Buscar

Sistemas cristalinos, redes de Bravais, planos e direções cristalográficas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 37 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 37 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 37 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 30 
3 ESTRUTURA CRISTALINA 
3.1 Introdução 
A estrutura física dos materiais sólidos depende fundamentalmente dos átomos, íons 
ou moléculas que o formam. Para todos os tipos de sólidos (metálicos, iônicos, covalentes 
ou moleculares) a energia de ligação é mínima para uma distância de equilíbrio ao (ou ro) 
conforme demonstrado no capítulo anterior. 
Um sistema de átomos, íons ou moléculas, interagindo para formar um sólido, 
tenderá a minimizar a sua energia de ligação, adotando uma distância de equilíbrio ao (ro). 
Isto só poderá ocorrer se for assumida uma estrutura altamente ordenada, caracterizada por 
uma distribuição regular periódica dos átomos, íons ou moléculas. 
A maioria dos materiais comumente utilizados em engenharia, particularmente os 
metálicos, exibe um arranjo geométrico de seus átomos bem definido, constituindo uma 
estrutura cristalina. 
Um material cristalino, independentemente do tipo de ligação encontrada no mesmo, 
caracteriza-se por apresentar um agrupamento de seus átomos, íons ou moléculas, que se 
repete tridimensionalmente. A repetição tridimensional nos cristais é devida à coordenação 
atômica no interior do material, a qual, como já mencionado anteriormente, decorre de 
condições geométricas que são impostas por ligações direcionais e compacidade. 
Quando os átomos não têm direções específicas de ligação, como os metais ou os 
compostos iônicos, eles se comportam como esferas rígidas de raio definido e tendem a 
maximizar os contatos com outros átomos (esferas), ou seja, tendem a preencher o volume 
disponível, maximizando a densidade. 
A Figura 3.1 ilustra três padrões diferentes de se arrumar o mesmo volume de esferas 
rígidas em um recipiente (A, B e C). Pode-se verificar visualmente, que o padrão “B” é 
aquele que apresenta maior densidade, pois ocupa menos espaço no recipiente; esta é a 
forma mais comum de arranjo entre os elementos metálicos. 
 
 
Figura 3.1 – Arranjos possíveis de esferas de mesmos tamanhos em um recipiente. 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 31 
Em um sólido cristalino, os arranjos atômicos podem ser descritos usando, como 
referência, os pontos de interseção de uma rede de linhas nas três dimensões, denominada 
rede cristalina. 
Uma rede cristalina pode ser definida como um arranjo infinito e tridimensional de 
pontos, em que cada ponto tem idênticas vizinhanças, ou seja, o arranjo desses pontos em 
torno de um ponto particular deve ser igual ao arranjo em torno de qualquer outro ponto da 
rede cristalina. Cada ponto com idênticas vizinhanças é chamado nó da rede ou 
simplesmente nó. 
A estrutura cristalina resulta da associação de um motivo (ou base) a cada nó da rede 
cristalina. Cada motivo (um átomo ou conjunto de átomos ou íons) pode ser obtido por 
translação ao longo da reta que une os nós da rede. 
A estrutura tem matéria, enquanto que a rede é um conceito geométrico, ou seja: 
 
 
 
Como a estrutura cristalina perfeita é um agrupamento regular de átomos 
distribuídos em uma rede cristalina, os arranjos atômicos podem ser descritos 
completamente pela especificação das posições dos átomos em um modelo unitário 
repetitivo da rede, denominado célula unitária. 
A célula unitária é definida como a menor porção do cristal que ainda conserva as 
características do mesmo. 
Por meio da adoção de valores específicos, como parâmetros axiais e ângulos 
interaxiais, podem ser obtidas células unitárias de diversas naturezas. 
Existem somente sete arranjos que podem representar as estruturas de todas as 
substâncias cristalinas conhecidas, denominados sistemas cristalinos. Esses sistemas são: 
cúbico, tetragonal, ortorrômbico, monoclínico, triclínico, hexagonal e romboédrico. As 
características dos sete sistemas cristalinos são dadas no quadro mostrado na Figura 3.2. 
 
 
 
 
 
 
ESTRUTURA CRISTALINA = REDE CRISTALINA + MOTIVO 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 32 
Sistemas Eixos Ângulos entre eixos Volume da célula unitária 
Cúbico a = b = c Todos os ângulos = 90° a3 
Tetragonal a = b ≠ c Todos os ângulos = 90° a2.c 
Ortorrômbico a ≠ b ≠ c Todos os ângulos = 90° a.b.c 
 
Hexagonal 
 
a = b ≠ c 
 
2 ângulos = 90° e 
1 ângulo ≠ 90° 
 
0,866.a2.c 
 
 
Romboédrico 
 
a = b = c 
 
Todos os ângulos diferentes 
e nenhum igual a 90° 
 
a.b.c. sinβ 
 
 
Monoclínico 
 
a ≠ b ≠ c 
 
3 ângulos = 90° e 
1 ângulo = 120° 
 
αα 323 cos2cos31a +−⋅
 
 
Triclínico a ≠ b ≠ c Todos os ângulos iguais, 
mas diferentes de 90° V 
γβαγβα coscoscos2coscoscos1cbaV 222 +−−−⋅⋅⋅= 
 
 
 
 
Figura 3.2 – Características dos sistemas cristalinos. 
 
Dentro desses sete sistemas cristalinos, há um total de quatorze arranjos distintos nos 
quais os pontos da rede podem se arrumar, conhecidos como redes de Bravais (Figura 3.3). 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 33 
Cúbico 
simples 
Triclínico 
Hexagonal 
SISTEMAS 
CÚBICO TETRAGONAL ORTORRÔMBICO MONOCLÍNICO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ROMBOÉDRICO 
 
 
TRICLÍNICO 
 
 
 
HEXAGONAL 
 
 
 
 
Figura 3.3 – Células unitárias convencionais das 14 redes de Bravais 
agrupadas por sistemas cristalográficos. 
 
Os eixos da célula unitária definem um sistema de coordenadas com origem em um 
dos seus vértices. Isso fornece um conjunto de coordenadas que permitem definir a posição 
dos átomos na célula. Na Figura 3.4 são dados alguns exemplos de posições atômicas: 
Tetragonal 
simples 
Cúbico de 
face centrada 
Tetragonal de 
corpo centrado 
Ortorrômbico 
simples 
Ortorrômbico de 
face centrada 
Romboédrico 
Ortorrômbico de 
base centrada 
Ortorrômbico de 
corpo centrado 
Monoclínico de 
base centrada 
Monoclínico 
simples 
Cúbico de 
corpo centrado 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 34 
 
 
Origem: 0,0,0 
Centro da célula: ½,½,½ 
Centro das faces: 0,½,½; ½,0,½; ... 
 
 
 
Figura 3.4 – Exemplos de posições atômicas em células cúbicas. 
 
- Observação: Os átomos podem ter qualquer posição na célula, não correspondendo 
necessariamente aos nós da rede. 
 
Número de átomos por célula unitária 
Um número específico de nós da rede define cada uma das células unitárias. Por 
exemplo, os vértices das células cúbicas são facilmente identificados, assim como as 
posições “corpo centrado” (centro da célula) e “face centrada” (centro dos seis lados). 
Quando se conta os números de nós da rede pertencente a cada célula unitária, fica 
fácil reconhecer quais deles podem ser repartidos por mais de uma célula.Por exemplo, no 
sistema cúbico, um nó da rede localizado em um dos vértices de uma célula unitária é 
dividido por 7 células adjacentes (o nó pertence, portanto, a 8 células); logo, somente 1/8 
de cada uma das posições dos vértices pertence a uma célula em particular (o número de 
fração de nós localizados em todas as posições do vértice em uma célula unitária cúbica é 
equivalente a um nó da rede); assim: 
 
( ) célula/rededaponto1célula/vértices8vértice/rededapontodo
8
1
=⋅





 
3.2 Principais Estruturas Cristalinas 
A maioria dos elementos metálicos solidifica assumindo as estruturas a seguir, por 
elas serem altamente densas (compactas): cúbica de corpo centrado (CCC), cúbica de face 
z 
y 
x 
0,0,0 ½,½,½ 
z 
y 
x 
½,0,½ 
z 
y 
x 
z 
y 
x 
1,1,1 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 35 
centrada (CFC) ou hexagonal compacta (HC). A Figura 3.5 mostra os modelos didáticos 
dessas estruturas. 
 
 
 
 
 
Figura 3.5 – Modelos didáticos das estruturas cristalinas mais comuns. 
 
Estes arranjos compactos ocorrem, porque energia é liberada com a aproximação dos 
átomos até a distância de equilíbrio. Assim, uma estrutura compacta apresenta um nível de 
energia mais baixo e, portanto, é mais estável. 
A estrutura hexagonal compacta, mostrada na Figura 3.5, é uma modificação da 
estrutura hexagonal simples, ilustrada na Figura 3.6. 
 
 
Figura 3.6 – Modelo da estrutura hexagonal simples. 
a) Cristais Cúbicos 
CCC CFC HC 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 36 
A estrutura cúbica é a de maior ocorrência nas substâncias cristalinas. Entre os 
exemplos de materiais que cristalizam segundo essa estrutura, incluem-se a maior parte dos 
metais comuns e alguns dos compostos mais simples, tais como o MgO, o NaCl e o TiC. 
Dependendo da posição que os átomos ocupam na estrutura cúbica, esta pode ser 
classificada em um dos três tipos: cúbica simples (CS), cúbica de corpo centrado (CCC) 
ou cúbica de face centrada (CFC). 
 
a.1) Estrutura cúbica simples (CS) 
A célula unitária deste arranjo atômico, mostrada na Figura 3.7, possui um átomo 
posicionado em cada vértice de um cubo. 
 
 
 
 
Figura 3.7 – Estrutura cúbica simples (CS) ): Modelo didático (a); 
célula unitária (b); esquema das distâncias interatômicas (c). 
 
Nesta estrutura, cada átomo apresenta seis vizinhos mais próximos; logo, o seu 
número de coordenação (NC) é igual a 6. 
O parâmetro da rede (a) é dado pelo tamanho da aresta do cubo, neste caso: 
r2a =
 
 
A forma de classificar o nível de ocupação efetiva de uma célula unitária por átomos 
é o fator de empacotamento atômico (FE), o qual é dado por: 
C
A
V
VNFE ⋅= , 
onde N = número de átomos que ocupam efetivamente a célula, VA = volume do átomo 
(esfera rígida de raio definido) = 4.pi.r3/3, r = raio do átomo, e VC = volume da célula 
unitária. 
Para a célula cúbica simples, o fator de empacotamento é: 
a 
(a) (b) (c) 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 37 
52,0
r8
r
3
41
FE
r8)r2(aV
r
3
4V
1vértices8vértice/átomo
8
1N
3
3
333
C
3
A
=
⋅
=
===
=
=⋅=
pi
pi
 
 
Ou seja, apenas 52% da célula cúbica simples são efetivamente preenchidos por 
átomos. Como este índice de ocupação é muito baixo, a célula cúbica simples não é estável 
e, portanto, os metais puros não apresentam esse tipo de arranjo, o que ocorre somente para 
compostos, em virtude da diferença entre os raios dos elementos que os formam. 
 
a.2) Estrutura cúbica de corpo centrado (CCC) 
A célula unitária deste arranjo estrutural apresenta um átomo posicionado em cada 
vértice de um cubo e um átomo no centro do mesmo, conforme mostrado na Figura 3.8. 
 
 
 
Figura 3.8 – Estrutura cúbica de corpo centrado (CCC): Modelo didático (a); 
célula unitária (b); esquema das distâncias interatômicas (c). 
 
 
Nessa estrutura, cada átomo possui oito vizinhos mais próximos e, desta forma, o seu 
número de coordenação (NC) é igual a 8. 
O parâmetro da rede (a), nesse caso, é calculado a partir do valor da diagonal 
principal do cubo (valor conhecido) e da diagonal de uma de suas faces. Assim tem-se: 
 
3
r4
a)r4()2a(a 222 =∴=+
 
(a) (b) (c) 
a 
a 
4r 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 38 
O fator de empacotamento atômico (FE) desta célula é dado por: 
 
68,0
33
r64
r
3
42
FE
33
r64
3
r4
aV
r
3
4V
2átomo1vértices8vértice/átomo
8
1N
3
3
33
3
C
3
A
=






⋅
=
=





==
=
=+⋅=
pi
pi
 
 
Ou seja, 68% desta célula unitária são efetivamente preenchidos por átomos. Com a 
elevação do índice de ocupação da célula, vários metais já cristalizam na estrutura CCC, 
entre eles o lítio (Li), o vanádio (V), o cromo (Cr), o molibdênio (Mo) e o tungstênio (W). 
 
a.3) Estrutura cúbica de face centrada (CFC) 
A célula unitária deste arranjo estrutural apresenta um átomo posicionado em cada 
vértice do cubo e um no centro de cada face, conforme mostrado na Figura 3.9. 
 
 
 
 
Figura 3.9 – Estrutura cúbica de face centrada (CFC): modelo didático (a); 
célula unitária (b); esquema das distâncias interatômicas (c). 
 
Cada átomo apresenta doze vizinhos mais próximos; portanto, o número de 
coordenação (NC) dessa estrutura é igual a 12. 
(a) (b) (c) 
a 
a 
4r 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 39 
O parâmetro da rede (a), neste caso, é calculado a partir do valor da diagonal de uma 
de suas faces, que é o valor conhecido: 
 
O fator de empacotamento atômico (FE) é dado por: 
 
Ou seja, 74% desta célula unitária são efetivamente preenchidos por átomos, que é o 
valor máximo do índice de ocupação que pode ser conseguido quando se considera o 
átomo como uma esfera rígida de raio definido. Desta forma, o empacotamento da célula 
unitária CFC é o mais eficiente possível. 
O níquel (Ni), o cobre (Cu), o alumínio (Al), o ouro (Au), a prata (Ag), a platina (Pt) 
e o chumbo (Pb), são exemplos de metais que apresentam a estrutura CFC. 
 
b) Cristais Hexagonais 
Existem dois tipos de arranjo hexagonal: o hexagonal simples (HS) e o hexagonal 
compacto (HC). 
 
b.1) Estrutura hexagonal simples (HS) 
A célula unitária deste arranjo estrutural é formada por dois hexágonos sobrepostos, 
os quais apresentam um átomo em cada vértice e um átomo nos seus centros, conforme 
mostrado na Figura 3.10. 
 
2
r4
a)r4(aa 222 =∴=+
74,0
2
r32
r
344
FE
2
r32
2
r4
aV
r
3
4V
46)face/átomo
2
1(vértices8)vértice/átomo
8
1(N
3
3
33
3
C
3
A
=






⋅
=
=





==
=
=⋅+⋅=
pi
pi
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 40 
 
 
 
 
Figura 3.10 – Estrutura hexagonal simples (HS). 
 
A estrutura cristalina HS apresenta ângulos basais de 120° e verticais de 90°, e 
também pode ser representada pelo arranjo mostrado à direita da figura. 
Nesta estrutura, cada átomo apresenta oito vizinhos mais próximos; portanto, o seu 
número de coordenação (NC) é igual a 8. 
Os parâmetros da rede (a, c) são dados por: 
 
r2ca ==
 
 
O fator de empacotamento atômico (FE) é dado por: 
 
60,0
3r12
r
3
43
FE
3r12
2
3)r2()r2(330cosca3V
r
3
4V
32)face/átomo
2
1(vértices12)vértice/átomo
6
1(N
3
3
322
C
3
A
=
⋅
=
==⋅=
=
=⋅+⋅=
°
pi
pi
 
 
Ou seja, 60% desta célula unitária são efetivamente preenchidos por átomos. Este 
valor também é um muito baixo, o que justifica os metais não cristalizarem na estrutura 
HS. 
 
 
 
a 
c 
120° 60° 
a 
a 
 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 41 
b.2) Estrutura hexagonal compacta (HC) 
A célula unitária do arranjo estrutural HC é formada por dois hexágonos sobrepostos 
que apresentam um átomo em cada vértice e um átomo nos seus centros, e também por um 
plano intermediário de três átomos, conforme mostrado na Figura 3.11. 
 
 
 
 
 
Figura 3.11 – Estrutura hexagonal compacta (HC). 
 
Esta estrutura é caracterizada pelo fato de que cada átomo de uma dada camada está 
diretamente abaixo ou acima dos interstícios formados entre três átomos das camadas 
adjacentes. 
Cada átomo apresenta doze vizinhos mais próximos; logo, o seu número de 
coordenação (NC) é igual a 12. 
Os parâmetros da rede (a, c) são dados por: 
 
a633,1c
r2a
≈
=
 
 
O fator de empacotamento atômico (FE) é dado por: 
74,0
3r596,19
r
3
46
FE
3r596,19
2
3)r2633,1()r2(330cosca3V
r
3
4V
6átomos32)face/átomo
2
1(vértices12)vértice/átomo
6
1(N
3
3
322
C
3
A
=
⋅
=
=⋅=⋅=
=
=+⋅+⋅=
°
pi
pi
 
a 
c 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 42 
Ou seja, 74% desta célula unitária são efetivamente preenchidos por átomos. Como 
essa estrutura é compacta, diversos metais solidificam segundo a mesma, como por 
exemplo: magnésio (Mg), zinco (Zn), cádmio (Cd), cobalto (Co), titânio (Ti) e berílio (Be). 
 
Cálculo do parâmetro c 
O parâmetro c da célula hexagonal compacta pode ser calculado a partir dos 
esquemas mostrados na Figura 3.12. 
 
 
 
 
a633,1ca
3
8
ca
3
8
c
4
c
a
3
2
4
c
3
a
a
4
c
3
a
a
2
c
3
a
a
3
a
30cos2
ad;
2
cda
22
2
2
22
2
22
2
22
2
o
2
22
≈∴⋅=∴=
∴=∴=−∴+=∴





+





=
=
⋅
=





+=
 
 
 
 Figura 3.12 – Posicionamento de átomos na célula da estrutura HC. 
 
3.3 Seqüência de Empilhamento 
A estrutura cúbica de face centrada e a estrutura hexagonal compacta têm o mesmo 
fator de empacotamento atômico (FE = 0,74), o que é esperado, pois ambas possuem o 
mesmo número de coordenação (NC = 12). 
Os arranjos atômicos de planos cristalinos na direção da diagonal do cubo da 
estrutura CFC, e na direção perpendicular à base no caso da HC, são de mesma natureza; o 
que muda entre as duas estruturas é o posicionamento dos átomos destes planos em relação 
a 
a a 
a 
d 
c/2 
Vista de topo 
a/2 
30o 
d 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 43 
a um ponto de referência. Os planos do cristal HC apresentam apenas duas variações de 
posicionamento e, desta forma, obedecem a uma seqüência do tipo “ABABAB...”, já os 
cristais CFC apresentam três variações no posicionamento de planos, exibindo assim, a 
seqüência “ABCABCABC...”. A Figura 3.13 representa essas seqüências de 
empilhamento. 
 
 
 
 
Figura 3.13 – Seqüências de empilhamento de planos para as estruturas HC e CFC. 
 
3.4 Alotropia 
Alotropia (ou polimorfismo) é o fenômeno que ocorre quando dois cristais têm 
estruturas cristalinas diferentes, mas apresentam a mesma composição. 
Dependendo de condições como pressão e temperatura, diversos elementos e 
compostos químicos podem apresentar mais de uma forma cristalina. O Quadro 3.1 fornece 
alguns casos de alotropia. 
A 
B 
A 
HC 
A 
B 
C 
CFC 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 44 
 Quadro 3.1 - Exemplos de alotropia para alguns elementos. 
METAL TEMPERATURA AMBIENTE 
OUTRAS 
TEMPERATURAS 
Ca CFC CCC (> 447°C) 
Co HC CFC (> 427°C) 
Hf HC CFC(> 1742°C) 
Fe CCC CFC (912°C a 1394°C) 
CCC(> 1394°C) 
Li CCC HC (< - 193°C) 
Na CCC HC (- 233°C) 
Ti HC CCC (> 883°C) 
Y HC CCC (> 1481°C) 
Zr HC CCC(> 872°) 
 
 
Um dos exemplos mais conhecidos e importantes de polimorfismo nos metais é o 
que ocorre com o ferro, visto que esta variação alotrópica possibilita a realização de 
tratamentos térmicos no aço e, assim, permite modificar as propriedades desse material. 
O ferro apresenta mudanças alotrópicas desde a temperatura ambiente até a 
temperatura de fusão (1539°C). Na temperatura ambiente esse elemento possui estrutura 
cristalina CCC e recebe a denominação de ferro α; ao atingir a temperatura de 912°C, o 
ferro modifica a sua estrutura tornando-se CFC, e passa a ser denominado de ferro γ; se 
continuar sendo aquecido, ao atingir 1394°C esse metal volta a ter a estrutura CCC, porém 
com um parâmetro de rede maior do que a primeira, e é chamado de ferro δ, permanecendo 
com esta estrutura até a fusão. Essas mudanças na estrutura do ferro podem ser 
visualizadas por meio da curva de resfriamento do elemento mostrada na Figura 3.14. 
 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 45 
 
Figura 3.14 – Curva de resfriamento aproximada do ferro. 
 
Outro exemplo de polimorfismo é a variação alotrópica do carbono. Este elemento 
constitui o diamante, que é o material mais duro na natureza, mas também forma a grafita, 
que é um material de dureza bastante reduzida, o que possibilita o seu uso como 
lubrificante sólido. A alta dureza do diamante é devido ao fato de todas as suas ligações 
serem covalentes, apresentando uma estrutura cristalina tridimensional; por outro lado, a 
grafita possui ligações covalentes apenas nos planos lamelares, e esses planos são 
agregados a outros por meiodas forças secundárias (estrutura lamelar), que por serem 
fracas proporcionam a facilidade de deslizamento dessas lamelas. 
 
3.5 Posições, Direções e Planos em Cristais 
Freqüentemente, é necessário identificar posições, direções e/ou planos em um 
cristal. Isto é particularmente importante no caso dos metais e ligas metálicas que 
apresentam propriedades que variam com a orientação cristalográfica, chamados de 
materiais anisotrópicos. 
A existência de determinados conjuntos de planos e direções definidos como 
compactos, por exemplo, é de suma importância durante o processo de deformação plástica 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 46 
de materiais metálicos, o que leva à necessidade de identificá-los para melhor compreender 
esses processos. 
 
a) Posições em cristais cúbicos 
Certos pontos tais como as posições atômicas na rede ou em uma célula unitária, 
podem ser localizados pela construção de um sistema de eixos cartesiano. 
Em cristalografia, o eixo x é a direção perpendicular ao plano do papel, o eixo y é a 
direção à direita do papel e o eixo z é a direção para cima; as direções negativas destes 
eixos são as opostas às direções mencionadas. 
A distância é medida em termos do número de parâmetros de rede contados em cada 
direção, a partir da origem até o ponto em questão. 
As coordenadas das posições são os três números correspondentes às distâncias 
medidas, separados por vírgulas. 
A Figura 3.15 mostra alguns exemplos de identificação de posições em cristais 
cúbicos. 
 
 
 
Figura 3.15 – Identificação de posições na estrutura cúbica. 
 
b) Direções em cristais cúbicos 
As direções cristalográficas são usadas para indicar uma orientação específica em um 
cristal simples ou em um material policristalino. O conhecimento de como descrever as 
direções cristalográficas é de grande utilização em muitas aplicações; os metais, por 
x 
y 
z 
0,0,1 
1,1,1 
0,0,0 
1,0,0 1,1,0 
½,1,0 
-x 
-y 
z 
-1,1,0 
-1,-1,1
-1,0,0 
0,-1,0 
-½,-1,0 
0,-1,1 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 47 
exemplo, deformam mais facilmente nas direções ao longo das quais os átomos estão em 
contato mais próximo (direções mais compactas). 
Isso mostra que certas direções na célula unitária são de particular importância, e a 
notação usada para descrever essas direções é denominada índices de Miller. 
No sistema cúbico, as direções cristalográficas são obtidas a partir de seus 
componentes relativos aos três eixos cartesianos. 
Uma direção na célula unitária é representada por um vetor que parte da origem e 
atinge a posição definida pelas coordenadas consideradas; portanto, para se referenciar 
uma determinada direção em um cristal, devem ser observadas as seguintes orientações: 
• Os eixos cristalinos são utilizados como direções básicas; 
• As coordenadas de um ponto são medidas em relação ao parâmetro de cada eixo, assim 
não representam valores reais de distância; 
• As direções com índices negativos são indicadas com um traço sobre os mesmos; 
• Uma direção é representada por índices entre colchetes. 
Desta forma, para se encontrar os índices de Miller de direções cristalográficas, o 
seguinte procedimento deve ser seguido: 
1. Determinar as coordenadas das duas posições que orientam a direção (origem e 
extremidade), utilizando um sistema de coordenadas cartesiano; 
2. Subtrair as coordenadas das posições finais e iniciais da direção, para obter o número de 
parâmetros da rede correspondente à extensão da referida direção relativa a cada eixo do 
sistema de coordenadas (índices da direção); 
3. Eliminar os índices fracionários ou reduzir os índices obtidos para o menor inteiro; 
4. Colocar os índices entre colchetes, observando que, se algum deles for negativo, deve 
ser representado com uma barra sobre ele. 
A Figura 3.16 mostra alguns exemplos de identificação de direções em cristais cúbicos. 
 
 
 
 
 
 
 
 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 48 
 
 
Figura 3.16 - Exemplos de direções cristalográficas em cristais cúbicos. 
 
Alguns aspectos sobre o uso dos índices de Miller para direções 
1. Como as direções são vetores, uma direção e sua negativa não são idênticas; elas 
representam a mesma linha, mas possuem sentidos opostos. 
 - Exemplo: ]001[]100[ ≠ 
2. Direções proporcionais são idênticas; por este motivo é que se devem reduzir os índices 
para menores inteiros. 
 - Exemplo: [100] = [200] = [300] = ... 
3. Direções de certos conjuntos são equivalentes; elas possuem índices específicos em 
virtude da maneira como o sistema de coordenadas foi construído. 
- Exemplo: No sistema cúbico, [100] se torna [010] se o sistema de coordenadas for 
redefinido (rotacionado 90° para a esquerda, por exemplo); portanto, diz-se que estas 
Direção E 
1. Os dois pontos são 1,0,1 e 0,1,1 
2. 1,0,1 – 0,1,1 = 1,–1,0 
3. Não existem índices fracionários 
ou inteiros para reduzir 
4. A notação da direção é ]011[ 
 
Direção D 
1. Os dois pontos são 1,1,0 e 1,0,1 
2. 1,1,0 – 1,0,1 = 0,1, –1 
3. Não existem índices fracionários 
ou inteiros para reduzir 
4. A notação da direção é ]101[ 
 
Direção C 
1. Os dois pontos são 0,0,1 e ½,1,0 
2. 0,0,1 – ½,1,0 = –½,–1,1 
3. 2(–½,–1,1) = –1,–2,2 
4. A notação da direção é ]221[ 
 
Direção B 
1. Os dois pontos são 1,1,1 e 0,0,0 
2. 1,1,1 – 0,0,0 = 1,1,1 
3. Não existem índices fracionários 
ou inteiros para reduzir 
4. A notação da direção é [111] 
 
Direção A 
1. Os dois pontos são 0,1,0 e 0,0,0 
2. 0,1,0 – 0,0,0 = 0,1,0 
3. Não existem índices fracionários 
ou inteiros para reduzir 
4. A notação da direção é [010] 
 
A 
B 
C 
D 
x 
y 
z 
0,0,1 
1,1,1 
0,0,0 
1,0,0 1,1,0 
½,1,0 
1,0,1 
0,1,0 
E 
0,1,1 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 49 
direções são equivalentes ([100] ≡ [010]). Isto é importante, pois eventualmente é 
necessário expressar um conjunto de direções com as mesmas características na 
estrutura cristalina, como a diagonal da face do cubo; neste caso, existem 12 direções, 
e uma representação geral de todas elas é dada por <100>, que é chamada família de 
direções das diagonais das faces do cubo. 
− Exemplos: 
cubodofacesdasdiagonaisdasfamília
]110[]011[]101[]110[]101[]011[
]101[]110[]011[]011[]101[]110[110
=
=






=><
 
cubodoarestasdasfamília
]100[]010[]001[
]001[]010[]100[
100 =






=>< 
cubododiagonaisdasfamília
]111[]111[]111[]111[
]111[]111[]111[]111[
111 =








=>< 
 
c) Planos em cristais cúbicos 
O conhecimento de determinados planos de átomos em um cristal, também é de 
suma importância; os metais deformam-se ao longo de planos de átomos que apresentam 
compacidade mais alta (planos mais densos). 
Para identificar planos cristalinos em cristais cúbicos, a notação dos índices de Miller 
deve ser usada. Nesse caso, os índicesde Miller são definidos como sendo os inversos das 
coordenadas de interceptação do plano de interesse com os eixos x, y e z. 
O procedimento básico para determinar os índices de Miller de planos em um cristal 
cúbico deve seguir a seguinte orientação: 
1. Identificar os pontos nos quais o plano intercepta os eixos x, y e z em termos do número 
de parâmetros de rede; deve ser observado que se o plano passa na origem, essa deve ser 
movida (ou utiliza-se um plano paralelo que não passe pela origem); 
2. Obter os inversos das interseções; 
3. Eliminar os índices fracionários, mas não reduzi-los ao menor inteiro; 
4. Colocar os índices entre parênteses, observando que, se algum deles for negativo, deve 
ser representado com uma barra sobre ele. 
Genericamente, as letras h, k e l entre parêntese são usadas para indicar os índices de 
Miller de um plano, ou seja, (hkl). 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 50 
A Figura 3.17 mostra a identificação de alguns planos em cristais cúbicos. 
 
 
 
Figura 3.16 – Exemplos de identificação de planos em cristais cúbicos. 
 
Alguns aspectos com relação ao uso dos índices de Miller para planos 
1. Um plano e seus negativo são idênticos; 
 - Exemplo: )020()020( = 
2. Planos e seus múltiplos não são idênticos; 
3. Em cada célula unitária, uma família de planos representa o conjunto de planos 
equivalentes, que têm seus índices específicos por causa da orientação das coordenadas; 
os conjuntos de planos equivalentes são apresentados com a notação entre chaves ({}). 
 - Exemplo: No sistema cúbico, os planos da família {110} são mostrados abaixo: 
 
)101()110()011()011()101()110(}110{ =
 
4. No sistema cúbico, uma direção que tem os mesmos índices de um plano é 
perpendicular ao plano (Figura 3.17). 
 - Exemplo: )100(]100[ ⊥ . 
Plano C 
1. O plano passa na origem, logo, 
temos que movê-lo um parâmetro 
de rede na direção y; então: 
x = ∞, y = –1, z = ∞ 
2. 1/x = 0, 1/y = –1, 1/z = 0 
3. Não existem índices fracionários 
4. A notação do plano )010( 
 
Plano B 
1. x = 1, y = 2, z = ∞ 
2. 1/x = 1, 1/y = 1/2, 1/z = 0 
3. Elimina frações: 1/x = 2, 1/y = 1, 1/z = 0 
4. A notação do plano (210) 
 
Plano A 
1. x = 1, y = 1, z = 1 
2. 1/x = 1, 1/y = 1, 1/z = 1 
3. Não existem frações 
4. A notação do plano (111) 
 
y =2 
x 
y 
z 
A 
C 
B 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 51 
 
 
Figura 3.17 – Perpendicularidade entre a Direção [100] e o plano (100). 
 
c) Direções em cristais hexagonais 
Por causa da simetria única do sistema hexagonal, algumas direções cristalográficas 
equivalentes não têm os mesmos índices de Miller. Para resolver este problema foi criado 
um sistema de coordenadas que usa quatro eixos (a1, a2, a3 e c), denominado sistema de 
Miller-Bravais, mostrado na Figura 3.18. 
Neste sistema, três eixos (a1, a2 e a3) estão contidos no plano basal e fazem ângulos 
de 120° entre si. O quarto eixo (z ou c) é perpendicular ao plano basal. Como no espaço se 
necessita apenas de três eixos, o eixo a3 é redundante. 
 
 
Figura 3.18 – Sistema de coordenadas para a célula hexagonal. 
 
As direções são indicadas, então, pelos índices u, v, t e w, apresentados entre 
colchetes; os índices u, v e t são relativos aos eixos a1, a2 e a3, respectivamente, e o índice 
w é relativo ao eixo c. 
Por causa da redundância do eixo a3 e da geometria especial do sistema hexagonal, 
os três primeiros índices na designação, u, v e t, satisfazem a relação u + v = –t. 
(100) [100]
 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 52 
Basicamente, o procedimento a ser seguido para encontrar esses índices consiste na 
obtenção dos menores inteiros que representem a direção e que satisfaçam a relação acima, 
conforme apresentado a seguir na Figura 3.19. 
 
 
 
 Figura 3.19 – Esquema de eixos e representação da direção A na estrutura hexagonal. 
 
Uma determinada direção cristalográfica representada pelos índices de Miller [u’ v’ 
w’] pode ser convertida para o sistema de Miller-Bravais com índices [u v t w] com auxílio 
das seguintes equações: 
 
( ) ( ) ( ) n'ww;vut;n'u'v2
3
1
v;n'v'u2
3
1
u ⋅=+−=⋅−=⋅−=
 
 
onde n é um número inteiro. Por exemplo, os índices de Miller [010] são convertidos em 
índices de Miller-Bravais ]0121[ . 
A Figura 3.20 apresenta alguns exemplos desta conversão. 
 
Direção A 
1. a1 = –½, a2 = 1, a3 = –½, c = 0 
2. Elimina frações (reduz ao 
menor inteiro) 
3. A notação da direção 
 
]0121[
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 53 
 
Figura 3.20 - Alguns exemplos de conversão de índices de Miller em índices de Miller-
Bravais (Padilha, 2000). 
 
 
d) Planos em cristais hexagonais 
Os planos em cristais hexagonais são identificados também pelo uso de quatro eixos; 
neste caso, os índices empregados são representados pelas letras h, k, i e l entre parênteses, 
ou seja, (h k i l). 
Estes índices devem satisfazer a relação h + k = –i, por causa da redundância do eixo 
a3 e da geometria especial do sistema hexagonal. 
O procedimento para encontrar os índices dos planos é o mesmo que o utilizado no 
caso dos cristais cúbicos; entretanto, desde que o sistema é formado por quatro eixos, serão 
necessárias quatro interseções para gerar os índices h, k, i e l. 
Na estrutura hexagonal, o plano basal é considerado muito importante, por ser um 
plano compacto; como o plano basal superior é paralelo aos eixos a1, a2 e a3, a interseção 
deste plano com tais eixos se dará no infinito, e a com o eixo c em 1; logo, a representação 
dos planos basais é dada por (0001). 
As Figuras 3.21 a 3.24 mostram a notação para os planos especiais da estrutura 
hexagonal: basal, prismáticos e piramidais. 
 
 
 
 
 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 54 
 
Figura 3.21 – Plano basal e plano prismático tipo I, e a determinação de suas notações. 
 
 
 
 
 
 
Figura 3.22 – Plano prismático tipo II e a determinação de sua notação. 
 
 
 
 
 
 
 
 
Plano C (Plano prismático tipo II) 
1. a1 =1, a2 = 1, a3 = -½, c = ∞ 
2. 1/a1 = 1, 1/a2 = 1, 1/a3 = -2, 1/c = 0 
3. Não existem frações a eliminar 
4. )0211( 
a1 
-a1 
-a2 
-a3 
a3 
a2 
c
 
C 
Plano A (Basal) 
1. a1 = a2 = a3 = ∞, c = 1 
2. 1/a1 = 1/a2 = 1/a3 = 0, 1/c = 1 
3. Não existem frações 
4. (0001) 
 
Plano B (Prismático tipo I) 
1. a1 = 1, a2 = ∞, a3 = -1, c = ∞ 
2. 1/a1 = 1, 1/a2 = 0, 1/a3 = -1, 1/c = 0 
3. Não existem frações 
4. )0110( 
a1 
-a1 
-a2 
-a3 
a3 
a2 
A
B
c
 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEMProf. Jorge Teófilo de Barros Lopes 55 
 
 
 
Figura 3.23 – Plano piramidal tipo I e a determinação de sua notação. 
 
 
 
 
 
Figura 3.24 – Plano piramidal tipo II e a determinação de sua notação. 
 
3.6 Planos e Direções Compactos 
No estudo da relação entre raios atômicos e parâmetros de rede, uma direção 
compacta e um plano compacto são aqueles onde os átomos que os formam estão em 
contato contínuo. O Quadro 3.2 mostra os índices de Miller das direções e dos planos 
compactos nas estruturas cristalinas mais comuns (modificada de ASKELAND & PHULÉ, 
2003). 
Plano E (Piramidal tipo II) 
1. a1 =1, a2 = 1, a3 = -½, c = 1 
2. 1/a1 = 1, 1/a2 = 1, 1/a3 = -2, 1/c = 1 
3. Não existem frações a eliminar 
4. )1210( 
 
 
Ea1 
-a1 
-a2 
-a3 
a3 
a2 
c
 
Plano D (Piramidal tipo I) 
5. a1 =1, a2 = ∞, a3 = -1, c = 1 
6. 1/a1 = 1, 1/a2 = 0, 1/a3 = -1, 1/c = 1 
7. Não existem frações a eliminar 
8. )1110( 
Da1 
-a1 
-a2 
-a3 
a3 
a2 
c
 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 56 
 Quadro 3.2 – Direções e planos compactos das principais estruturas 
DIREÇÕES E PLANOS COMPACTOS 
Estrutura Direções Planos 
CS 
CCC 
CFC 
HC 
<100> 
<111> 
<110> 
>< 0211 
Nenhum 
Nenhum 
{111} 
(0001), (0002) 
 
As células unitárias CFC e HC são as mais compactas, e cada uma apresenta planos 
compactos. 
A célula unitária HC apresenta dois planos compactos, (0001) e (0002), os quais são 
paralelos entre si, mas com orientações diferentes, e recebem o nome especial de planos 
basais. 
A estrutura HC pode ser formada a partir do empilhamento dos planos compactos em 
uma seqüência ... ABABAB .... Conforme ilustrado na Figura 3.25, os átomos do plano B, 
(0002), ajustam-se nos vales entre os átomos do plano A, (0001); se um outro plano com a 
mesma orientação do plano A é ajustado nos vales do plano B, uma estrutura HC é 
formada. 
 
 
 
Figura 3.25 – Empilhamento dos planos compactos na estrutura HC. 
 
Na estrutura CFC, os planos compactos são da família {111}; esses planos são 
paralelos, mas orientados diferentemente um em relação aos outros. 
A estrutura CFC pode ser formada a partir do empilhamento desses planos 
compactos, obedecendo a seqüência ... ABCABCABC .... Conforme mostrado na Figura 
3.26, os planos compactos são empilhados de tal forma que os átomos do plano B ajustam-
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 57 
se nos vales do plano A, e os do plano C ajustam-se nos vales do plano B e sobre os vales 
não ocupados de A. 
 
 
 
Figura 3.26 – Empilhamento dos planos compactos na estrutura CFC. 
 
3.7 Sistemas de Deslizamento 
O deslizamento ocorrerá mais facilmente em certos planos e direções do que em 
outros. Em geral, o deslizamento ocorrerá paralelo a planos compactos, que preservam sua 
integridade. O deslizamento é mais provável em planos e direções compactas, porque 
nestes casos a distância que a rede precisa se deslocar é mínima (Figura 3.27). 
 
 
 
 
Figura 3.27 - Distâncias de deslocamentos de planos compactos em direções 
compactas e não compactas. 
 
Distância 
Direção não 
compacta 
Direção 
compacta 
Distância 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 58 
Dentro de um plano de deslizamento existirão direções preferenciais para o 
deslizamento. A combinação entre os planos e as direções forma os sistemas de 
deslizamento (slip systems), característicos das diferentes estruturas cristalinas. 
Dependendo da simetria da estrutura, outros sistemas de deslizamento podem estar 
presentes 
A Figura 3.28 mostra os sistemas de deslizamento das três redes básicas. 
 
 
Figura 3.28 – Sistemas de deslizamento das redes básicas (Paciornik, 2007). 
 
3.8 Comportamentos Isotrópico e Anisotrópico 
As diferenças no arranjo atômico dos planos e direções no cristal proporcionam 
variações nas propriedades do material com a direção em que são medidas. 
Um material é cristalograficamente anisotrópico se suas propriedades dependem da 
direção cristalográfica em que são medidas. Por outro lado, se suas propriedades são 
idênticas em todas as direções, o material é dito ser cristalograficamente isotrópico. 
A Figura 3.29 destaca as direções mais importantes da estrutura CCC, que 
obviamente são diferentes; logo, as propriedades medidas nestas direções também serão 
diferentes. 
 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 59 
 
 
 
Figura 3.29 – Direções mais importantes da estrutura CCC. 
 
Os cristais são basicamente anisotrópicos; entretanto, uma amostra policristalina 
poderá ser considerada, idealmente, como isotrópica, se os seus cristais estiverem 
orientados ao acaso, pois sob o ponto de vista macroscópico, a anisotropia dos cristais será 
compensada mutuamente. 
Materiais monocristalinos ou nos quais os grãos são orientados ao longo de certas 
direções, natural ou deliberadamente, normalmente apresentam anisotropia mecânica, 
ótica, magnética e propriedades dielétricas. 
 
3.9 Espaçamento e Ângulos Interplanares 
No sistema cúbico, a distância entre dois planos de átomos, paralelos e adjacentes, 
com os mesmos índices de Miller, é denominada espaçamento interplanar (dhkl), e sua 
equação geral é dada por: 
 222hkl lkh
ad
++
=
 
 
onde a é o parâmetro da rede e h, k e l representam os índices de Miller dos planos 
considerados. Por exemplo, as distâncias interplanares (111) da célula unitária do chumbo 
(Pb), que é CFC, é dada por: 
nm286,0
111
A95,4dnm495,0
2
r4
a,nm175,0r
222
o
111CFCPb =
++
=→===
 
 
2
3a
c
2ab
aa
=
=
=
a 
b 
c 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 60 
O cálculo das distâncias interplanares para materiais não cúbicos envolve equações 
mais complexas, as quais não serão estudadas neste curso. 
O Quadro 3.3 apresenta as relações entre o espaçamento interplanar (dhkl), os 
parâmetros de reticulado (a, b, c), os ângulos entre planos (α, β, γ) e os planos (h k l). 
 
 Quadro 3.3 – Espaçamentos interplanares para os diversos reticulados. 
Reticulado Relações 
Cúbico 2
222
2
hkl a
lkh
d
1 ++
= 
Tetragonal 2
2
2
22
2
hkl c
l
a
kh
d
1
+
+
= 
Hexagonal 2
2
2
22
2
hkl c
l
a
khkh
3
4
d
1
+




 ++
= 
Romboédrico 
( ) ( )( )
( )αα
ααα
322
222222
2
hkl cos2cos31a
coscoshlklhk2senlkh
d
1
+−
−+++++
= 
Ortorrômbico 2
2
2
2
2
2
2
hkl c
l
b
l
a
h
d
1
++= 
Monoclínico 





−++=
ac
coshl2
c
l
b
senk
a
h
sen
1
d
1
2
2
2
22
22
22
hkl
ββ
β 
Triclínico 
( )
( )
( )
( )βαγ
αγβ
γβα
γ
β
α
coscoscoscabS
;coscoscosbcaS
;coscoscosabcS
;senbaS
;sencaS
;sencbS
hlS2klS2hkS2lSkShS
V
1
d
1
2
13
2
23
2
12
222
33
222
22
222
11
132312
2
33
2
22
2
1122
hkl
−=
−=
−=
=
=
=
+++++=
 
 Fonte: Padilha, 2000. 
 
O ângulo Ø entre dois planos pode ser determinado com o auxílio das equações 
contidas no Quadro 3.4. 
 
 
 
 
 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 61 
Quadro 3.4 – Ângulos interplanares para os diversos reticulados. 
Reticulado Relações 
Cúbico ( ) ( )222222212121
212121
lkhlkh
llkkhh
cos
++⋅++
++
=φ 
Tetragonal 






+
+
⋅





+
+
+
+
=
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
1
2
2
2
2121
c
l
a
kh
c
l
a
kh
c
l
a
kkhh
cosφ 
Hexagonal 
( ) ( )






+++⋅





+++
++++
=
2
22
2
22
2
2
2
2
2
12
2
11
2
1
2
1
212
2
12212121
l
c4
a3khkhl
c4
a3khkh
ll
c4
a3khkh2
1kkhh
cosφ 
Romboédrico 
( )
( ) ( )





+++++⋅−+
+++
=
122112211221
2
212121
2
2
21
4
khkhhlhllklkcoscos
llkkhhsen
V
dda
cos
αα
αφ 
Ortorrômbico 






++⋅





++
++
=
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
1
2
21
2
21
2
21
c
l
b
k
a
h
c
l
b
k
a
h
c
ll
b
kk
a
hh
cosφ 
Monoclínico 
( )





 +
−++=
ac
coshlhl
c
ll
b
senkk
a
hh
sen
dd
cos 12212
21
2
2
21
2
21
2
21 ββ
βφ 
Triclínico 
( )
( ) ( ) 




+++
+++++
=
122112122113
122123213321222111
2
21
khkhShlhlS
lklkSllSkkShhS
V
dd
cosφ 
Fonte: Padilha, 2000. 
 
3.10 Sítios Intersticiais 
Nas estruturas cristalinas existem pequenos espaços vazios entre os átomos da rede, 
nos quais átomos menores podem se alojar. Essas regiões da estrutura são denominadas de 
sítios intersticiais. 
Um átomo quando se posiciona em um interstício toca dois ou mais átomos da rede. 
O número de coordenação do interstício será, portanto, igual ao número de átomos que ele 
toca. 
De acordo com a localização, os sítios nas células unitárias cúbicas podem ser 
definidos como (Figura 3.30): 
• Sítio cúbico- apresenta número de coordenação igual a oito e fica localizado no centro 
do cubo da estrutura CS; 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 62 
• Sítios octaédricos - possuem um número de coordenação igual a seis (os átomos que 
contatam o átomo intersticial formam um octaedro, com os átomos maiores ocupando as 
posições regulares da rede) e ocorrem nas estruturas CCC (no centro das faces do cubo) 
e CFC (no centro do cubo e no centro de suas arestas); 
• Sítios tetraédricos - possuem número de coordenação igual a quatro, e ocorrem nas 
estruturas CCC e CFC. 
 
 
(a) 
 
 
 
(b) (c) 
 
Figura 3.30 – Sítios nas células unitárias cúbicas: (a) Representação em todas as células; 
(b) Sítios na célula CCC; (c) Sítios da célula CFC. Nas figuras (b) e (c) os sítios são 
representados pelas esferas maiores. 
CCC 
Octaédrico 
½,1,½ 
Tetraédrico 
1,½,¼ 
Cúbico 
½,½,½ 
CS 
CFC 
Octaédricos 
½,½,½ ; 0,½,1 
Tetraédrico 
¼,¾,¼ 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 63 
Algumas considerações sobre átomos (ou íons) e interstícios da rede: 
• Átomos (ou íons) cujos raios sejam um pouco maiores que o raio do sítio intersticial, 
poderão se alojar neste sítio, deslocando levemente os átomos vizinhos; 
• Átomos (ou íons) com raios muito menores que a cavidade do interstício, não poderão 
ocupar o sítio intersticial, pois irão “chocalhar” em torno do sítio; 
• Se o átomo intersticial for muito grande, ele prefere se alojar em um sítio com um alto 
número de coordenação; 
• Um átomo que apresente uma relação de raios entre 0,225 e 0,414, tenderá a se alojar 
em um sítio tetraédrico (Quadro 3.4); 
• Se essa relação for maior que 0,414, o átomo ocupará um sítio octaédrico; 
• No caso de metais puros (átomos com o mesmo tamanho), a relação de raios é igual a 1 
e o NC máximo é igual a 12; o arranjo, neste caso corresponderá às estruturas CFC e 
HC. 
 
Quadro 3.4 – Características dos interstícios na estrutura cúbica. 
NC Localização do interstício Relação de raios Representação 
2 Linear 0 – 0,155 
 
3 Centro do triângulo 0,155 – 0,225 
 
4 Centro do tetraedro 0,225 – 0,414 
 
6 Centro do octaedro 0,414 – 0,732 
 
8 Centro do cubo 0,732 – 1 
 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 64 
3.11 Espaçamento de Repetição (Vetor de Burgers) 
Outra forma de caracterização de direções é o espaçamento de repetição, também 
denominado vetor de Burgers, que é a distância entre átomos ao longo da direção. Por 
exemplo, na direção [110] de uma célula unitária CFC (Figura 3.31), partindo-se da 
posição 0,0,0, o próximo átomo é o do centro da face, ou a posição ½,½,0; a distância entre 
esses dois pontos é, portanto, a metade da diagonal da face, ou 
a
2
2)b(CFCestruturada]110[direçãodaBurgersdevetor =
r
 
 
 
 
 
Figura 3.31 – Vetor de Burgers da direção [110]. 
 
3.12 Densidades Atômicas no Cristal 
Nas estruturas cristalinas estudadas, verificou-se a existência de planos e direções 
mais compactas que outros, isto é, planos e direções que possuem mais átomos por unidade 
de área ou de comprimento, respectivamente. 
Os planos e direções compactos são de grande importância por desempenharem um 
papel significativo no processo de deformação plástica dos metais, pois os átomos de um 
cristal solicitado mecanicamente escorregam (deslizam) ao longo de planos compactos, 
seguindo direções compactas. 
A definição de uma direção compacta envolve a definição de densidade linear de 
átomos; assim, densidade linear de átomos é o número de átomos por unidade de 
y 
[110] 
x 
z 
½,½,0 
Vetor de 
Burgers 
0,0,0 
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 65 
comprimento na direção. Na estrutura CS, por exemplo, a densidade linear de átomos da 
família de direções <100> é calculada como (Figura 3.32): 
 
 
 
 
 
Figura 3.32 – Densidade linear de átomos na direção [100] da estrutura CS. 
 
Da mesma forma, um plano compacto é determinado calculando-se a sua densidade 
planar, que é definida como o número de átomos por unidade de área no plano. Na 
estrutura CS, por exemplo, a densidade planar de átomos da família de planos {100} é 
calculada como (Figura 3.33):Figura 3.33 – Densidade planar de átomos no plano (100) da estrutura CS. 
 
Também é interessante definir a densidade volumétrica ou simplesmente densidade 
da célula unitária. Considerando o material com uma estrutura perfeita, a densidade da 
célula unitária (densidade teórica ou calculada) representa a densidade volumétrica do 
material; portanto, densidade é definida como a massa por unidade de volume do material, 
ou seja: 
 
unitáriacéluladavolume
átomodomassax)unitáriacélulanaátomosdenúmero(
=ρ [g/cm3] 
O cobre, por exemplo, possui estrutura CFC, massa atômica igual a 63,54g/mol e 
raio atômico igual 1,278Å, sua densidade será igual a 8,93 g/cm3, conforme calculada na 
22
planar
r4
1
a
25,025,025,025,0
planodoárea
)100(planonoátomosdenúmeroD
=
+++
=
==
r2
1
a
5,05,0
direçãodaocompriment
]100[direçãonaátomosdenúmeroDlinear
=
+
=
==
Estrutura e Propriedades dos Materiais Estrutura Cristalina 
UFPA – ITEC – FEM Prof. Jorge Teófilo de Barros Lopes 66 
Figura 3.34. Este valor é menor que a densidade obtida experimentalmente (densidade 
verdadeira), a qual vale a 8,96 g/cm3 (SMITH, 1998). 
 
 
 
 
Figura 3.34 – Densidade volumétrica da estrutura CFC. 
 
3.12 Referências Bibliográficas 
ASKELAND, Donald R.; PHULÉ, Pradeep P. The science and engineering of materials. 
4
.
ed. California: Brooks/Cole-Thomson Learning, 2003. 
 
CALLISTER JR., William D. Ciência e engenharia de materiais: uma introdução. 5.ed. 
Rio de Janeiro: LTC, 2002. 
 
PACIORNIK, Sidnei. Ciência e engenharia de materiais. Apostilha de aula. Rio de 
Janeiro: Pontifícia Universidade Católica (PUC), 2007. 
 
SMITH, William F. Princípios de ciência e engenharia de materiais. 3.d. New York: 
McGraw-Hill, 1998. 
3
38
23
cm/g93,8
2
10x278,14
10x02,6
54,634
2
r4
a
unitáriacélulaporátomos4:CFCEstrutura
=












=
=
−
ρ

Outros materiais