
- Íons oxalato: 
 
 Adicionar oxalato de amônio a amostra e aquecer. Observar a formação de 
um precipitado branco de oxalato de estrôncio. 
 
Sr2+ + C2O4
2- ↔ SrC2O4 
 
 
- Íons cromato: 
 
 Adicionar, gota a gota, cromato de potássio e aquecer brandamente. 
Observar um turvamento de cor amarela na solução, indicando a precipitação de 
cromato de estrôncio. Para verificar melhor esse precipitado basta centrifugar a 
mistura. 
 
Sr2+ + CrO4
2- ↔ SrCrO4 
 
 Adicionar ao precipitado formado algumas gotas de ácido acético e 
observar que o precipitado não se desfaz, sendo este um teste seguro de 
discriminação do estrôncio. 
 
 
- Íons dicromato: 
 
 Adicionar, gota a gota, dicromato de potássio na amostra estudada. 
Observar a mudança de coloração da solução para laranja. OBS: não há formação 
de precipitado, apenas mudança de coloração da solução, para comprovar que 
não houve nenhuma precipitação, centrifugar a solução. 
 
2 Sr2+ + Cr2O7
2- + H2O ↔ não precipita 
 24 
C) Cálcio – Ca2+ 
 
 
- Coloração da chama: 
 
A amostra sólida contendo apenas Ca2+ é colocada sob a chama. Observe 
a coloração vermelho tijolo da chama, indicando a presença de íons Ca2+. 
 
 
- Íons sulfato: 
 
 Adicionar a amostra em estudo uma solução de sulfato de sódio, aquecer e 
observar a formaçao de um precipitado branco gelatinoso. 
 
Ca2+ + SO4
2- ↔ CaSO4 
 
 Ao precipitado de sulfato de cálcio, adicionar gotas de ácido sulfúrico e 
aquecer com cuidado na capela. O precipitado irá se solubilizar: 
 
CaSO4 + H2SO4 ↔ [Ca(SO4)2]
2- 
 
 
- Íons carbonato: 
 
 Adicionar, gota a gota, uma solução de carbonato de amônio e aquecer de 
forma branda. Observar o precipitado branco gelatinoso de carbonato de cálcio 
formado. 
 
Ca2+ + CO3
2- ↔ CaCO3 
 
OBS: se ao carbonato de cálcio formado forem adicionadas gotas de ácido nítrico 
a frio observa-se a solubilização do precipitado e liberação de CO2. 
 
CaCO3 + 2 H
+ ↔ CO2 + H2O + Ca
2+ 
 
 
- Íons oxalato: 
 
 Adicionar oxalato de amônio, gota a gota, aquecer e observar a formação 
de um precipitado branco leitoso de oxalato de cálcio. 
 
Ca2+ + C2O4
2- ↔ CaC2O4 
 
OBS: este precipitado é insolúvel em ácido acético, o que diferencia este teste 
para os cátions bário e estrôncio. 
 
 25 
ESQUEMA DE SEPARAÇÃO – Mg2+; Ca2+; Sr2+ e Ba2+ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26 
PROVAS RECOMENDADAS PARA IDENTIFICAÇÃO DOS ÍONS PRATA, 
CHUMBO E MERCUROSO (GRUPO I) 
 
 
A) Prata – Ag+ 
 
 
- Ácido clorídrico ou cloretos solúveis: 
 
À amostra em análise adicionar, gota a gota, ácido clorídrico diluído. 
Observar a formação de um precipitado branco. 
 
Ag+ + Cl- ↔ AgCl 
OBS: Não adicionar excesso de cloreto, pois, acaba formando complexo de prata. 
 
 
- Hidróxido de sódio: 
 
 Adicionar algumas gotas de hidróxido de sódio diluído à amostra de 
interesse. Observar a formação de um precipitado escuro de óxido de prata. 
 
Ag+ + 2 OH- ↔ Ag2O + H2O 
 
 
 - Agentes redutores (Zn, Cu, FeSO4, glicose, etc): 
 
 Adicionar um dos agentes redutores citados acima na amostra em análise e 
observar a formação de um precipitado preto em solução escura. Zn e Fe são 
sólidos, enquanto que sulfato de ferro e glicose são soluções diluídas. 
 
2 Ag+ + Zn ↔ 2 Agº + Zn2+ 
 
3 Ag+ + 3 FeSO4 ↔ 3 Agº + Fe
3+ + SO4
2- 
 
 
 
B) Chumbo – Pb2+ 
 
 
- Ácido clorídrico ou cloretos solúveis: 
 
À amostra em análise adicionar, gota a gota, ácido clorídrico diluído. 
Observar a formação de um precipitado branco de cloreto de chumbo. 
 
Pb2+ + 2 Cl- ↔ PbCl2 
 
 27 
OBS: cuidado com excesso de cloreto: PbCl2 + 2 Cl
- -> [PbCl4]
2- 
(tetracloroplumbato (II)) – complexo solúvel. 
 
 
 - Iodetos solúveis: 
 
 Adicionar à amostra em estudo, gota a gota, solução de iodeto de potássio 
e observar a formação de um precipitado amarelo de iodeto de chumbo. 
 
Pb2+ + 2 I- ↔ PbI2 
 
OBS 1: o iodeto de chumbo é moderadamente solúvel em água quente obtendo 
uma solução incolor, que por esfriamento separa-se em lâminas de cor amarelo 
ouro. 
 
OBS 2: cuidado com excesso de iodeto: PbI2 + 2 I
- ↔ [PbI4]
2- (tetraiodoplumbato 
(II)) – complexo solúvel. 
 
 
 - Íons cromato: 
 
 Adicionar cromato de potássio na amostra de interesse. Observar a 
formação de um precipitado amarelo de cromato de chumbo. 
 
Pb2+ + CrO4
2- ↔ PbCrO4 
 
 
 - Hidróxido de sódio: 
 
 Adicionar algumas gotas de hidróxido de amônio diluído à amostra de 
interesse. Observar a formação de um precipitado branco de hidróxido de chumbo. 
 
Pb2+ + 2 OH- ↔ Pb(OH)2 
 
 
OBS 1: adicionar base fraca para formar o precipitado, se adicionar uma forte a 
reação pode ir direto para a formação do complexo (vide reação da OBS 2). 
 
OBS 2: cuidado com excesso de hidróxido: Pb(OH)2 + 2 OH
- ↔ [Pb(OH)4]
2- 
(tetrahidroplumbato (II)) – complexo solúvel. 
 
 
 
 
 
 
 28 
C) Mercuroso – Hg2
2+ 
 
 
- Ácido clorídrico ou cloretos solúveis: 
 
 Adicionar, gota a gota, ácido clorídrico diluído e observar precipitado branco 
formado. 
 
Hg2
2+ + 2 Cl- ↔ Hg2Cl2 
 
 Ao precipitado de cloreto de mercúrio, adicionar hidróxido de amônio diluído 
e observar a formação de uma solução e um precipitado escuro de aminocloreto 
de mercúrio (II). 
 
Hg2Cl2 + 2 NH4OH ↔ Hgº + Hg(NH2)Cl + NH4
+ + Cl- + 2 H2O 
 
 Adicionar água régia (duas partes de ácido clorídrico para uma parte de 
ácido nítrico) à solução obtida na etapa anterior (sobrenadante e precipitado) e 
observe a solubilização da solução. 
Hg(NH2)Cl + Cl2 ↔ 2 HgCl2 + 4 HCl + N2 
 
 Dilua a solução da etapa anterior com um pouco de água, coloque um 
pedaço de fio de cobre na mesma, haverá a formação de uma película prateada 
ao redor do cobre (amálgama). 
 
HgCl2 + Cu ↔ Hg(Cu) + CuCl2 
 
 
 - Hidróxido de amônio: 
 
 Adicionar, a amostra em estudo, algumas gotas de hidróxido de amonio 
diluído e observar a formação de uma solução e um precipitado cinza. 
 
Hg2+ + 4 NH4OH ↔ HgO.Hg(NH2)NO3 + 2 Hgº + 3 NH4
+ 
 (aminonitrato básico de mercúrio) 
 
 
 - Hidróxido de sódio: 
 
 Adicionar hidróxido de sódio, gota a gota, na amostra analisada. Observar a 
formação de precipitado de óxido de mercúrio de cor marrom. 
 
Hg2+ + 2 OH- ↔ Hg2O + H2O 
 
 
 
 29 
PROVAS RECOMENDADAS PARA IDENTIFICAÇÃO DOS ÍONS FERRO (II), 
FERRO (III), CROMO E ALUMÍNIO (GRUPO III-A) 
 
 
A) Ferro (II) – Fe2+ 
 
 
 - Sulfeto de amônio: 
 
 Adicionar, gota a gota,solução de sulfeto de amônio à amostra de 
interesse. Observar o precipitado preto de sulfeto de ferro (II) formado. 
 
Fe2+ + S2- ↔ FeS 
 
 
 - Hidróxido de amônio: 
 
 Adicionar hidróxido de amônio, gota a gota. Observar a formação de 
precipitado de hidróxido de ferro (II) de coloração verde. 
 
Fe2+ + 2 NH4OH ↔ Fe(OH)2 + 2 NH4
+ 
 
OBS: caso o precipitado mude de verde para vermelho, significa que o ferro em 
contato com o ar e em meio aquoso oxidou passando para Fe3+. 
 
4 Fe(OH)2 + 2 H2O + O2 ↔ 4 Fe(OH)3 
 
 
 - Hidróxido de sódio: 
 
 Adicionar hidróxido de sódio à amostra em estudo e observar a formação 
de um precipitado verde de hidróxido de ferro (II). 
 
Fe2+ + OH- ↔ Fe(OH)2 
 
 
 - Solução de ferrocianeto de potássio: 
 
 Adicionar à amostra analisada algumas gotas de uma solução de 
ferrocianeto de potássio. Observar a formação de um precipitado azul claro. 
 
Fe2+ + 2 K+ + [Fe(CN)6]
4- ↔ K2Fe[Fe(CN)6] 
 (ferrocianeto de ferro (II) e potássio) 
 
OBS: teste de diferenciação de Fe2+ e Fe3+. 
 
 30 
B) Ferro (III) – Fe3+ 
 
 
 - Sulfeto de amônio: 
 
 Adicionar sulfeto de amônio à amostra estudada e observar precipitado 
preto de sulfeto de ferro (III) formado. 
 
Fe3+ + S2- ↔ Fe2S3 
 
 
 - Hidróxido de amônio: 
 
 Adicionar, gota a gota, uma solução de hidróxido de amônio diluída à 
amostra. Observar a formação de um precipitado marrom avermelhado de 
hidróxido de ferro (III). 
 
Fe3+ + 3 NH4OH ↔ Fe(OH)3 + 3 NH4
+ 
 
 
- Hidróxido de sódio: 
 
 Adicionar hidróxido de sódio à amostra em estudo e observar a formação 
de um precipitado marrom avermelhado de hidróxido de ferro (III). 
 
Fe3+ + OH- ↔ Fe(OH)3 
 
 
- Solução de ferrocianeto de potássio: 
 
 Adicionar à amostra analisada algumas gotas de uma solução de 
ferrocianeto de potássio. Observar a formação de um precipitado azul escuro (azul 
da Prússia). 
 
Fe3+ + 3 [Fe(CN)6]
4- ↔ Fe4[Fe(CN)6]3 
 (ferrocianeto de ferro (III)) 
 
 
OBS: teste de diferenciação de Fe2+ e Fe3+. 
 
 
 
 
 
 
 
 31 
 - Tiocianato de amônio: 
 
 Adicionar, gota a gota, uma solução de tiocianato de amônio na amostra em 
estudo e observar a formação de uma solução vermelho sangue para o tiocianato 
de ferro (III). 
 
Fe3+ + 3 SCN- ↔ Fe(SCN)3 
 
 
OBS: este é o melhor teste de identificação de íons Fe3+. Também forma uma 
série de complexos, tais como: [Fe(SCN)]2+; [Fe(SCN)]+; [Fe(SCN)]-; [Fe(SCN)]2- e 
[Fe(SCN)]3-. 
 
 
 
C) Cromo – Cr3+ 
 
 
- Hidróxido de amônio: 
 
Adicionar à amostra em análise algumas gotas de hidróxido de amônio 
diluído e observar a formação de um precipitado verde de hidróxido de cromo (III). 
 
2 Cr3+ + 3 NH4OH ↔ 2 Cr(OH)3 + 3 NH4
+ 
 
OBS: se utilizar hidróxido concentrado haverá formação de complexo 
(tetrahidróxicromato (III)) – solúvel: Cr(OH)3 + 6 NH4OH -> [Cr(NH3)6]
3+ + 6 H2O + 
3 OH- 
 
 
- Hidróxido de sódio: 
 
 Adicionar hidróxido de ferro à amostra em estudo e observar a formação de 
um precipitado verde de hidróxido de cromo (III). 
 
Cr3+ + OH- ↔ Cr(OH)3 
 
OBS: cuidado para não adicionar excesso de hidróxido e forma complexo – 
solúvel. 
 
 
 - Água oxigenada em meio alcalino: 
 
 Adicionar algumas gotas de hidróxido de sódio na amostra em estudo, 
testar o pH e quando o mesmo estiver alcalino, adicionar peróxido de hidrogênio. 
 32 
Observar mudança de cor de verde para amarelo, em função da formação de íons 
cromato. 
 
2 [Cr(OH)4]
- + 3 H2O2 + 2 OH
- ↔ 2 CrO4
2- + 8 H2O 
 
 
 
D) Alumínio – Al3+ 
 
 
- Sulfeto de amônio: 
 
Adicionar, gota a gota, na amostra em análise sulfeto de amônio e observar 
a formação de hidróxido de alumínio precipitado de cor branca. 
 
2 Al3+ + 3 S2- + 6 H2O ↔ 2 Al(OH)3 + 3 NH4
+ 
 
 
- Hidróxido de amônio: 
 
Adicionar hidróxido de amônio na amostra em estudo e observar a 
formação de um precipitado branco de hidróxido de alumínio. 
 
2 Al3+ + 3 NH4OH ↔ 2 Al(OH)3 + 3 NH4
+ 
 
 
 - Hidróxido de sódio: 
 
 Na amostra analisada adicionar, gota a gota, hidróxido de sódio e observar 
a formação de hidróxido de alumínio, precipitado branco. 
 
Al3+ + 3 OH- ↔ Al(OH)3 
 
OBS: não colocar excesso de hidróxido de sódio, pois haverá a formação do 
complexo tetrahidroxialuminato, que é solúvel em soluções aquosas. 
 
Al(OH)3 + OH
- ↔ [Al(OH)4]
- 
 
 
OBSERVAÇÃO GERAL: Todas as reações (sem exceção) utilizando sulfeto 
devem ser feitas na capela, visto algumas, dependo das condições do meio, 
liberarem H2S que é tóxico! 
 
 
 
 
 33 
PROVAS RECOMENDADAS PARA IDENTIFICAÇÃO DOS ÍONS COBALTO, 
NÍQUEL, MANGANÊS E ZINCO (GRUPO III-B) 
 
 
 
A) Cobalto – Co2+ 
 
 
- Sulfeto de amônio: 
 
Adicionar, gota a gota e dentro da capela, uma solução de sulfeto de 
amônio e observar a formação de um precipitado preto de sulfeto de cobalto. 
 
Co2+ + S2- ↔ CoS 
 
 
 - Hidróxido de amônio: 
 
 Adicionar uma pequena quantidade hidróxido de amônio diluído (o meio 
reacional não pode estar muito alcalino) à amostra em análise. Observar a 
formação de um precipitado azul de sal básico de cobalto. 
 
Co2+ + NH4OH ↔ Co(OH)NO3 + OH
- 
 
OBS: com excesso de amônio, haverá a formação de um complexo 
(hexaminocobaltato (II)), que é solúvel. 
 
Co(OH)NO3 + 6 NH4OH ↔ [Co(NH3)6]
2+ + NO- + OH- + 6 H2O 
 
 
 - Hidróxido de sódio na presença de ar ou água oxigenada: 
 
 Adicionar hidróxido de sódio na amostra em estudo, observar precipitado 
azul-violeta formado. 
 
Co2+ + NaOH ↔ Co(OH)NO3 + Na
+ 
 
 Adicionar excesso de hidróxido no precipitado formado inicialmente. 
 
Co(OH)NO3 + OH
- ↔ Co(OH)2 
 
 Deixar a solução contendo o precipitado de hidróxido de cobalto em 
repouso ou adicionar algumas gotas de peróxido de hidrogênio e observar o 
escurecimento do precipitado, indicando a oxidação do Co2+ para o Co3+. 
 
4 Co(OH)2 + O2 + 2 H2O ↔ 4 Co(OH)3 
 34 
2 Co(OH)2 + H2O2 ↔ 2 Co (OH)3 
 
 
 - Tiocianato de amônio: 
 
 Adicionar na amostra em estudo algumas gotas de tiocianato de amônio e 
observar a formação de um precipitado roxo de tetratiocianatocobaltato (II). 
 
Co2+ + 4 SCN- ↔ [Co(SCN)4]
2- 
 
OBS: se for adicionado algumas gotas de etanol ao precipitado formado, o mesmo 
sofre decoloração, passando de roxo para azul. 
 
 
 - Nitrito de potássio: 
 
 Adicionar uma solução de nitrito de potássio (alta concentração) na amostra 
em estudo ou uma grande quantidade de sal de nitrito de potássio. Observar a 
formação de hexanitritocobaltato (III) de potássio, precipitado amarelo. 
 
Co2+ + 7 NO2- + 2 H+ + 3 K+ ↔ K3[Co(NO2)6] + NO + H2O 
 
 
 
B) Níquel – Ni2+ 
 
 
- Sulfeto de amônio: 
 
Adicionar na amostra analisada algumas gotas de sulfeto de amônio e 
observar o precipitado preto de sulfeto de níquel formado. 
 
Ni2+ + S2- ↔ NiS 
 
 
- Hidróxido de amônio: 
 
Adicionar, gota a gota, uma solução de hidróxido de amônio diluído na 
amostra em estudo. Observar a formação de um precipitado azul. 
 
Ni2+ + 2 NH4OH ↔ Ni(OH)2 + 2 NH4
+ 
 
OBS: se houver adição de excesso de hidróxido o precipitado solubiliza. 
 
Ni(OH)2 + 6 NH4OH ↔ [Ni(NH3)6]
2+ + 2 OH- 
 
 35 
- Hidróxido de sódio com hipoclorito de sódio: 
 
 Adicionar algumas gotas de hidróxido de sódio na amostra analisada e 
observar a formação de um precipitado verde gelatinoso de hidróxido de níquel. 
Adicionando-se algumas gotas de hipoclorito de sódio ao precipitado observa-se 
que o níquel oxida, pela coloração escura adquirida pelo precipitado. 
 
Ni2+ + 2 OH- ↔ Ni(OH)2 
 
2 Ni(OH)2 + ClO
- + H2O ↔ 2 Ni(OH)3 + Cl- 
 
 
 - Dimetilglioxima: 
 
 Adicionar algumas gotas do reagente dimetilglioxima na amostra em 
análise. Observar a coloração rosa muito característica do precipitado de 
dimetilglioxima de níquel formado. 
 
2 Ni2+ + 2 H2DM6 ↔ Ni(HDM6)2 + 2 H
+ 
 
 
 
C) Manganês – Mn2+ 
 
 
- Sulfeto de amônio: 
 
 Adicionar algumas gotas de sulfeto de amônio na amostra analisada. 
Observar a formação de um precipitado de sulfeto de manganês de coloração 
rosa. 
 
Mn2+ + S2- ↔ MnS 
 
 
 - Hidróxido de amônio: 
 
 Adicionar, gota a gota, de hidróxido de amônio diluído e observe a formação 
de um precipitado amarelo bem claro de hidróxido de manganês. Nesta reação um 
excesso de hidróxido não provocará a dissolução do precipitado, pois hidróxidos 
de manganês não formam complexos. 
 
Mn2+ + 2 NH4OH ↔ Mn(OH)2 + 2 NH4
+ 
 
 
 
 
 36 
 - Hidróxido de sódio na presença de ar ou água oxigenada: 
 
 Adicionar hidróxido de sódio diluído e observe a formação de um 
precipitado amarelo claro de hidróxido de manganês. 
 
Mn2+ + OH- ↔ Mn(OH)2 
 
 
 Na solução obtida anteriormente pode ser realizada dois testes: um 
deixando a solução em repouso por alguns minutos, onde observa-se a formação 
de um precipitado escuro ou adicionar algumas gotas de peróxido de hidrogênio, 
que produzirá também um precipitado marrom escuro. Ambos os produtos 
formados são dióxido de manganês hidratado, devido a oxidação do manganês de 
Mn2+ para Mn4+. 
Mn(OH)2 + O2 + H2O ↔ MnO2.H2O + 2 OH
- 
 
Mn(OH)2 + H2O2 ↔ MnO2.H2O + H2O 
 
 
 - Dióxido de chumbo: 
 
 Na amostra de interesse adicionar dióxido de chumbo em meio ácido 
(acidificar o meio com HNO3 concentrado – testar com papel indicador). Observar 
a mudança de coloração da solução para violeta, em função da formação dos íons 
permanganato. 
 
2 Mn2+ + 5 PbO2 + 4 H
+ ↔ MnO4
- + 5 Pb2+ + 2 H2O 
 
OBS: Este teste é um excelente para diferenciação na identificação de manganês 
em uma amostra de composição desconhecida. 
 
 
 
D) Zinco – Zn2+ 
 
 
 - Sulfeto de amônio: 
 
 Adicionar sulfeto de amônio na amostra analisada e observar a formação de 
sulfeto de zinco, um precipitado de coloração amarelo claro. 
 
Zn2+ + S2- ↔ ZnS 
 
 
 
 
 37 
 - Hidróxido de amônio: 
 
 Adicionar hidróxido de amônio à amostra analisada, observar a formação de 
um precipitado branco gelatinoso de hidróxido de zinco (II). 
 
Zn2+ + 2 NH4OH ↔ Zn(OH)2 + 2 NH4
+ 
 
OBS: Excesso de hidróxido gera um complexo e o precipitado se desfaz, fazendo 
com que seja realizada uma análise errônea da amostra. 
 
Zn(OH)2 + 4 NH4OH ↔ [Zn(NH3)4]
2+ + 2 OH- 
 (tetraminzincato (II)) 
 
 
 - Hidróxido de sódio: 
 
 Adicionar poucas gotas de hidróxido de sódio na amostra em estudo e 
observar a formação de hidróxido de zinco (II) – precipitado branco gelatinoso. 
 
Zn2+ + 2 OH- ↔ Zn(OH)2 
 
OBS: Não adicionar excesso de hidróxido, pois, formará um complexo de 
tetrahidrozincato (II). 
 
Zn(OH)2 + 2 OH
- ↔ [Zn(OH)4]
2+ + 2 OH- 
 
 
 - Solução de hexacianoferrato (II) de potássio: 
 
 Adicionar algumas gotas de solução de ferrocianeto de potássio 
(hexacianoferrato de potássio) na amostra de interesse. Observar a formação do 
precipitado amarelo de ferrocianeto de zinco e potássio. 
 
3 Zn2+ + 2 K+ + 2[Fe(CN)6]
4- ↔ K2Zn3[Fe(CN)6]2 
 
 
 
 
 
 
 
 
 
 
 
 
 38 
ESQUEMA DE SEPARAÇÃO – Al3+; Co2+; Fe3+ e Mn2+ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Al3+; Co2+; Fe3+; Mn2+ 
 Fe(OH)3; Al(OH)3; CoS; MnS 
Al3+; Fe3+; Mn2+ CoS 
Co2+ 
[Co(SCN)4]
2+ 
Al(OH)4
- 
Al3+ 
Al(OH)
3 
Fe(OH)3; Mn(OH)2 
Fe3+; Mn2+ 
Fe3+ 
[Fe(SCN
)6]
2- 
Mn2+ 
MnO4
- 
NH4OH + (NH4)2S 
60ºC
ppt preto 
HCl dil 
Sobrenadante - rosa 
ppt preto 
HNO3 conc 
 
HCl dil + SCN
-
 + acetona 
Complexo azul 
sç amarela 
OH
-
 conc + H2O2 
 
HCl dil 
NH4OH conc 
ppt branco 
gelatinoso 
H2SO4 dil 
 
2 alíquotas 
HCl dil 
 SCN
- 
 PbO2 
HNO3 conc 
sç vermelha 
sç violeta 
ppt marrom 
 39 
Classificação Analítica dos Ânions: 
 
 
 Os métodos utilizados para a detecção dos anions não são tão sistemáticos 
como os demonstrados para os cátions. Não existe um esquema satisfatório de 
separação de anions descrito em grupos principais. Entretanto, é possível separar 
os anions em grupos principais dependendo das solubilidades dos seus sais de 
prata, de cálcio ou de bário e dos sais de zinco; mas estes grupos podem ser 
considerados úteis apenas para dar indicação das limitações do método e 
confirmação dos resultados obtidos por processos mais simples. 
 Um possível processo de identificação de anions pode ser realizado de 
maneira satisfatória, sendo este dividido em: identificação por produtos voláteis 
obtidos por tratamento com ácidos; reações em solução. Sendo o primeiro 
subdividido em: gases desprendidos com ácido clorídrico diluído ou ácido sulfúrico 
diluído; gases ou vapores desprendidos por tratamento com ácido sulfúrico 
concentrado. E a segunda divisão inicial pode ser ainda subdividida em: reações 
de precipitação e oxidação e redução em solução. 
 Como exemplos de gases desprendidos com ácido clorídrico ou com ácido 
sulfúrico diluído temos: carbonato, bicarbonato, sulfito, tiossulfato, sulfeto, nitrito, 
hipoclorito, cianeto e cianato. 
 Já gases com gases ou vapores ácido desprendidos com ácido sulfúrico 
concentrado, além dos citados acima, ainda encontram-se: fluoreto, 
hexafluorsiicato, cloreto, brometo, borato, hexacianoferrato (I), hexacianoferrato 
(III), tiocianato, formiato, acetato, oxalato, tartarato e citrato. 
 Para as reações de precipitação observa-se: sulfato, persulfato, fosfato, 
fosfito, hipofosfito, arseniato, arsenito, cromato, dicromato, silicato, 
hexafluorsilicato, salicilato, benzoato e succinato. Para as reações de oxidação e 
redução em solução tem-se: manganato, permanganato, cromato e dicromato. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40 
PROVAS RECOMENDADAS PARA IDENTIFICAÇÃO DOS ÍONS SULFATO, 
FOSFATO, CARBONATO E SULFETO (GRUPO I) 
 
 
 
A) Sulfato – SO4
2- 
 
 
 - Reações do Ba2+ com sulfato: 
 
 Acidificar a amostra analisada com HCl, adicionar nitrato de bário e 
observar a formação de um precipitado branco de sulfato de bário. 
 
Ba2+ + SO4
2- ↔ BaSO4 
 
OBS 1: Este precipitado é insolúvel em meio ácido (forte), par comprovar tal 
afirmação adicione algumas gotas de ácido clorídrico 6M ao precipitado de sulfato 
de bário formado. 
 
OBS 2: Outro teste de identificação de sulfato é com nitrato de chumbo, que 
também forma um precipitado branco. Entretanto, este teste não é tão aplicado 
quanto o de bário em razão de chumbo ser um metal pesado e posteriormente fica 
dificultado seu descarte. 
 
 
 - Reações do Ca2+ com sulfato: 
 
 Adicionar nitrato de cálcio na amostra em estudo, aquecer e observar a 
formação de um precipitado branco de sulfato de cálcio. 
 
Ca2+ + SO4
2- + 2 H2O ↔ CaSO4.2H2O 
 
 
 
B) Fosfato – PO4
3- 
 
 
 - Reações do Ba2+ com fosfato: 
 
 Na amostra em análise adicionar algumas gotas de hidróxido de amônio 
para alcalinizar o meio; logo após, adicionar nitrato de bário e observar a formação 
de fosfato de bário – precipitado branco. 
 
3 Ba2+ + 2 HPO4
2- + 2 NH3 ↔ Ba3(PO4)2 + 2 NH4
+ 
 
 41 
OBS 1: Fosfato, quando em solução aquosa, encontra-se na forma de 
monohidrogênio fosfato, por isso, deve-se adicionar hidróxido ao meio para o NH3 
converter o íon HPO4
2- em PO4
3-. 
 
OBS 2: Caso o meio não fosse alcalinizado no início da reação, não seria 
observada a formação do fosfato de bário, pois o mesmo voltaria aser 
monohidrogênio fosfato, como mostra as equações abaixo: 
 
HPO4
2- + Ba2+ ↔Ba3(PO4)2 + H
+ 
 
PO4
3- + H+ ↔ HPO4
2- 
 
 
 - Molibdato de amônio: 
 
Acidificar a amostra analisada com ácido nítrico concentrado e adicionar 
molibdato de amônio. Observar a formação de um precipitado amarelo, após a 
reação de óxido-redução. 
 
HPO4
2- + 12 MoO4
2- + H+ ↔ (NH4)3PO4.12MoO3 + H2O 
 
OBS: Ótima reação de identificação de íons fosfato! 
 
 
 - Reação do Mg2+; NH4
+ e PO4
3-: 
 
 Tamponar o meio de análise com hidróxido de amônio e cloreto de amônio, 
adicionar algumas gotas de solução de nitrato de magnésio. Observar a formação 
de cristais brancos na solução, colocar alguns desses cristais no microscópio e 
observar sua forma em estrela. 
 
HPO4
2- + Mg2+ + NH4OH + NH4
+ ↔ MgNH2PO4.6H2O + NH3 
 (cristais em forma de estrela) 
 
 
 Teste a solubilidade desses cristais em ácido acético. O que se observa? 
 R. _________________________________________________________ 
 
 
 - Reação da prata com PO4
3-: 
 
 Adicionar nitrato de prata na amostra em estudo e observar a formação de 
um precipitado amarelo de fosfato de prata. 
 
HPO4
2- + Ag+ ↔ Ag3PO4 
 
 42 
 Teste a solubilidade do fosfato de prata em HNO3 e hidróxido de amônio. O 
que se observa? 
 HNO3: ______________________________________________________ 
 NH4OH: _____________________________________________________ 
 
 
 
C) Carbonato – CO3
2- 
 
 
 - Reação do Ba2+ com CO3
2-: 
 
 Adicionar nitrato de bário na amostra em estudo e observar a formação de 
um precipitado branco de carbonato de bário. 
 
Ba2+ + CO3
2- ↔ BaCO3 
 
 
 - Reação de H+ (diluído) com CO3
2- em sistema fechado: 
 
Em um tubo de ensaio colocar a amostra a ser analisada, adicionar 
algumas gotas de ácido acético ou sulfúrico diluído. Em outro tubo de ensaio 
adicionar água de barita e montar o sistema em U como demonstrado abaixo. 
Aqueça brandamente o sistema e observe a formação de precipitado branco, 
indicando a presença de carbonato na amostra (BaCO3). 
 
 
CO3
2- + 2 H+ <-> H2CO3 ↔ CO2 + H2O 
 
CO2 + Ba
2+ + 2 OH- ↔ BaCO3 + H2O 
 
 
 
 43 
D) Sulfito – SO3
2- 
 
 
 - Reação do Ba2+ com SO3
2-: 
 
 Adicionar nitrato de bário na amostra de interesse. Observar a formação de 
um precipitado branco de sulfito de bário. 
 
Ba2+ + SO3
2- ↔ BaSO3 
 
 Testar a solubilidade do precipitado em HCl diluído. O que se observa? 
 R.___________________________________________________________ 
 
 Este pode ser um teste de diferenciação entre SO4
2- e SO3
2-? 
 R.___________________________________________________________ 
 
 
 - Reação do H+ com SO3
2-: 
 
 Adicionar algumas gotas de ácido clorídrico diluído na amostra em estudo. 
Colocar um pedaço de papel de filtro, contendo uma gota de dicromato, na boca 
do tubo onde está se realizando o experimento. Observar a mudança de coloração 
no papel de alaranjado para verde, pois, o sulfito tem forma redutora. 
 
2 H+ + SO3
2- -> H2SO3 ↔ H2O + SO2 
 
CrO7
2- + SO2 + H2O ↔ 2 Cr
3+ + SO4
2- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44 
PROVAS RECOMENDADAS PARA IDENTIFICAÇÃO DOS ÍONS NITRITO, 
NITRATO E ACETATO (GRUPO II) 
 
 
 
A) Nitrato – NO3
- 
 
 
 - Ácido sulfúrico concentrado: 
 
 Adicionar algumas gotas de ácido sulfúrico concentrado na amostra em 
análise, aquecer a mesma e observar a saída de um gás marrom de NO2. 
Executar tal reação na CAPELA! 
 
NO3
- + H2SO4 ↔ HNO3 + HSO4
- 
4 HNO3 + H2SO4 ↔ 4 NO2 + O2 + H2SO4.2H2O 
 
 
 - Íons Fe2+ e ácido sulfúrico concentrado: 
 
 Na amostra, adicione uma solução de Fe2+; em seguida, coloque ácido 
sulfúrico concentrado (na capela) de forma lenta (fazendo com que o mesmo 
escorra pelas paredes do tubo lentamente). Observe a formação de um anel 
marrom de [Fe.NO]2+ na interface, abaixo dela encontra-se o ácido sulfúrico 
adicionado em excesso. 
 
NO3
- + 3 Fe2+ + 4 H+ ↔ 3 Fe3+ + NO + 2 H2O 
 
NO + Fe2+ ↔ [Fe.NO]2+ 
 
OBS 1: Esta prova do anel é a mesma utilizada para o nitrito. A diferença é que 
para o nitrato utiliza-se ácido sulfúrico concentrado e a reação ocorre na interface 
entre o ácido e solução problema que já deve conter a solução do sal de Mohr 
(Fe2+). Forma-se um anel verde acastanhado. O nitrito deve ser eliminado 
previamente. 
 
OBS 2: Nitrito, brometo e iodeto interferem neste teste. 
 
 
 - Hidrogênio nascente em meio alcalino: 
 
 Em um erlenmeyer, colocar uma porção da amostra analisada, dissolvê-la 
em água e adicionar um pouco de alumínio em pó e hidróxido de sódio. Tampar a 
boca do erlenmeyer com algodão e colocar um papel de tornassol rosa em cima 
do mesmo, aquecer e observar a mudança da coloração do papel de rosa para 
 45 
azul, devido a liberação de amônia pela reação do hidrogênio nascente (Hº) com o 
nitrato. 
 
Alº + 3 OH- ↔ Al(OH)3 + Hº 
 
NO3
- + Hº ↔ NH3 + 2 H2O + OH
- 
 
OBS: este teste é usado para identificação de nitrato em amostras coloridas. 
 
 
B) Nitrito – NO2
- 
 
 
 - Ácido sulfúrico diluído: 
 
 Adicionar ácido sulfúrico diluído (na capela) na amostra de interesse. 
Aquecer e observar a liberação de um gás marrom muito tóxico (cuidado!) de NO2. 
 
NO2
- + H2SO4 ↔ HNO2 + HSO4
- 
 
3 HNO2 ↔ HNO3 + 2 NO + H2O 
 
2 NO + O2 (ar) ↔ 2 NO2 
 
OBS: este é um ótimo teste para diferenciar nitrato de nitrito. 
 
 
 - Ácido sulfúrico concentrado: 
 
 Adicionar ácido sulfúrico concentrado (na capela) na amostra em estudo. 
Observar o gás marrom formado. Este teste é idêntico para nitrato e nitrito. 
 
NO2
- + H2SO4 ↔ HNO2 + HSO4
- 
 
2 HNO2 + H2SO4 ↔ N2O3 + H2SO4. H2O 
 
 
 - Íons Fe2+ e ácido sulfúrico diluído: 
 
 Acidificar o meio reacional com ácido sulfúrico diluído, adicionar a solução 
algum sal de Fe2+. Observar a formação de uma solução marrom e não anel como 
observado quando se tem nitrato; portanto, este teste não é conclusivo para a 
identificação desses íons presentes em uma mesma amostra. 
 
NO2
- + H+ ↔ HNO2 
 46 
HNO2 + Fe
2+ + H+ ↔ NO + Fe3+ + H2O 
 
OBS: O teste deve ser executado na ausência de íons metálicos que possam 
precipitar com sulfato. 
 
 
 - Íons iodeto em meio ácido: 
 
 Adicionar ácido clorídrico diluído na amostra em análise e algum sal de 
iodeto. Observar a formação de duas fases na solução: a de cima polar de cor 
amarelada e debaixo apolar que possui coloração violeta. 
 
2 HNO2 + 2 I
- + 2 H+ ↔ I2 + 2 NO + 2 H2O 
 
 
 - Íons permanganato em meio ácido: 
 
 Acidificar o meio com ácido clorídrico diluído. Adicionar permanganato de 
potássio e observar que a solução violeta (devido aos íons MnO4
-) torna-se 
incolor. 
 
5 HNO2 + MnO4
- + H+ ↔ 5 NO3
- + 2 Mn2+ + 3 H2O 
 
 
 - Eliminação com sal de amônio: 
 
 Adicionar sal de amônio (cloreto de amônio) na amostra em estudo. 
Aquecer moderadamente e observar a liberação de um gás incolor de N2. 
 
HNO2 + NH4
+ ↔ N2 + 2 H2O + H
+ 
 
OBS: Uma vez constatado a presença de nitrito este deve ser eliminado (adição 
de uréia em meio acidulado com ácido sulfúrico diluído à mistura e aquecimento à 
ebulição até o teste negativo para nitrito). Após a eliminação total do nitrito, faz-se 
a prova do anel pardo para identificar o nitrato. 
 
 
 
C) Acetato – Ac- 
 
 
 - Íons Fe3+: 
 
 Adicionar um sal de Fe3+ na amostra analisada. Observar a formação de 
uma solução avermelhada, em razão do complexo de ferro formado. 
 
 47 
6 Ac- + 3 Fe3+ + 6 H2O ↔↔ [Fe(AC)6(H2O)6]
3+ 
 
 Aqueça brandamente esta solução e observe a formação de um precipitado 
vermelho. 
 
[Fe(Ac)6(H2O)6]
3+ ↔ 3 Fe(Ac)(OH)2 + 3 HAc + 3 H+ 
 
OBS: Caso no primeiro passo dessa reação já dê um precipitado vermelho não é 
indicativo de acetato, pois este precipita a quente, o que significa é que o meio 
está fortemente alcalino e a reação não ocorrerá corretamente. Para corrigir, 
acidifique o meio com ácido clorídrico diluído e proceda a reação normalmente. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48 
PROVAS RECOMENDADAS PARA IDENTIFICAÇÃO DOS ÍONS CLORETO, 
BROMETO E IODETO (GRUPO III) 
 
 
 
A) Cloreto – Cl- 
 
 
 - Reação com Ag+ em ácido nítrico: 
 
 Acidificar o meio com ácido nítrico diluído, adicionar nitrato de prata e 
observar a formação de um precipitado branco de cloreto de prata. 
 
Cl- + Ag+ +H+ ↔ AgCl 
 
 
 Teste a solubilidade do precipitado formado em NH3 0,5M. O que se 
observa: R._________________________________________________________ 
 
 Teste a solubilidade do precipitado formado em HNO3. O que se observa? 
 R.___________________________________________________________ 
 
 
OBS: Adição de íons Ag+ em meio de ácido nítrico diluído, desde que Br- e I- 
estejam ausentes. Na presença desses dois ânions recomenda-se prova do 
cloreto de cromilo. 
 
 
 - Cloreto de cromilo: 
 
 Num tubo de ensaio coloque uma pequena quantidade da amostra sólida e 
misture com 3 partes de K2Cr2O7 (sólido). Em outro tubo de ensaio coloque 10 a 
15 gotas de solução de NaOH. Em seguida adicione ao primeiro tubo 15 gotas de 
H2SO4 concentrado e monte rapidamente o sistema fechado, como mostrado 
abaixo. Aqueça brandamente. Observe a cor do gás formado. Agite 
cuidadosamente para auxiliar a passagem do gás para o segundo tubo. O gás 
colore a solução de Na+ e OH- de amarelo. 
 
 49 
 
 
 
OBS: Se a amostra apresenta Br- este reagirá preferencialmente formando Br2 
que, também, colore de amarelo a solução de NaOH. O Br2 deve ser eliminado 
antes de se efetuar a prova do ácido percrômico. Acidule a solução amarela com 
H2SO4 diluído e aqueça em banho-maria na capela, este procedimento conduzirá 
a eliminação do Br2. Note que ocorrerá a libertação de um gás alaranjado. 
 
 
 - Oxidação do Cl- com Pb2+ e Hg2
2+: 
 
 Adicionar à amostra em estudo sal de Pb2+ ou sal de Hg2
2+. Para o primeiro 
cátion, observar a formação de flocos brancos na solução (cloreto de chumbo (II)), 
para o segundo cátion observar a formação de cloreto mercuroso, indicado por 
uma turvação branca na solução. 
 
Cl- + Pb2+ ↔ PbCl2 
 
Cl- + Hg2
2+ ↔ Hg2Cl2 
 
 
 - Oxidação do Cl- para Cl2 livre: 
 
 Acidificar a solução contendo a amostra de interesse com ácido nítrico 
diluído. Adicionar permanganato de potássio e observar a liberação um gás incolor 
de Cl2. Fazer esta reação na CAPELA. 
 
2 Cl- + 4 H+ + MnO2 ↔ Mn
2+ + Cl2 + 2 H2O 
 
 
 
 
 
 50 
B) Brometo – Br - 
 
 
 - Reação de Br- com Ag+: 
 
 Adicionar nitrato de prata na amostra de interesse e observar a formação de 
um precipitado branco de brometo de prata. 
 
Br- + Ag+ ↔ AgBr 
 
 Teste a solubilidade do precipitado formado em NH3 0,5M. O que se 
observa: R._________________________________________________________ 
 
 Teste a solubilidade do precipitado formado em HNO3. O que se observa? 
 R.___________________________________________________________ 
 
 
 - Reação do Br- com ácido sulfúrico: 
 
 Adicione ácido sulfúrico diluído, na capela, na amostra analisada, aqueça 
com cuidado e observe a liberação de um gás marrom avermelhado de SO2. 
 
2 Br- + 4 H2SO4 ↔ 2 H2O + SO2 + Br2 
 
 
 - Oxidação do Br- com permanganato: 
 
 Acidifique o meio reacional (com ácido nítrico diluído) e adicione 
permanganato de potássio, aqueça. Observe a mudança de coloração de violeta 
para incolor. 
 
2 Br- + 4 H+ + MnO2 ↔ Mn
2+ + Br2 + 2 H2O 
 
 
 
C) Iodeto – I- 
 
 
- Ácido sulfúrico concentrado: 
 
 Adicione algumas gotas de ácido sulfúrico concentrado na amostra de 
interesse, aqueça brandamente na capela e observe a saída de um gás violeta 
referente ao I2. 
 
2 I- + 2 H2SO4 ↔ I2 + SO4
2- + 2 H2O 
 
 51 
 - Água de cloro: 
 
 No tubo contendo a amostra adicione algumas gotas de ácido sulfúrico 
diluído (certifique-se que o pH encontra-se ácido utilizando um papel indicador), 
adicione algumas gotas de clorofórmio e solução de NaClO gota a gota. Observe 
as duas fases formadas: uma orgânica de cor rosa avermelhada e outra aquosa 
de cor laranja. 
 
2 I- + Cl2 ↔ I2 + 2 Cl
- 
 
I2 + 5 Cl2 + 6 H2O ↔ 2 IO3
- + 10 Cl- + 12 H+ 
 
 
OBS: A reação com a água de barita é a mesma para iodeto e brometo, porém ela 
é mais facilmente para o iodeto. Adicione água de cloro gota a gota e após agitar 
verifique a coloração no meio orgânico. Não se prenda a coloração no meio 
aquoso. 
 
 
 - Nitrato de prata: 
 
 Adicionar à amostra em estudo algumas gotas de nitrato de prata. Observar 
a formação de um precipitado amarelo de iodeto de prata. 
 
I- + Ag+ ↔ AgI 
 
 Testar a solubilidade do precipitado AgI em solução de hidróxido de amônio 
concentrado. O que se observa? 
 O que se observa? 
 R.___________________________________________________________ 
 
 Testar a solubilidade de AgI em ácido nítrico diluído. O que se observa? 
 R.___________________________________________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52 
ESQUEMA DE SEPARAÇÃO – Cl-; Br- e I- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53 
EXECUÇÃO DE ANÁLISE 
 
PROVAS PRÉVIAS: 
 
 
A) Coloração da chama (conclusiva apenas para o íon Na+). 
 
B) Solubilidade em água, medida do pH da solução e caráter redox: coloca-se 
uma porção da amostra correspondente a uma ponta de espátula em um tubo de 
ensaio, adiciona-se cerca de 2 mL de água destilada e agita-se, observando-se se 
há dissolução total ou não (recomenda-se aquecer brandamente para auxiliar na 
dissolução). Toca-se a solução com a ponta de um bastão de vidro limpo e seco e, 
depois, põe-se este em contato com uma tira de papel indicador. Compara-se a 
cor do papel ao padrão de cores do papel indicador utilizado e tem-se, assim, uma 
idéia do valor do pH da solução aquosa da amostra. Usando alíquotas da solução 
formada, verifique o caráter redoxi utilizando soluções de KMnO4 (essa solução 
deve ser muito diluída, para isso dilua na proporção 1:20) e KI. 
 
C) Solubilidade em ácido clorídrico diluído. Caso a amostra seja insolúvel em H2O 
adicione, sobre a mistura da amostra com H2O, algumas gotas de HCl diluído, e 
verifique a solubilidade a frio e a quente. 
 
D) Comportamento em ácido sulfúrico concentrado. Coloca-se uma porção da 
amostra, correspondente a uma ponta de espátula, em um tubo de ensaio e 
adiciona-se cerca de 1 mL de H2SO4 concentrado. Observe o comportamento da 
amostra a frio e a quente (aquecimento brando). Faça o teste na CAPELA. 
 
 
Dependendo das observações anotadas, pode-se tirar conclusões 
preliminares acerca de alguns íons presentes na amostra: 
 
1) Se a amostra é solúvel em água, não existe Mg2+, Ca2+, Sr2+, Ba2+ na presença 
de CO3
2- e SO4
2- (Cuidado uma amostra pode apresentar Mg2+ e CO3
2- e ser 
solúvel em água, desde que haja NH4
+ em concentração alta). 
 
2) Se a amostra é solúvel em HCl diluído e (aquecimento), não existe Sr2+, Ba2+ na 
presença de SO4
2-. Se for parcialmente solúvel, comprova-se a presença de 
resíduo e então se deve fazer a fusão alcalina. 
 
3) A liberação de um vapor violeta quando a solução problema é tratada com 
H2SO4 concentrado é indicativo de I2, portanto pode haver I
-. Se alaranjado ou 
acastanhado pode ser Br2 e/ou NO2
-, portanto indicativo da presença de Br-, NO2
- 
e/ou NO3
-. 
 
 
 
 
 54 
GUIA DE LABORATÓRIO - 2009 
 
QFL 2241 – PRINCÍPIOS DE QUÍMICA ANALÍTICAQUANTITATIVA 
 
 
 
PADRONIZAÇÃO DE SOLUÇÕES 
 
 
A) Hidróxido de Sódio 0,1 mol/L: 
 
 
 O hidróxido de sódio é higroscópico, e quando sólidos ou na forma de 
soluções absorvem rapidamente o CO2 da atmosfera, com formação de 
carbonatos: 
 
2 OH- + CO2 ↔ CO3
2- + H2O 
 
 No preparo da solução de NaOH deve-se eliminar o CO2 mediante a 
ebulição da água por alguns minutos. A água é esfriada à temperatura ambiente. 
As soluções padrões de NaOH devem ser armazenadas em frascos de polietileno 
ou de vidro mais resistentes (a base de borossilicatos), nunca em frasco com 
tampa de vidro e sim borracha, pois essas soluções atacam o vidro. 
 Preparar uma solução de NaOH 0,1 mol/L e padronizá-la com biftalato de 
potássio. Este reagente (biftalato de potássio) é classificado como padrão 
primário, antes de ser pesado deve ser dessecado a 110°C durante 1 a 2 horas. 
 
 Padronização – no mínimo duplicata: 
 
 
 Calcular concentração real do hidróxido de sódio preparado. 
 
Solução padrão de NaOH 0,1 mol/L 
 
 
 
 
TA: ___ g de biftalato de potássio + ___ mL H2O 
2 gotas de fenolftaleína 
 55 
 
B) Ácido Clorídrico 0,1 mol/L: 
 
 
 À partir de uma solução concentrada de ácido clorídrico (teor mínimo de 
37% m/m e densidade = 1,19) preparar uma solução padrão de concentração 0,1 
mol/L. Padronizar a mesma com uma solução de carbonato de sódio 0,1 mol/L 
(padrão primário) de acordo com o esquema abaixo: 
 
 
 
 
 
 
Reação envolvida: 
 
Na2CO3 + 2 HCl ↔ 2 NaCl + CO2 + H2O 
 
 
 A partir dos resultados obtidos, calcular a concentração real da solução 
padrão de ácido clorídrico preparada. 
 Se for adicionado água no titulado, qual será a mudança ocorrida no 
mesmo? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solução padrão de HCl 0,1 mol/L 
 
 
 
TA: ___ mL de Na2CO3 0,1 mol/L 
2 gotas de alaranjado de metila 
2 gotas de verde de bromocresol 
 56 
C) Permanganato de potássio 0,1 mol/L: 
 
 
 Preparar uma solução de permanganato de potássio na concentração de 
0,1 mol/L (padrão secundário). Na preparação de soluções de permanganato de 
potássio é preciso remover o MnO2 presente como impureza do reagente ou 
formado através da reação deste com impurezas contidas no solvente usado. Uma 
solução relativamente estável é obtida por meio de ebulição de uma solução 
recentemente preparada, seguida de filtração através de um meio não redutor. 
 
MnO4
- + 8 H+ + 5 e- ↔ Mn2+ + 4 H2O 
 
 
 
Preparar uma solução de oxalato de sódio 0,1 mol/L. Padronizar o 
permanganato de potássio preparado com o oxalato de sódio de acordo com: 
 
 
 
 
 
 Adicionar algumas gotas de KMnO4, aquecer entre 55-60°C (saídas de 
vapores), pois nesta temperatura e presença de Mn2+ a reação se processa 
rapidamente e de forma quantitativa. Continuar a titulação a quente. 
 
MnO4
- + 8 H+ + 5 e- ↔ Mn2+ + 10 CO2 + 8 H2O (x 2) 
 C2O4
2- ↔ 2 CO2 + 2 e
-___ ___ (x 5) _ 
2 MnO4
- + 5 C2O4
2- + 16 H+ ↔ 2 Mn2+ + 10 CO2 + 8 H2O 
 
 
 Calcular a concentração real da solução de permanganato de potássio. 
 
 
 
 
 
 
Solução padrão de KMnO4 0,1 mol/L 
 
 
 
 
TA: 10 mL de Na2C2O4 0,1 mol/L 
3 mL de H2SO4 3,0 mol/L 
 57 
D) EDTA 0,01 mol/L: 
 
 
 EDTA dissódico (Na2H2Y.2H2O) deve ser previamente dessecado em 
estuda à 80ºC, até peso constante. Pesar cerca de 0,38 g, em balança analítica, e 
transferir o sal pesado para um balão de 100 mL. Diluir, até a marca, com água 
destilada. 
 O EDTA se preparado, exatamente, nas condições descritas acima é tido 
como padrão primário. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58 
DOSEAMENTO DE AMOSTRAS REAIS 
 
 
A) Determinação de hidróxido de magnésio em leite de magnésia: 
 
 
 Agitar vigorosamente o frasco de leite de magnésia. Pesar imediatamente, 
com o auxílio de um conta gotas, não mais que 0,4 g da amostra. Adicionar 
exatamente 25 mL de solução padrão de HCl 0,1 mol/L e agitar com bastão até 
dissolver completamente a amostra. Usando no máximo 25 mL de água, transferir 
quantitativamente a amostra para um erlenmeyer de 125 mL. Adicionar 3 gotas de 
fenolftaleína ou vermelho de metila e titular com solução padrão de NaOH 0,1 
mol/L. Repetir o procedimento pelo menos mais duas vezes. A partir dos 
resultados, calcular a concentração de hidróxido de magnésia contido no leite de 
magnésia analisado (em % m/m) e comparar com o especificado no rótulo do 
produto. 
 
OBS: À amostra é adicionado excesso de solução de ácido, ocorrendo a seguinte 
reação: 
 
Mg(OH)2 + 2 HCl ↔ MgCl2 + H2O + HCl 
 
 O excesso de ácido é titulado com a solução de NaOH, ocorrendo 
neutralização: 
 
HCl + NaOH ↔ NaCl + H2O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59 
B) Doseamento da água oxigenada 10 V ou 3% (m/m): 
 
 
 Água oxigenada é aquela que: 
 
 1 mL de H2O2 3% ------------- 10 mL de O2 (em CNTP) 
 
 Determinar a quantidade de O2 presente em água oxigenada 10 V 
comercial através de uma titulação com uma solução padrão de permanganato de 
potássio. Proceder o doseamento, em duplicata, de acordo com o esquema 
abaixo: 
 
 
 
 
 
 Reações envolvidas: 
 
 H2O2 ↔ O2 + 2 H
+ + 2 e- (x 5) 
 MnO4
- + 8 H+ + 5 e- ↔ Mn2+ + 4 H2O (x 2)__ 
5 H2O2 + 2 MnO4
- + 6 H+ ↔ 2 Mn2+ + 5 O2 + 8 H2O 
 
 
 Através deste doseamento, encontrar a quantidade de O2 presente na água 
oxigenada e comparar a quantidade em volume que a mesma apresenta. 
 
 Qual a importância de acidificar o meio ao realizar o doseamento da água 
oxigenada? 
 
 
 
 
 
 
 
 
 
Solução padrão de KMnO4 ___ mol/L 
 
 
 
 
TA: 10 mL de H2O2 diluída 
3 mL de H2SO4 3,0 mol/L 
 60 
C) Doseamento de magnésio em água: 
 
 
 Medir um volume de água de torneira e completar para 100 mL com água 
destilada. Pipetar uma alíquota de 25 mL em um erlenmeyer de 250 mL, adicionar 
5 mL de tampão pH 10 e diluir cerca de 50 mL. Aquecer à 60ºC, adicionar uma 
ponta de espátula do indicador negro de Eriocromo T e titular com solução padrão 
de EDTA dissódico até mudança da cor vermelha inicial para azul. 
 
 
Mg2+ + Y4- ↔ [MgY4]
2- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Após doseamento, determine a quantidade de Mg2+ presente na água 
analisada e explica o que ocorre na água quando há grandes quantidades desse 
íon presente. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solução padrão de EDTA ___ mol/L 
 
 
 
 
 
TA: 25 mL de solução de água de torneira 
5 mL de tampão pH 10,0 + negro de Eriocromo T 
 61 
PROJETO PARA AVALIAÇÃO FINAL DA DISCIPLINA 
 
 
 Como forma de avaliação final da disciplina QFL 2241 – Princípios de 
Química Analítica, os alunos deverão apresentar até a data previamente 
estabelecida pelo professor responsável pela disciplina (vide cronograma de 
atividades), os resultados de seu projeto. 
 
 O projeto deverá ser realizado dentro do horário das aulas práticas e 
durante as duas últimas semanas do curso, reservadas apenas para a execução 
das atividades programadas pelos próprios alunos. 
 
 Deverá ser desenvolvido: 
 
1) Escolha de uma amostra do cotidiano do aluno (a mesma deverá conter 
uma embalagem especificando sua composição em termos de substâncias 
químicas); 
2) Análises qualitativas, utilizando os procedimentos adotados no decorrer do 
curso, para identificação de todos os íons presentes na amostra; 
3) Análise quantitativa, para doseamento de pelo menos um tipo de composto 
químico (a escolha do aluno) presente na amostra; 
4) Comparação dos resultados obtidos, onde: 
4.1) Deverão ser identificados todos os cátions e ânions presentes 
(descritos no rótulo do produto), caso não seja encontrado

Outros materiais

Materiais relacionados

Perguntas relacionadas

Perguntas Recentes