Buscar

APOSTILA DE TOPOGRAFIA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 63 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 63 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 63 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB 
DEPARTAMENTO DE TECNOLOGIA E CIÊNCIAS SOCIAIS – DTCS 
FACULDADE DO MÉDIO SÃO FRANCISCO – FAMESF 
 
PROFESSOR - JORGE LUIZ BARAUNA DA COSTA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TOPOGRAFIA 
 
PARA AGRICULTURA IRRIGADA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
2 
 
TOPOGRAFIA: 
Definição: a palavra "Topografia" deriva das palavras gregas "TOPOS" (LUGAR) e "GRAPHEN" 
(DESCREVER), o que significa a descrição exata e minuciosa de um lugar. 
 
Finalidade: topografia tem por finalidade determinar o contorno, dimensão e posição relativa de 
uma porção limitada da superfície terrestre, do fundo dos mares ou do interior de minas, 
desconsiderando a curvatura resultante da esfericidade da Terra. A topografia é a ciência que 
estuda uma área de terra limitada, e pode constar de um Memorial Descritivo, onde conseguem 
elementos que permitam formar idéias da área descrita, ou pode estar contida de modo 
convencional em uma folha de papel chamada, então, Planta Topográfica. Compete ainda à 
Topografia, a locação, no terreno, de projetos elaborados de Engenharia. 
 
Generalidades: a topografia teve início no antigo Egito as margens do Rio Nilo, devido as cheias 
destruírem os limites das terras e as necessidades de novas demarcações, levantamentos 
cadastrais e avaliações de áreas rurais. A partir daí foram desenvolvidas técnicas que 
possibilitaram a restituição das áreas inundadas, chegando hoje com equipamentos eletrônicos 
modernos utilizando-se de automação para a segurança e rapidez dos levantamentos e estudos. 
Assim podemos dizer que a topografia é uma ciência aplicada na geometria e na trigonometria, 
de âmbito restrito, pois é um capitulo da geodésia, que tem por objetivo o estudo da forma e 
dimensões da terra. 
A topografia como ciências, fornece os meios necessários à completa descrição (caracterização) 
de um terreno, possibilitando as seguintes determinações: forma de contorno do terreno, 
dimensões, posicionamento relativo, tanto das linhas do contorno, como de todos os objetos 
significativos que se encontram à superfície do terreno, cálculo e construção da planta do terreno 
(porção limitada da superfície de nosso planeta). 
Os meios a que nos referimos, constituem-se basicamente, no desenvolvimento de fundamentos 
teóricos, de processos de medição no campo, de tecnologia para construção de instrumental 
topográfico, além de um elenco de normas e procedimentos para confecção das plantas 
topográficas. 
É fácil entender que a topografia atua somente em áreas de dimensões restritas (pequenas 
relativamente), cujo interesse maior é a definição dos limites (contorno) e o conhecimento da 
grande maioria dos objetos situados no interior dessa área e também aqueles objetos localizados 
exteriormente, porém nas proximidades do contorno. 
Os objetos a que nos referimos constituem o que si designa por detalhe planimétrico. 
Exemplificando: edificações, cercas, rios, áreas cultivadas e benfeitorias em geral, córregos, 
vales, espigões, postes, pontes, viadutos, estrada de rodagem, ferrovias, açudes, linhas 
telefônicas, linhas de transmissão de energia elétrica, linhas de adutoras de água, redes coletoras 
de esgotos sanitários, galerias de águas pluviais, aeroportos etc. São detalhes planimétricos. 
 
Importância da Topografia: 
 
Como todas as obras de engenharia, agronomia e arquitetura, são executadas sobre parte da 
superfície terrestre, a partir de estudos e projetos previamente elaborados, cabe a topografia dar a 
base para que estes projetos sejam executados com maior precisão e locados corretamente na 
área onde serão executados. A topografia auxilia projetos e obras: 
a - Construção Civil, como prédios, pontes, rodovias, barragens, ferrovias, etc. 
b - Urbanismo, como plano diretor, sistema viário, eletrificação, saneamento, loteamentos, rede 
telefônica, etc. 
c - Agricultura, como projetos de culturas, drenagens, irrigações, cadastro de culturas, etc. 
d - Silvicultura, como reflorestamento, reservas florestais, etc. 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
3 
 
Ao se projetar qualquer obra de Engenharia é necessário o levantamento 
topográfico do lugar onde a obra será implantada. Daí a importância da Topografia, que se 
incumbe do levantamento ou medição, que deverá ser precisa e adaptada ao terreno. Apenas a 
Topografia pode medir ou calcular distâncias horizontais e verticais, calcular ângulos horizontais e 
verticais com alta ou altíssima precisão, como medir distâncias horizontais com erro provável de 1 
para 100.000, calcular altitudes com precisão de um décimo de milímetro ou ainda medir ângulos 
horizontais e verticais com precisão de um segundo sexagesimal. 
A Topografia deve ser entendida como uma importante prática dentro da 
Engenharia. Hoje, encontra-se em fase de transição quanto ao uso de equipamentos e técnicas 
de operação. O advento do sistema GPS (Global Posiotioning System) vem proporcionando 
verdadeiras revoluções nos métodos tradicionais. Porém, a modernização dos equipamentos de 
medição é muito bem vinda pelo ganho incomparável em tempo e facilidade de operação. Apesar 
dos avanços tecnológicos surpreenderem até as mais arrojadas expectativas, nem todas as 
atividades podem se valer do sistema GPS. Existem situações em que as técnicas tradicionais de 
operação da Topografia estão e serão ainda por muito tempo preservadas. 
 
Divisão da Topografia: 
 
a - Topometria: É o conjunto de métodos empregados para a coleta de dados, dados estes para o 
cálculo e representação gráfica de parte da superfície terrestre. Divide-se em: 
a.1 - Planimetria - É a representação em projeção horizontal dos detalhes naturais e artificiais, 
(planta baixa ). 
 
a.2 - Altimetria - É a determinação das distâncias verticais de um certo número de pontos sobre a 
superfície a ser levantada, tendo como referência o nível médio dos mares ou o próprio plano 
topográfico. 
 
b - Topologia: Tem por objetivo o estudo das formas exteriores da superfície terrestre e das leis a 
que rege o seu modelado. Sua aplicação principal é na representação da altimetria pelas curvas 
de nível, que são as intersecções obtidas por planos eqüidistantes paralelos ao plano de 
representação. 
 
c - Taqueometria: Tem por finalidade a determinação das distâncias horizontais e verticais, de 
maneira indireta, através da resolução de triângulos retângulos situados no plano vertical. Sua 
principal utilização é em terrenos acidentados onde a determinação direta torna-se inviável. 
 
d - Fotogrametria: São levantamentos fototopográficos, efetuados em áreas extensas, utilizando-
se de equipamentos chamados de fototeodolitos ou fotogrâmetros. Divide-se em: 
 
d.1 - Aerofotogrametria. 
d.2 - Fotogrametria terrestre. 
 
e - Topografia Expedita: Tem por finalidade dar uma noção de situação da área a ser levantada. 
 
f - Topografia Regular: Divide-se em: 
 
f.1 - Topografia regular de alta precisão, onde podem ocorrer erros de: angular de 1/10’ n, onde n 
é o número de estações da poligonal levantada; linear de 1: 10000. 
 
f.2 - Topografia regular de média precisão, onde podem ocorrer erros de: 
 
Tipo de terreno Erro Angular Erro Linear 
Plano 1’ n 1 : 2000 * 
Ondulado 2’ n 1 : 1000 
Acidentado 3’ n 1 : 500 
(* mais usual para qualquer tipo de terreno) 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
4 
 
g - GPS (Global Positioning System) ou Sistema de Posicionamento Global. Consiste em uma 
rede de 24 satélites em 6 planos de órbita sobre a terra com uma altitude aproximada de 20.200 
km. Por meio de receptor GPS na superfície terrestre pode-se determinar uma posição geográfica 
(latitude, longitude e altitude) exata sobre a mesma. 
 
GONIOLOGIA:É a parte da matemática que estuda os ângulos, divide-se em: 
 
a - Goniometria: é a parte da topografia onde se estuda os instrumentos, métodos e processos 
utilizados na avaliação numérica de ângulos. Todo instrumento para medir ângulo chama-se 
goniômetro, com o exemplo de goniômetro temos: transferidor, grafômetro, pantômetro, azimutal, 
transito, teodolito, taqueômetro, clinômetro etc. 
 
b - Goniografia: estudas os métodos e aparelhos utilizados na representação gráfica dos ângulos. 
Todo aparelho destinado medir ângulos chama-se goniômetro, e a parte para avaliação do ângulo 
propriamente dita, chama-se limbo. O limbo consiste em um círculo geralmente graduado em 
graus. Nos goniômetros pode-se ter dois tipos de limbos: os que medem ângulos horizontais e 
os que medem ângulos verticais ou azimutais. 
 
Sistemas de Unidades - Assim como a medida linear, temos várias unidades angulares. As 
unidades angulares são de acordo com a divisão de um círculo. 
 
Grau - Um círculo dividido, a partir de seu centro, em 360 partes. Cada parte desta, é chamada 
de grau. Cada grau por sua vez, é dividido em 60 partes, chamada de minuto. Cada 
minuto é divido em mais 60 partes, chamada de segundo, e cada segundo assume 
as divisões decimais. Este sistema é chamado de Sexagesimal. 
 
Grau ( º ) = é uma medida angular que subtende-se ângulo = 1/360 
circunferência = 60’= 3.600”. O grau não tem múltiplos, só submúltiplo. 
Minuto ( ’ ) = é uma medida angular (1/60)º = 60” 
Segundo ( ” ) = é uma medida angular = (1/60)’ 
 
Grado - Um círculo dividido, a partir de seu centro, em 400 partes. Cada parte desta é chamada 
de grado. Cada grado segue a divisão decimal. Este sistema é chamado de Centesimal. 
Grado - é uma medida angular que subtende-se a 1/400 circunferência 90º = 100gr 
 
Exemplo: 
 360 ------- 400 
 1º ------- x x = 1 x 400 = 10 = 1º 
 360 9 
Radiano - Um radiano é representado pelo ângulo formado quando o valor do comprimento do 
arco da circunferência é igual ao seu raio. Uma circunferência total, possui 2 radianos. 
 
Radiano - é a medida do ângulo central que corresponde a um arco de circunferência que, 
retificado, é igual ao raio. Equivale no sistema sexagesimal a 57º17’44,8” 
 
Conversão de Medidas 
 A relação é feita através de regra de três simples (proporção), segundo a tabela abaixo. 
 
GRAUS GRADOS RADIANOS 
0° 0g 0 
90° 100g /2 
180° 200g 
270° 300g 3 /2 
360° 400g 2 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
5 
 
 
MEDIDAS ANGULARES: 
 
 
Conceitos e Definições 
 
 
Ângulo - Tratando-se da forma, é uma figura formada por duas retas com um ponto em comum. 
Tratando-se de medida, é o afastamento entre estas duas retas ao longo de uma 
circunferência. 
 
Ângulos Verticais - são ângulos formados sobre qualquer plano de referência vertical. Ou seja, 
são aqueles formados pelo afastamento de planos horizontais; correspondem, ao 
ângulo formado entre a linha de visada e uma linha de referência, que geralmente é a 
linha do horizonte. A linha de visada pode estar acima ou abaixo da linha do horizonte 
para o ponto onde está estacionado o goniômetro. 
 
Ângulos Horizontais - São ângulos formados sobre qualquer plano de referência horizontal. Ou 
seja, são aqueles que as direções dos alinhamentos formam entre si ou aqueles que os 
alinhamentos fazem uma linha de referência. A linha de referência pode ser o Meridiano 
Magnético, Meridiano Verdadeiro ou ainda uma linha de referência arbitrária, O 
Meridiano Magnético corresponde à direção indicada pela agulha magnética, o 
Meridiano Geográfico, Astronômico ou Verdadeiro, corresponde a direção indicada pela 
linha que passa pelos pólos geográficos da Terra. 
 
Os ângulos horizontais medidos em Topografia podem ser: 
 
 
Sentido Anti-Horário ou à Esquerda - É um ângulo lido no contrário ao sentido do ponteiro do 
relógio, da direita para a esquerda ( Ângulos Internos). 
 
 
Ângulos Horizontais: 
 
a - Ângulo Interno (Ai): É o ângulo contado a partir do alinhamento anterior para o posterior, 
internamente a poligonal. Ou seja, o ângulo medido entre dois alinhamentos topográficos, do lado 
interno a uma poligonal fechada. É obrigatório a existência de uma poligonal fechada. Variam de 
0° a 360° e podem ser lidos tanto no sentido horário como no anti-horário. 
 
 Para a medida de um ângulo horizontal interno a dois alinhamentos consecutivos de uma 
poligonal fechada, o aparelho deve ser estacionado, nivelado e centrado com perfeição, sobre um 
dos pontos que a definem (o prolongamento do eixo principal do aparelho deve coincidir com a 
tachinha sobre o piquete). 
Assim, o método de leitura do referido ângulo, utilizando um teodolito convencional (mecânico), 
teodolito eletrônico ou uma estação total, consiste em: 
 
 Executar a pontaria (fina) sobre o ponto a vante (primeiro alinhamento); 
 Zerar o círculo horizontal do aparelho nesta posição (procedimento padrão 
Hz = 000 00'00"); 
 Liberar e girar o aparelho (sentido horário ou anti-horário), executando a 
pontaria (fina) sobre o ponto a ré (segundo alinhamento); 
 Anotar ou registrar o ângulo (Hz) marcado no visor LCD que corresponde ao 
ângulo horizontal interno medido. 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
6 
 
A figura a abaixo ilustra os ângulos horizontais internos medidos em todos os pontos de uma 
poligonal fechada. 
 
A relação entre os ângulos horizontais internos de uma poligonal fechada é dada por: 
 Ai = (n-2).180 
Onde n representa o número de vértices ou estações da poligonal. 
 
b - Ângulo Externo (Ae): É o ângulo contado a partir do alinhamento anterior para o posterior, 
externamente a poligonal. Ou seja, o ângulo medido entre dois alinhamentos topográficos, do lado 
externo a uma poligonal fechada. É obrigatório a existência de uma poligonal fechada. Variam de 
0° a 360° e podem ser lidos tanto no sentido horário como no anti-horário. 
Para a medida de um ângulo horizontal externo a dois alinhamentos consecutivos de uma 
poligonal fechada, o aparelho deve ser estacionado, nivelado e centrado com perfeição, sobre um 
dos pontos que a definem (o prolongamento do eixo principal do aparelho deve coincidir com a 
tachinha sobre o piquete). 
Assim, o método de leitura do referido ângulo, utilizando um teodolito eletrônico ou uma estação 
total, consiste em: 
 Executar a pontaria (fina) sobre o ponto a ré (primeiro alinhamento); 
 Zerar o círculo horizontal do aparelho nesta posição (procedimento padrão 
Hz = 000 00'00"); 
 Liberar e girar o aparelho (sentido horário ou anti-horário), executando a 
pontaria (fina) sobre o ponto a vante (segundo alinhamento); 
 Anotar ou registrar o ângulo (Hz) marcado no visor LCD que corresponde ao 
ângulo horizontal externo medido. 
 
A figura a seguir ilustra os ângulos horizontais externos medidos em todos os pontos de uma 
poligonal fechada. 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
7 
 
A relação entre os ângulos horizontais externos de uma poligonal fechada é dada por: 
 Ae = (n+2).180 
 
 Onde n representa o número de vértices ou estações da poligonal. 
 Os ângulos horizontais internos e externos variam de 0 a 360 . 
 
c - Deflexão: São ângulos medidos a partir do prolongamento do alinhamento anterior até o 
alinhamento posterior. Variam de 0° a 180° e podem ser lidos tanto no sentido horário como no 
anti-horário. Se for lido no sentido horário é chamada de deflexão à direita (Dd). Se for no sentido 
anti-horário é chamada de deflexão à esquerda (De). 
 
 Dd - De = 360 
 
Poligonalno sentido horário: 
 
Poligonal no sentido anti-horário : 
 
Efetuando-se os cálculos, o valor da deflexão poderá dar positivo ou negativo. Se a deflexão for positiva ela 
é à direita (Dd). Se for negativa, despreza-se o sinal e ela será à esquerda (De). 
 
 
d - Azimute (Az): Chama-se Azimute Magnético (ou simplesmente Azimute) de um alinhamento 
ao ângulo que a direção deste alinhamento faz com a direção do Norte Magnético, ou seja, o 
angulo que o alinhamento forma com a direção Norte-Sul a partir da ponta Norte como origem, e 
os mesmos são cantados de 00° a 360° e são chamados azimutes à direita quando contados para 
a direita do Norte (sentido horário) e azimute à esquerda quando contados para a esquerda do 
Norte (sentido anti-horário). 
 
 
 
 
exD 180 180exD
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
8 
 
 
 
e - Rumo (R): É o menor ângulo que o alinhamento faz com a direção Norte-Sul, sendo contado a 
partir da ponta Norte ou da ponta Sul como origem, e não passa de 90°, recebendo as letras 
correspondentes ao quadrante que pertence. Ou ainda podemos dize que o Rumo de um 
alinhamento é ângulo que ele forma com a ponta da agulha que lhe fica mais próximo. 
São contados à direita ou à esquerda conforme o alinhamento se encontre mais próximo do Este 
(E) ou do Oeste (W). 
Os Rumos podem ser: 
 
Primeiro Quadrante NE Nordeste 
Segundo Quadrante SE Sudeste 
Terceiro Quadrante SO ou SW Sudoeste 
Quarto Quadrante NO ou NW Noroeste 
 
 
 Os Rumos podem ser Magnéticos, Verdadeiros ou Assumidos. 
 
Rumo Verdadeiro: é obtido em função do azimute verdadeiro através de relações 
matemáticas simples. 
Rumo Magnético: é o menor ângulo horizontal que um alinhamento forma com a 
direção norte/sul definida pela agulha de uma bússola (meridiano magnético). 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
9 
 
Os rumos (verdadeiros ou magnéticos) são contados a partir da direção norte (N) ou 
sul (S) do meridiano, no sentido horário ou anti-horário, variando de 0 a 90 e sempre 
acompanhados da direção ou quadrante em que se encontram (NE, SE, SO, NO). 
A figura a seguir ilustra as orientações de quatro alinhamentos definidos sobre o terreno através 
de Azimutes à Direita, ou seja, dos ângulos contados a partir da direção norte do meridiano no 
sentido horário. 
 
 
 
 
 
 
Angulo interno (Ai), Angulo Externo (Ae), Deflexão a direita (Dd), Deflexão a esquerda (De), 
Azimute (Az), Rumo (R) 
 
 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
10 
 
 
Calculo do Rumo em função do Azimute, e do Azimute em função do Rumo: 
 
 
 
 
 
Quadrante Az p/ Rumo Rumo p/ Az 
01 R = Az Az = R 
02 R = 180° - Az Az = 180° - R 
03 R = Az - 180° Az = R + 180° 
04 R = 360° - Az Az = 360° - R 
 
 
- Em cálculo de Rumo ou Azimute temos quatro casos a serem observados: 
1º Quando o Az = 90°, o Rumo será R = 90° E ou R = 90° W → E 
2º Quando o Az = 00°, o Rumo será R = 00° N ou R = 00° S → N 
3º Quando o Az = 180°, o Rumo será R = 00° S ou R = 00° N → S 
4º Quando o Az = 270°, o Rumo será R = 90° W ou R = 90° E → W 
 
 
Declinação Magnética: 
 
 
Meridiano Geográfico: O Meridiano Geográfico de um lugar corresponde ao plano que contém 
este ponto e o eixo de rotação da terra. 
 
Meridiano Magnético: O Meridiano Magnético de um lugar, corresponde ao plano que contém o 
eixo longitudinal de uma agulha imantada em equilíbrio, sobre o ponto, e a vertical do lugar. 
 Em geral, o MM e o MG não coincidem, formando entre eles uma diferença angular chamada 
de Declinação magnética. A diferença pode aumentar até um certo limite para Oeste, e 
retroceder em seguida para Leste, também até certo limite. Com isto podemos dizer que 
determinado Azimute de um alinhamento em determinada localidade e data, varia com o tempo. 
Por isso quando temos um Azimute lido em uma época remota, e há a necessidade de 
restabelecer o alinhamento definido por este Azimute, precisamos reconstituí-lo para os dias de 
hoje. Esse trabalho chama-se Aviventação de Azimutes ou Rumos. 
 
 A Declinação Magnética não é igual para todos os pontos da superfície terrestre, nem mesmo 
é constante em um mesmo lugar, sofrendo variações diárias, mensais, anuais e seculares. 
 As cartas que ligam os pontos de mesma Declinação Magnética são chamadas de Cartas 
Isogônicas, e as que ligam os pontos de mesma variação anual de declinação são chamadas de 
Cartas Isopóricas. Estas cartas são fornecidas pelos anuários dos observatórios astronômicos. 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
11 
 
 
Para obter o valor da declinação e da variação anual, necessita-se conhecer as coordenados do 
ponto em questão. 
 Existem outros meios de determinarmos a declinação de certa região da superfície terrestre, 
tais como o do processo do estilete vertical e o processo das alturas correspondente com 
observação ao sol através do teodolito. 
 
Exemplo de aviventação de Rumos e Azimutes: 
- O Rumo Magnético do alinhamento 1-2 era de 45° 15’ 00” SE em 01/07/87. Calcular o Rumo e 
Azimute Verdadeiros. Por um anuário constataram-se os seguintes dados: = 1 40’ 00” E em 
01/01/85 e = 8’ 00” E. 
 
Entre 01/01/85 e 01/07/87 temos 2 anos e 6 meses, corresponde a 2,5 anos. 
Neste período o Norte Magnético variou 20’ = 2,5 x 8’ para Leste. 
Portanto a Declinação Magnética em 01/07/87 era de 2 = 1 40’ 00” + 20’ 00” 
Assim, o Azimute Geográfico será de 136 45’ 00” = 134 45’ 00” + 2 00’ 00”. 
O Rumo Geográfico será de 43 15’ 00” SE = 45 15’ 00” SE - 2 00’ 00”. 
 
Exercícios: 
 
1º) O Rumo Geográfico do alinhamento 2-3 é de 80 15’ 00” NO. Calcular o Rumo e Azimute 
magnéticos deste alinhamento em 1995. Das cartas isogônicas e isopóricas de 1983, constatou-
se que a Declinação Magnética era 13 00’ 00” O e a variação anual de 11’ 00” O. 
 
2º) O Azimute magnético do alinhamento 0=PP - 1 era de 123 12’ 00” em 18/11/92. Calcular o 
Rumo e Azimute Geográficos deste alinhamento, sabendo-se que a Declinação Magnética em 
18/05/90 era 7 12’ 00” E e a variação anual de 6’ 00” E. 
 
 
3º) O azimute verdadeiro do alinhamento 6-7 de uma poligonal, é de 238 16’ 40”, Calcular o 
Azimute magnético deste alinhamento em 22/06/95, sabendo-se que em 22/06/93 = 2 20’ 20” O 
e = 4’ E. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
12 
 
MEDICÃO DIRETA E INDIRETA DAS DISTÂNCIAS 
 
 
 
 Para que se execute um desenho técnico, além de materiais e equipamentos de desenho, 
é lógico a necessidade de dados numéricos, tais como: medidas de distâncias e medidas de 
ângulo. A obtenção dessas medidas em campo, nos trabalhos práticos, que possibilitam a 
execução da representação gráfica, é denominada de levantamentos topográficos. 
 
 A medida da distância entre dois pontos, em topografia, corresponde à medida da distância 
horizontal entre esses dois pontos. Como já se deve saber, as distâncias inclinadas são reduzidas 
às dimensões de uma projeção horizontal equivalente. As grandezas lineares podem ser medidas 
direta ou indiretamente. A medição será direta quando o instrumento de medida é aplicado 
diretamente sobre o terreno, e indireta ou estadimétrica quando se obtém o valor da distância com 
auxilio de cálculos trigonométricos. 
 
 
 
 
 Percorrendo a linha: uso de diastímetro (trena de aço, pano, fibra, 
plástico,corrente do agrimensor, fio de invar). 
 
 Com aparelhos especiais: taqueometria, mira de base, telemetria, 
métodos das rampas, equipamento eletrônico.Emprego de Trigonometria 
 
 
 
O método é tido como direto quando, para se conhecer uma distância entre dois pontos (A e B), 
mede-se a própria distância AB. 
O método é chamado indireto quando para se determinar uma distância AB, medem-se qualquer 
outra reta e determinados ângulos que permite o cálculo por trigonometria. 
 
 
 Materiais utilizados na medição direta de distância 
 
 Alguns autores afirmam que o processo de medida de distâncias é direto, quando 
esta distância é determinada em comparação a uma grandeza padrão previamente estabelecida; 
outros autores, porém, afirmam que a medição é direta quando o instrumento de medida utilizado 
é aplicado diretamente sobre o terreno. 
 Os principais dispositivos utilizados na medida direta de distâncias, também 
conhecidos por DIASTÍMETROS, são os seguintes: (trena de aço, lona, fibra de vidro, plástico, 
corrente do agrimensor, fio de invar e etc. ). 
 
 
 
 
 
 
 
 
 
 
M
E
T
O
D
O
S
 
DIRETO 
INDIRETO 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
13 
 
Trenas: São instrumentos utilizados para medição direta de distâncias. São graduadas em 
múltiplos e submúltiplos do metro, com comprimento variando de 20m a 50m. São fabricadas em 
fiberglass (fibra de vidro) ou aço, com carretéis fechados ou abertos. 
 
a) Fita e Trena de Aço 
- são feitas de uma lâmina de aço inoxidável; 
- a trena é graduada em metros, centímetros e milímetros só de um lado; 
- a fita é graduada a cada metro; o meio metro ( 0,5 m ) é marcado com um furo 
e somente o início e o final da fita são graduados em decímetros e centímetros; 
- a largura destas fitas ou trenas varia de 10 a 12 mm; 
- o comprimento das utilizadas em levantamentos topográficos é de 20, 30, 50, 
100 e 150 metros; 
- o comprimento das de bolso varia de 1 a 7,50 metros (as de 5 metros são as 
mais utilizadas); 
- normalmente apresentam-se enroladas em um tambor (figura a seguir) ou 
cruzeta, com cabos distensores nas extremidades; 
- por serem leves e praticamente indeformáveis, os levantamentos realizados 
com este tipo de dispositivo nos fornecem uma maior precisão nas medidas, 
ou seja, estas medidas são mais confiáveis; 
- desvantagens: as de fabricação mais antiga, enferrujam com facilidade e, 
quando esticadas com nós, se rompem facilmente. Além disso, em caso de 
contato com a rede elétrica, podem causar choques; 
 - as mais modernas, no entanto, são revestidas de nylon ou epoxy e, portanto, 
são resistentes à umidade, à produtos químicos, à produtos oleosos e à 
temperaturas extremas. São duráveis e inquebráveis. 
 
b) Trena de Lona 
- é feita de pano oleado ao qual estão ligados fios de arame muito finos que lhe 
dão alguma consistência e invariabilidade de comprimento; 
- é graduada em metros, centímetros e milímetros em um ou ambos os lados e 
com indicação dos decímetros; 
- o comprimento varia de 20 a 50 metros; 
não é um dispositivo preciso pois deforma com a temperatura, tensão e 
umidade (encolhe e mofa); 
- pouquíssimo utilizada atualmente. 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
14 
c) Trena de Fibra de Vidro 
- é feita de material bastante resistente (produto inorgânico obtido do próprio 
vidro por processos especiais); 
- conforme figura a seguir, pode ser encontrada com ou sem envólucro e, este, 
se presente, tem o formato de uma cruzeta; sempre apresentam distensores 
(manoplas) nas suas extremidades; 
- eu comprimento varia de 20 a 50 m (com envólucro) e de 20 a 100 m (sem 
envólucro); 
 comparada à trena de lona, deforma menos com a temperatura e a tensão; 
- não se deteriora facilmente; 
- é resistente à umidade e à produtos químicos; 
- é bastante prática e segura. 
 
 
 
 Apesar da qualidade e da grande variedade de diastímetros disponíveis no 
mercado, toda medida direta de distância só poderá ser realizada se for feito uso de alguns 
ACESSÓRIOS especiais. Os acessórios utilizados nas medições diretas são: piquetes, estacas, 
balizas e fichas e outros. A finalidade dos acessórios é permitir a materialização do ponto 
topográfico no terreno através da colocação dos piquetes ou estacas. Cujo os principais são: 
 
 
a) Piquetes: São estacas de madeira com secção transversal quadrada de 4cm X 4cm, 
ou circular com diâmetro variando de 3 a 5 cm, e, com seu comprimento variando entre 
15 a 20cm (conforme o tipo do solo onde se esteja trabalhando), apontados em uma 
das extremidades. Tem por finalidade a materializar em campo a estação ou ponto 
topográfico, sendo cravado no solo uma boa parte, ficando apenas 1cm ou 2cm para 
fora (aflorando o terreno natural), sem possíveis movimentos laterais. 
 
- são necessários para marcar, convenientemente, os extremos do alinhamento a 
ser medido; 
- são feitos de madeira roliça ou de seção quadrada com a superfície no topo 
plana; 
- são assinalados (marcados) por tachinhas de cobre; 
 
 - sua principal função é a materialização de um ponto topográfico no terreno. 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
15 
 
b) Estaca Testemunha: Como o nome esta dizendo, são pedaços de madeira e a 
mesma pode ser de forma roliça, seu diâmetro varia de 3 a 5 cm ou seção quadrada de 
4cm X 4cm e com 50cm de comprimento, e são apontadas em uma extremidade e 
aparada de topo na outra, com um chanfro na parte superior, onde é colocado o nome 
ou número do piquete a que esta estaca se refere. Tem por finalidade, possibilitar a 
identificação e localização do piquete, ficando a mesma cravada a uma distância de 
50cm do referido piquete, com o chanfro voltado para o mesmo. 
 
- conforme figura abaixo,são utilizadas como testemunhas da posição do 
piquete; 
- são cravadas próximas ao piquete cerca de 30 a 50 cm; 
- seu comprimento varia de 15 a 40 cm; 
- são chanfradas na parte superior para permitir uma inscrição numérica ou 
alfabética, que pertence ao piquete testemunhado. 
 
 
Piquetes e Estaca Testemunha 
 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
16 
 
c) Fichas 
- são utilizadas na marcação dos lances efetuados com o diastímetro quando a 
distância a ser medida é superior ao comprimento deste; 
- são hastes de ferro ou aço; 
- seu comprimento é de 35 ou 55 cm; 
- seu diâmetro é de 6 mm; 
- conforme figura a seguir, uma das extremidades é pontiaguda e a outra é em 
formato de argola, cujo diâmetro varia de 5 a 8 cm. 
 
 
d) Balizas - são as peças de material variado (geralmente de ferro ou madeira), 
medindo 2 metros de comprimento, de seção circular, pintada a cada 50 cm, em duas cores 
contrastantes (vermelho e branco) e tendo na extremidade inferior uma ponta aguçada, para 
facilitar sua fixação no terreno, servindo com isso para materializar a ordenada vertical, tomada 
por um ponto do terreno. 
 
 
 
 - são utilizadas para manter o alinhamento, na medição entre pontos, quando 
há necessidade de se executar vários lances com o diastímetro (Trena); 
 - conforme figura a seguir, são feitas de madeira ou ferro; arredondado, 
sextavado ou oitavado;- são terminadas em ponta guarnecida de ferro; 
- seu comprimento é de 2 metros; 
- seu diâmetro varia de 16 a 20 mm; 
- são pintadas em cores contrastantes (branco e vermelho ou branco e preto) 
para permitir que sejam facilmente visualizadas à distância; 
- devem ser mantidas na posição vertical, sobre a tachinha do piquete, com 
auxílio de um nível de cantoneira. 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
17 
 
e) Nível de Cantoneira 
 Aparelho em forma de cantoneira e dotado de bolha circular que permite à 
pessoa que segura a baliza posicioná-la corretamente (verticalmente)sobre o 
piquete ou sobre o alinhamento a medir. 
 
 
j) Cadernetas de Campo – 
 
- são formulários próprios e apropriados onde são anotados todos os dados 
coletados em campo (leituras distância, ângulo e informações, croquis dos 
pontos, etc.), bem como todas as operações desenvolvidas; 
- normalmente são padronizadas, porém, nada impede que a empresa 
responsável pelo levantamento topográfico adote cadernetas que melhor 
atendam suas necessidades. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
18 
 
CADERNETA DE CAMPO 
 
LEVANTAMENTO 
PLANIALTIMETRICO 
CONTRATANTE 
: 
FL. 
 
PROJETO 
: 
LOCAL : 
DATA: 
MUNICÍPIO/ESTADO : 
 
ESTA. 
 
PONTO 
VISADO 
ANGULO 
HORIZONTAL 
DIST. OBSERVAÇÕES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CROQUIS: 
 
 
 
 
 
 
 
 
 
 
 
 
Trecho: 
 
 
 
Topógrafo: 
 
Aparelho: 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
19 
 
CADERNETA DE CAMPO (Taqueometria) 
 
LEVANTAMENTO 
PLANIALTIMETRICO 
CONTRATANTE 
: 
FL. 
 
PROJETO 
: 
LOCAL : 
DATA: 
MUNICÍPIO/ESTADO : 
ESTA. 
AI 
PONTO 
VISADO 
A N G U L O S L E I T U R A S 
DIST. OBSERVAÇÕES 
HORIZONTAL VERTICAL FI FM FS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CROQUIS: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Trecho: 
 
 
 
Topógrafo: 
 
Aparelho: 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
20 
 
PRECISÃO E CUIDADOS NA MEDIDA DIRETA DE DISTÂNCIAS 
 
A precisão com que as distâncias são obtidas depende, principalmente: 
 do dispositivo de medição utilizado; 
 dos acessórios; 
 dos cuidados tomados durante a operação. 
 
 Os cuidados que se deve tomar quando da realização de medidas de distâncias com 
diastímetros são: 
 que os operadores se mantenham no alinhamento a medir; 
 que se assegurem da horizontalidade do diastímetro; 
 que mantenham tensão uniforme nas extremidades. 
 
A tabela abaixo fornece a precisão que é conseguida quando se utilizam diastímetros 
em um levantamento, levando-se em consideração os efeitos da tensão, da temperatura, da 
horizontalidade e do alinhamento. 
Diastímetro Precisão 
Fita e trena de aço 1cm/100m 
Trena plástica 5cm/100m 
Trena de lona 25cm/100m 
 
 
 Medição com diastimetro: as medidas efetuadas com diastimetro não apresenta problema 
desde que se opere obedecendo alguns critérios, ou seja: as balizas (vante e ré) deverão 
manter-se sempre aprumada no vertical e o diastímetro na horizontal e esticada ao máximo para 
que não forme uma catenária, sendo que em terreno acidentado procura-se subdividir o segmento 
em medidas menores até que se complete a medida real. 
- Lance Único - Pontos Visíveis 
Analisando a figura a seguir, na medição da distância horizontal entre os pontos A e B, 
procura-se, na realidade, medir a projeção de AB no plano topográfico horizontal H H'. Isto 
resulta na medição de A' B', paralela a AB. 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
21 
 
 
Para realizar esta medição recomenda-se uma equipe de trabalho com: 
 duas pessoas para tensionar o diastímetro (uma em cada 
extremidade); 
 uma pessoa para fazer as anotações (dispensável). 
 
 Para medir a distância A'B' coloca-se uma extremidade do diastímetro em B" e leva-se 
outra até o ponto A", mantendo-se na horizontal. Alinhamento entre os pontos A e B corresponde 
à reta que contém A' e B' que é a interseção de um plano vertical, que contém AB, com o plano 
topográfico. 
 Nas distâncias maiores o comprimento dos diastímetros, deve-se tomar cuidado para não 
sair do alinhamento, o que se consegue através de balizamentos. No balizamento precisa-se de 
três indivíduos (balizeiro de ré, balizeiro de vante e intermediário, cada um com uma baliza). 
A distância DH (entre os pontos A' e B') é igual à fração indicada pelo diastímetro. 
 
Na figura abaixo é possível identificar a medição de uma distância horizontal utilizando uma trena, 
bem como a distância inclinada e o desnível entre os mesmos pontos. 
 
Exemplo de medida direta de distância com trena. 
 
 - Vários Lance - Pontos Visíveis 
 
 
 
Medida de distância em vários lances. 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
22 
 
 
O balízeiro de ré situa-se com a baliza aprumada e o zero da trena no ponto inicial do alinhamento 
(ponto A); o balizeiro intermediário fica com a outra extremidade da trena, com uma baliza e 
fichas, enquanto que o batizeiro vante fica com a baliza aprumada no final do alinhamento (ponto 
B). O balizeiro intermediário recebe orientação do balizeiro de ré, de maneira que, com a trena 
esticada, sua localização esteja dentro do plano vertical formado pela baliza de ré com a baliza de 
vante. Após receber um sinal convencional do balizeiro de ré, o balizeiro intermediário retira sua 
baliza e crava nesse ponto uma ficha. Tanto o balizeiro de ré como o intermediário se 
movimentam e prosseguem na medição até o final do alinhamento. Durante a medição, o balizeiro 
de ré vai recolhendo as fichas e finalmente em função do número de fichas, comprimento do 
diastímetro e da fração de metro obtida no trecho final, avalia-se a distância horizontal de 
alinhamento. 
 
É de máxima importância que, durante a medição, os balizeiros se mantenham sobre o 
alinhamento AB. 
Para realizar esta medição recomenda-se uma equipe de trabalho com: 
 duas pessoas para tensionar o diastímetro (uma em cada extremidade). 
 um balizeiro de ré (móvel). 
 um balizeiro intermediário (móvel). 
 um balizeiro de vante (fixo). 
 uma pessoa para fazer as anotações (dispensável). 
A distância DH será dada pelo somatório das distâncias parciais (contagem do número de 
fichas pelo comprimento do diastímetro) mais a fração do último lance. 
 
Observações Importantes 
 
 1. Ao ponto inicial de um alinhamento, percorrido no sentido horário, dá-se o 
nome de Ponto a Ré e, ao ponto final deste mesmo alinhamento, dá-se o nome de Ponto a Vante. 
Balizeiro de Ré e Balizeiro de Vante são os nomes dados às pessoas que, de posse de uma 
baliza, ocupam, respectivamente, os pontos a ré e a vante do alinhamento em questão. 
 
2. Os balizeiros de ré e intermediário podem acumular a função de tensionar o 
diastímetro. 
 
3. Para terrenos inclinados, os cuidados na medição devem ser redobrados 
no que se refere à horizontalidade do diastímetro. 
 Em terrenos muito acidentados costuma-se medir trechos de 5 ou 10 metros 
por vez para maior facilidade em se manter o diastimetro na horizontal. 
 
- Erros na medida direta de distâncias 
 
Dentre os erros que podem ser cometidos na medida direta de distância, destaca-se: 
-erro relativo ao comprimento nominal da trena; 
-erro de catenária. 
A falta de verticalidade da baliza (figura abaixo) quando posicionada sobre o ponto do 
alinhamento a ser medido, o que provoca encurtamento ou alongamento deste alinhamento. 
Este erro é evitado utilizando-se um nível de cantoneira. 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
23 
 
 
 
 
 Falta de verticalidade da baliza 
 
- Prolongamento do um alinhamentoÉ efetuar o alinhamento usando-se como referência duas ou mais balizas alinhadas entre 
si. 
 Para se prolongar um alinhamento AB já existente, um balizeiro situa-se no ponto inicial 
(A) e de acordo com o plano de visada definido pelas duas primeiras balizas, irá orientar a direção 
a ser seguida. Obedecendo a essa direção novas balizas serão colocadas de modo que fiquem 
encobertas pelas duas primeiras. Para conseguir uma orientação mais correta, o balizeiro deve 
afastar-se a mais de um passo da baliza que lhe serve de referência. No caso de grandes 
distâncias, o balizeiro responsável pela orientação passa a ocupar a penúltima baliza colocada, e 
continua a prolongar o alinhamento. A precisão do balizamento decresce com o aumento do 
número do vezes de mudança que o balizeiro responsável pela orientação precisa efetuar, devido 
ao seu pessoal. 
 
 
 
 - Traçado de perpendiculares 
 
Pra se efetuar o traçado de perpendiculares é necessário: 
a) À amarração de detalhes em qualquer levantamento topográfico, e 
b) Na determinação de um alinhamento perpendicular em função de outro 
já existente. Ex.: locação de uma obra. 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
24 
 
a) Amarração ou Localização de Detalhes 
A amarração de detalhes (feições naturais e artificiais do terreno) é 
realizada utilizando-se somente diastímetros. Para tanto, é necessário a montagem, no campo, 
de uma rede de linhas, distribuídas em triângulos principais e secundários, às quais os detalhes 
serão amarrados. 
A esta rede de linhas denomina-se triangulação. 
A figura a seguir ilustra uma determinada superfície já triangulada. 
Nesta triangulação, observa-se que os triângulos maiores englobam os 
menores. 
O objetivo da formação de triângulos principais (ABC e ACD) e 
secundários (ABE, BEG, EGF, EFH, FCD, GCF, DFH, AEH e AHI) é atingir mais facilmente todos 
os detalhes que se queira levantar. 
 
A amarração dos detalhes pode ser feita: 
 Por perpendiculares tomadas a olho 
É o caso da figura abaixo, onde se deve medir os alinhamentos Aa, ab, bc, cd, de, 
eB e, também, os alinhamentos aa’, bb’, cc’, dd’ e ee’ para que o contorno da estrada fique 
determinado. 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
25 
 
 Por triangulação 
Devendo-se medir os alinhamentos a e b, além do alinhamento 
principal DB, para que o canto superior esquerdo da piscina representada na figura a seguir fique 
determinado. 
A referida piscina só estará completamente amarrada se os outros 
cantos também forem triangulados. 
 
 
Obs.: Para que a amarração não resulte errada, a base do triângulo amarrado deve coincidir com 
um dos lados do triângulo principal ou secundário, e, o vértice daquele triângulo será sempre 
um dos pontos definidores do detalhe levantado. 
b) Alinhamentos Perpendiculares 
É possível levantar uma perpendicular a um alinhamento, utilizando-se um 
diastímetro, através dos seguintes métodos: 
 
b.1) Triângulo Retângulo 
 
Este método consiste em passar por um ponto A, de um alinhamento AB 
conhecido, uma perpendicular. 
 O traçado de perpendiculares no terreno se faz necessário para diferentes aplicações, 
como a demarcação de um alinhamento perpendicular a um já existente ou como auxiliar na 
amarração de detalhes de interesse, durante um levantamento. No caso de medição direta pode-
se utilizar o método de demarcação do triângulo retângulo ou do triângulo isósceles. Para 
demarcar um ângulo reto, através do triângulo retângulo, utilizam 12.00m de trena, dispostas 3, 4 
e 5 metros de lado. 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
26 
 
 
Como indicado na figura acima o 0,00 e 12,00 metros estariam coincidentes em C, 
situado a 3,00 metros do ponto A. O 7,00 metro (soma dos lados 3 e 4) e representado pelo 
ponto D, se ajusta facilmente em função dos pontos A e C já marcados. 
Obs.: para locar as paredes de uma casa, o mestre de obras normalmente se utiliza de uma linha 
com nós. Esta linha representa um triângulo retângulo de lados 0,6m : 0,8m : 1,0m; 
equivalente ao triângulo retângulo de 3,00m : 4,00m : 5,00m mencionado anteriormente. 
 
 b.2) Triângulo Eqüilátero 
 
Diferentemente do anterior, este método consiste em passar uma perpendicular a 
um alinhamento AB conhecido, por um ponto C qualquer deste alinhamento. Deste modo, marca-
se, no campo, um triângulo equilátero ao invés de um triângulo retângulo. 
Assim, utilizando-se os doze (12) primeiros metros de uma trena, dispõe-se, para o 
triângulo equilátero, de três lados de 4 metros cada. 
Como indicado na figura abaixo, o 0,00 e 12,00 metros estariam coincidentes em 
C. O 2,00 metro estaria sobre o alinhamento AB à esquerda de C, definindo o ponto D. O 10,00 
metro estaria sobre o alinhamento AB à direita de C, definindo o ponto E. O ponto F, definido pelo 
6,00 metro, se ajusta facilmente em função dos pontos D e E já marcados. 
 
Obs.: para a marcação de triângulos no campo, 
normalmente utilizam-se comprimentos 
menores equivalentes aos citados ou 
esquadros de madeira. 
 
 
b.3) Triângulo Isósceles 
 Este método é igual ao anterior, porém usando-se medidas aleatórias para Cd e 
Ce. O traçado de ângulo de 90° através do triângulo isósceles baseia-se no seguinte, por 
exemplo: se no alinhamento AB, pelo ponto C, se deseja traçar uma perpendicular, medem-se 
distâncias iguais nas direções CA e CB, definindo os pontos d e e. 
 Dois auxiliares um em cada um desses pontos segura o 0,00 m da trena e um 
terceiro segura o meio da medida da trena. Ao se esticar a trena, a direção perpendicular será 
definida pelo ponto C e o meio da trena. 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
27 
 
 
 - Transposição de obstáculos 
 
 a) Pontos extremos do alinhamento não intervisiveis. 
 
 Em trabalhos topográficos, as vezes se precisa medir a menor distância entre dois pontos 
e eles não são íntervisíveis porque existe entre eles um obstáculo (casa, mata, lagoa, etc) 
qualquer. Nesse caso um procedimento seria o de calcular a distância desejada através do 
conhecimento dos lados de um triângulo semelhante. 
 Escolhe-se um ponto C do qual se avista os pontos A e B que compõem o alinhamento a 
ser medido. Medem-se as distâncias CA e CB. Obedecendo a urna relação qualquer, 1/2 ou 1/3 
dos alinhamentos medidos (CA e CB), marcando-se os pontos D e E. Mede-se a distancia DE 
 
 
 
 
Para os triângulos formados tem-se: 
 
 CD = CE ou CD = DE onde 
 CA CB CA AB 
 
 
 
- Outra forma de se calcular um desvio de obstáculo 
 
Para se efetuar um desvio deve-se proceder da seguinte forma: 
 
1º - Fixa-se o ponto próximo ao obstáculo; 
2º - com qualquer ângulo e qualquer distância implanta-se o ponto 11A medindo-se o ângulo α 
e distância 11-11A; 
3º - com qualquer ângulo volta-se para a direção do alinhamento medindo o ângulo β. 
4º - efetua-se o seguinte cálculo; 
 
 
 
AB = CA x DE 
 CD 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
28 
 
 
- Cálculo do ângulo γ 
 
 α’ = 180° - α 
 β’ = 360° - β 
 γ’ = 180° - (α’ + β’) 
 γ = 180° - γ 
 
- Cálculo da distância 11A- 12 
 
 sen α’ = sen γ’ 
 D 11A-12 D 11-11A 
 
 D 11A-12 = D 11-11A x sen α’ 
 sen γ’ 
 
 - Mede-se a distância 11A- 12 e implanta-se o ponto 12; 
 
 - Com o teodolito em 12, ré em 11A, volta-se para o alinhamento original com o ângulo γ ; 
 
 A distância 11-12 é calculada pela lei dos Senos. 
 
 sen β’ = sen γ’onde D 11-12 = sen β’ D 11-11A 
 D 11-12 D 11-11A sen γ’ 
 
b) Pontos extremos do alinhamento visíveis: 
 
 A medida de um alinhamento que corte um brejo, um lago ou mesmo uma depressão exige que 
se contorne o obstáculo através de perpendiculares e paralelas obtidas por ângulos retos. 
 Os ângulos retos podem ser demarcados com trena e balizas, utilizando-se os processos dos 
triângulos retângulos ou isósceles. 
 
- Ponto inacessível 
 
a) De que forma pode-se calcular o comprimento de uma ponte sobre um rio sem 
necessariamente medi-la de forma direta. 
 
 
 
SA = AB x CD 
 CB 
 SA = CD 
 AB CB 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
29 
 
 
 
b) Ou mesmo como calcular a largura de um lago. 
 
 
 
 
 
 
 
c) Calcular a altura do morro, considerando que o olho do observador, o topo da árvore e 
o topo do morro estão alinhados? 
 
 
 
 - Fontes de erros cometidos na medição direta de distâncias (Erros Lineares) 
 
Durante uma medição linear, estaremos sujeitos a diversos tipos de erros, que deveremos 
tomar o máximo de cuidado para eliminá-lo ou até minimizá-lo. 
 Os erros cometidos na medição direta de distâncias podem ser oriundos de diversas 
maneiras tais como: 
 
 Ao comprimento do diastímetro: afetado pela tensão aplicada em suas extremidades e 
também pela temperatura ambiente. A correção depende dos coeficientes de elasticidade 
e de dilatação do material com que o mesmo é fabricado. Portanto, deve-se utilizar 
dinamômetro e termômetro durante as medições para que estas correções possam ser 
efetuadas ou, proceder a aferição do diastímetro de tempos em tempos. ) 
 A temperatura influi ocasionando a dilatação dos diastimetros metálicos. É um erro 
desprezível. 
A distância horizontal correta (DHc) entre dois pontos será dada dividindo-se o comprimento 
aferido do diastímetro (a) pelo seu comprimento nominal () e multiplicando-se pela distância 
horizontal medida (DHm): 
 
m
a
c DH.
 
=DH


AB = BC x DE 
 CD 
 AB = DE 
 BC CD 
 
 BC = DE 
AB AE 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
30 
 
 
 Ao desvio vertical ou falta de horizontalidade da trena: ocorre quando o terreno é 
muito inclinado. É um erro cometido quando o diastimetro não é colocado em nível, e o mesmo é 
acumulativo e positivo. Assim, mede-se uma série de linhas inclinadas em vez de medir as 
projeções destas linhas sobre o plano horizontal, como na figura a seguir: 
 
 
 
 
O erro devido ao desvio vertical (Cdv), para um único lance, pode ser encontrado através 
da relação entre o desnível do terreno (DN) e o comprimento do diastímetro (): 
 
Este erro é cumulativo e sempre positivo. Assim, a distância horizontal correta (DHc) entre 
dois pontos será encontrada subtraindo-se da distância horizontal medida (DHm), o desvio vertical 
(Cdv) multiplicado pelo número de lances (N) dado com o diastímetro: 
 
 
 
 À catenária: curvatura ou barriga que se forma ao tensionar o diastímetro e que é função 
do seu peso e do seu comprimento. Para evitá-la, é necessário utilizar diastímetros leves, não 
muito longos e aplicar tensão apropriada (segundo normas do fabricante) às suas extremidades. 
A figura a seguir indica a flecha (f) do arco formado pelo comprimento () do 
diastímetro com tensão (T) aplicada nas extremidades. 
 
O erro devido à catenária, para um único lance, pode ser encontrado através da relação: 
 
2.
DN 
=C
2
dv
)C.N(DH=DH dvmc 
3.
8.f 
=C
2
c
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
31 
 
Este erro é cumulativo, provoca uma redução do diastímetro e, conseqüentemente, 
resulta numa medida de distância maior que a real. Assim, a distância horizontal correta (DHc) 
entre dois pontos será encontrada subtraindo-se da distância horizontal medida (DHm), o erro da 
catenária (Cc) multiplicado pelo número de lances (N) dado com o diastímetro: 
 
 À verticalidade das balizas: É o erro cometido quando mede-se uma distância entre dois 
pontos e devido a tração na trena pelos dois balizadores, as balizas podem não ficar na 
perfeita verticalidade. Como indicado na figura abaixo, é ocasionado por uma inclinação 
da baliza quando esta se encontra posicionada sobre o alinhamento a medir. Provoca o 
encurtamento ou alongamento deste alinhamento caso esteja incorretamente posicionada 
para trás ou para frente respectivamente. Este tipo de erro só poderá ser evitado se for 
feito uso do nível de cantoneira. 
 
 Ao desvio lateral do alinhamento (desvio final): é o erro cometido quando o balizamento 
não é observado com precisão. A extremidade do diastímetro fica fora do alinhamento. É 
um erro acumulativo e positivo. Ou melhor dizendo, este erro é ocasionado por um 
descuido no balizamento intermediário, mede-se uma linha cheia de quebras em vez de 
uma linha reta. Para evitar este tipo de erro é necessário maior atenção por parte dos 
balizeiros. 
A figura a seguir, indica como o balizeiro intermediário (C) deve se posicionar em relação 
aos balizeiros de ré (A) e vante (B) para que não haja desvio lateral do alinhamento. 
 
 
 
 
)C.N(DH=DH cmc 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
32 
 
 
 
 A Tensão - as tensões aplicadas nas extremidades dos diastímetros dificilmente se 
mantêm uniformes, o que ocasiona variação na flecha da catenária. 
 
 
 A graduação da trena - quando o diastímetro não possui a medida exata por motivo de 
defeito de fabricação ou mesmo quando os auxiliares não seguaram na medida exata de 
cada trenada (ex.: quando não se mede exatamente 20 metros). 
 
 
 Temperatura - a temperatura influi ocasionando a dilatação dos diastimetros metálicos. E 
um erro desprezível. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
33 
 
 
- Medida Indireta de Distância 
 
 
Diz-se que o processo de medida de distância é indireto quando estas distâncias são calculadas 
em função da medida de outras grandezas, não havendo, portanto, necessidade de percorrê-las 
para compará-las com a grandeza padrão. Ou melhor dizendo, uma distância é medida de 
maneira indireta, quando no campo são observadas grandezas que se relacionam com esta, 
através de modelos matemáticos previamente conhecidos. Ou seja, é necessário realizar alguns 
cálculos sobre as medidas efetuadas em campo, para se obter indiretamente o valor da distância. 
 
Os equipamentos utilizados na medida indireta de distâncias são principalmente: 
 
Teodolito e/ou Nível: o teodolito é utilizado na leitura de ângulos horizontais e verticais e da régua 
graduada (mira falante); o nível é utilizado somente para a leitura da régua. 
 
Teodolito: São goniômetros apropriados para a determinação numérica dos ângulos verticais e 
horizontais, bem como a determinação direta de distâncias (distanciometro eletrônico) e indireta 
(taqueometria); estas horizontais e verticais (distâncias reduzidas e desníveis). Divide-se em: 
 
1 - Teodolito de leitura direta de ângulos. 
2 - Teodolito prismático. 
3 - Teodolito auto-redutor. 
4 - Teodolito eletrônico.5 - Estação Total (teodolito com distaciômetro eletrônico integrado) 
 
A figura a seguir ilustrar três gerações de teodolitos: o transito (mecânico e leitura externa); o 
ótico (prismático e com leitura interna); e o eletrônico (leitura digital) 
 
 
transito (mecânico e leitura 
externa); 
 
ótico (prismático e com leitura 
interna) 
 
eletrônico (leitura digital) 
 
 
Estação Total 
 
 
 
 
Prismas 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
34 
 
Constituição dos teodolitos: 
 
1 - Partes Principais: 
 
1.1 - Círculos graduados. 
1.2 - Alidade. 
1.3 - Luneta. 
1.4 - Eixos. 
 
2 - Acessórios: 
 
2.1 - Parafusos calantes ou niveladores. 
2.2 - Parafusos de fixação e aproximação do movimento geral. 
2.3 - Parafusos de fixação e aproximação do movimento particular. 
2.4 - Nônio ou Verniers. 
2.5 - Parafusos de fixação e aproximação da luneta. 
2.6 - Parafusos ou anéis de focalização da objetiva e ocular. 
2.7 - Parafusos retificadores dos níveis de bolha, retículos, eixo transversal e círculo vertical. 
2.8 - Níveis de bolha. 
2.9 - Tripé, fio de prumo e prumo ótico. 
2.10 - Bússola ou declinatória. 
2.11 - Display de cristal líquido. 
2.12 – Memória interna de gravação. 
 
1 - Placa da base 13- Nível tubular de verticalização 
2 - Parafusos calantes ou niveladores 14- Botão do micrômetro 
3 - Nível esférico ou de bolha 15- Objetiva da luneta 
4 - Base nivelamento 16- Visor ótico e ponto para infra 
estacionamento 
5 - Trava de fixação do aparelho a base 17- Fixação da alça de transporte 
6 - Anel da alidade 18- Trava de segurança (detalhe) 
7 - Aproximação do movimento particular 
(Aproximação horizontal) 
19- Alça de transporte do aparelho 
8 - Fixação horizontal 20- Parafusos ou anéis de focalização da 
objetiva e ocular (Parafuso de brocagem) 
9 - Luneta do prumo ótico 21- Trava geral do movimento horizontal 
(Parafusos de fixação) 
10- Espelho para iluminação dos círculos 22- Chamada fina do movimento horizontal 
 
11- Aproximação vertical da luneta 23- Rosca de ancoragem do aparelho a base 
do tripé 
12- Fixação vertical da luneta 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
35 
 
 
Teodolito 
 
 
 
 
 
 
 
 
 
 
 
Tripé de Madeira Tripé de Alumínio 
 
 
 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
36 
 
 
 
 
MATERIAIS TOPOGRÁFICOS: 
 
Estádias ou Mira Falante: São construídas em forma de paralelepípedos em alumínio ou madeira, 
com 4m de comprimento, graduadas em metros e centímetros, nos tipos de encaixar e 
telescópica. Servem para as leituras estadimétricas na determinação dos desníveis e distâncias 
indiretas. 
 
 
 
Diferentes modelos de miras 
 
 
Obs: a mira da esquerda é chamada de mira em 
E, em função do tipo de marcação 
utilizada. 
 
Durante a leitura em uma mira convencional devem ser lidos quatro algarismos, que 
corresponderão aos valores do metro, decímetro, centímetro e milímetro, sendo que este último é 
obtido por uma estimativa e os demais por leitura direta dos valores indicados na mira. 
A seguir é apresentado um exemplo de leitura para um modelo de mira bastante empregado nos 
trabalhos de Topografia. A mira apresentada na figura abaixo está graduada em centímetros 
(traços claros e escuros). 
 
A leitura do valor do metro é obtida através dos algarismos em romano (I, II, III) e/ou da 
observação do símbolo acima dos números que indicam o decímetro. A convenção utilizada para 
estes símbolos, no caso da mira em exemplo, é apresentada na figura abaixo. 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
37 
Convenção para a indicação do metro para a mira utilizada 
 
 
 
 
Se o número que indica o decímetro não apresentar um destes símbolos acima da indicação do 
valor, significa que a leitura esta sendo efetuada abaixo de 1,00m. 
 
 
- Visada em uma mira e os fios de retículo, com 
as respectivas leituras efetuadas e distância 
calculada 
Fio Superior 1,488 m 
Fio Inferior 1,438 m 
Fio Médio 1,462 m 
Distância (1,488 –1,438).100 = 
 
 
A leitura do decímetro é realizada através dos algarismos arábicos (1, 2, 3, etc.). A leitura do 
centímetro é obtida através da graduação existente na mira. Traços escuros correspondem a um 
valor de centímetro impar, e claros a um valor par. Finalmente a leitura do milímetro é estimada 
visualmente. Na figura acima são apresentados diversos exemplos de leitura na mira. 
 
 
 
Bússolas: Dentro de uma grande variedade de tipos, são constituídas basicamente de uma agulha 
magnética e um círculo graduado em limbo fixo ou móvel. Divide-se em tipo americano (Rumos), e 
tipo francês (Azimutes). Tem por finalidade a orientação do alinhamento em relação ao Norte 
Magnético. 
 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
38 
 
 
 
 
Níveis: São aparelhos óticos destinados a determinação de desníveis entre pontos os 
topográficos, de amarrações, etc. 
Dividem-se em: 
1 - Níveis baseados na diferença de densidade entre dois líquidos, ou entre um líquido e um gás. 
2 - Níveis automáticos, baseados no equilíbrio dos corpos suspensos. 
3 - Níveis baseados na horizontalidade de uma superfície líquida em repouso. 
 
 
 Nível Digital Nível Ótico 
 
 
 
Nomenclatura em Topografia: 
 
 1 - Ponto topográfico: Ponto escolhido no terreno e materializado pelo piquete e individualizado 
pela tachinha, colocada na parte superior do piquete. 
 
2 - Alinhamento topográfico: É a linha que une dois pontos topográficos materializados, medido no 
plano horizontal de projeção, são os lados da poligonal. 
 
3 - Ponto de partida: É o ponto onde tem início o levantamento, também chamado de estação zero 
(0=PP). 
 
4 - Estação: São os demais vértices da poligonal. 
 
5 - Amarração de detalhes: É o relacionamento dos detalhes artificiais e naturais da região 
levantada, com os lados e vértices da poligonal. 
 
6 - Plano topográfico: É o plano horizontal de projeção, no qual todos os detalhes naturais e 
artificiais, bem como os elementos da poligonal, são projetados, ortogonalmente a este. 
 
7 - Planta topográfica: É a representação gráfica de parte da superfície terrestre a que se refere o 
levantamento. 
 
 
 
 
 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
39 
 
 
 
 
- Principais métodos ou procedimentos de levantamento topográfico planimétrico 
 
 
Para que se possa executar um bom levantamento topográfico é necessário alguns cuidados, 
quais são eles: 
 
Definir a que se destina o levantamento, para que então se possa determinar o grau de precisão 
do mesmo, levando-se em consideração os equipamentos e materiais necessários a execução 
dos serviços de campo; 
Reconhecimento da área onde será efetuado o serviço, levando-se em consideração tamanho, 
forma, condição topográfica, limites e confrontações; 
Metodologia do trabalho (Não se esquecendo de elaborar um bom croqui da área em questão) 
Equipe técnica de campo; 
 
Principais métodos ou procedimentos 
 
a) Método das irradiações ou coordenadas polares 
b) Método de decomposição em triângulos 
c) Método de intersecções ou das coordenadas bipolares 
d) Método das coordenadas retangulares 
e) Método do caminhamento perimétrico 
 
Procuremos neste assunto detalhar cada processo desde o procedimento em campo instrumental 
utilizado, condições de aplicação, até anotações em caderneta de campo. 
 
Procedimentos necessários a um bom levantamento topográfico 
 
Métodos de Levantamento Topográfico Planimétrico: 
 
1 - Irradiação ou Coordenada Polar: Aplica-se a qualquer levantamento de áreas pequenasou 
amarrações de detalhes artificiais e naturais. Este método consiste basicamente em arbitrar um 
único ponto no terreno do qual se tenha visão de todos os pontos de detalhe do terreno. Coloca-
se um teodolito ou uma bússola no ponto (estação), visam-se os pontos detalhe; obtendo-se 
ângulos diretos e a distancia do ponto (estação) ao ponto visado. 
 
1º Exemplo 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
40 
 
x1 = x0 + d1 . sen Az1 
y1 = y0 + d1 . cos Az1 
x2 = x0 + d2 . sen Az2 
y2 = y0 + d2 . cos Az2 
 . 
 . 
 . 
 . 
 
xN = x0 + dN . sen AzN 
 
 
 
Quando da amarração de pontos a partir de pontos de uma poligonal, temos: 
 
Az8-1 = Az7-8 + H1 - 180 
x1 = x8 + d1 . sen Az8-1 
y1 = y8 + d1 . cos Az8-1 
 
Az8-2 = Az7-8 + H2 -180 
x2 = x8 + d2 . sen Az8-2 
y2 = y8 + d2 . cos Az8-2 
 
Onde: Az7-8 = Azimute do vértice 07 para 08 
Az8-1 = Azimute do vértice 08 para o ponto de amarração 01 
x1 , y1 = coordenadas x e y do ponto 01 das amarrações... 
O cálculo da área será dado pela seguinte fórmula: A= ((xn + xn-1) . (yn - yn-1)) 
 2 
A representação gráfica, tanto da área, quanto das amarrações, será feita em um par de eixos 
cartesianos em escala apropriada. O eixo y será a direção Norte. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
41 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2º Exemplo 
 
 
CADERNETA DE CAMPO 
ESTAÇÃO 
PONTO 
VISADO 
ÂNGULO 
HORIZONTAL 
DISTÂNCIA 
(m) 
OBSERVAÇÃO 
E 00 
P-01 00° 00' 00" 77,90 Canto da cerca da Propriedade 
P-02 14° 50' 10" 75,50 Bordo esquerdo da Pista 
P-03 49° 30' 00" 54,10 Cancela 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
42 
P-04 59° 25' 00" 55,20 Cancela 
P-05 68° 15' 20" 68,30 Bordo esquerdo da Pista 
P-06 80° 10' 10" 43,10 Canto da casa (sede) 
P-07 86° 30' 10" 37,40 Canto da casa (sede) 
P-08 100° 05' 00" 47,50 Canto da casa (sede) 
P-09 103° 35' 10" 104,80 Canto da cerca da Propriedade 
P-10 122° 25' 00" 47,10 Canto da cerca do curral 
P-11 128° 29' 20" 70,60 Canto da cerca do curral 
P-12 138° 30' 00" 44,50 Canto da cerca do curral 
P-13 160° 10' 10" 91,10 Canto da cerca da Propriedade 
P-14 238° 50' 00" 48,10 Margem direita do rio Grande 
P-15 265° 05' 00" 42,00 Margem direita do rio Grande 
P-16 283° 50' 00" 60,50 Canto da cerca da Propriedade 
P-17 298° 32' 00" 40,50 Margem direita do rio Grande 
 
 
2 - Decomposição em triângulos ou triangulação: Este método é quase semelhante ao 
anterior, e o mesmo consiste em determinar os elementos necessários a resolução dos triângulos 
(usando os princípios da trigonometria); assim pode-se medir o comprimento de todos os lados da 
rede de triângulos em que se decompõe a superfície a levantar. A vantagem desse processo 
reside em evitar a medida de ângulos com a ajuda de qualquer equipamento, porém a medida de 
alinhamento, além de ser muito demorada esta sujeita a muitos erros. Esse método é empregado 
somente para avaliação de pequenas superfícies e amarrações de detalhes naturais e artificiais, é 
um método pouco preciso. Utiliza-se trena e balizas. Consiste em decompor com o auxílio de um 
ou mais pontos instalados no interior da poligonal (piquetes), em triângulos a área a ser levantada, 
medindo-se os lados de cada triângulo. 
 
1º Exemplo 
 
 
 
 
A área de cada triângulo será calculada pela seguinte fórmula: A = p(p - a)(p -b)(p - c) , onde p 
= a + b + c 
 2 
A área da poligonal será a soma das áreas dos triângulos. A representação gráfica se faz com o 
auxílio do compasso e escalímetro, ficando a poligonal sem orientação. 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
43 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2º Exemplo 
 
 
 
 
 
CADERNETA DE CAMPO 
 
ESTAÇÃO 
PONTO 
VISADO 
ÂNGULO 
HORIZONTAL 
DISTÂNCIA 
(m) 
OBSERVAÇÃO 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
44 
E-00 
P-01 00° 00' 00" 77,90 Canto da cerca da propriedade 
P-02 --- 104,80 " " " " " 
P-03 --- 91,10 " " " " " 
P-04 ---- 60,50 " " " " " 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 - Interseções ou Coordenadas Bipolares: Este método é utilizado para medições de pontos 
inacessíveis ou de difícil acesso. São utilizados teodolito, trena e balizas. Este método consiste 
em definir dois pontos no terreno com visibilidade entre si e para o ponto a medir. Instala-se o 
teodolito em um dos pontos, zerando-se no outro ponto, mede-se o ângulo horizontal ao ponto 
inacessível. Repete-se a operação instalando-se o teodolito no outro ponto. Conhecendo-se os 
dois ângulos e a distância entre os pontos onde se instalou o teodolito, determina-se os demais 
elementos deste triângulo. 
 
1º Exemplo 
 
 
 = 180 - - 
 
 D = d1 = d2 . 
 sen sen sen 
 
A representação gráfica se faz com o auxílio de compasso e escalímetro. 
 
 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
45 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2º Exemplo 
 
 
 
 
CADERNETA DE CAMPO 
 
ESTAÇÃO 
PONTO 
VISADO 
ÂNGULO 
HORIZONTAL 
DISTÂNCIA 
(m) 
OBSERVAÇÃO 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
46 
A 
B 00° 00' 00" 30,00 Distancia medida de A para B 
P-01 136° 25' 10" 61,20 Canto da cerca da propriedade 
P-02 26° 10' 00" 77,30 Canto da cerca da propriedade 
P-03 326° 20' 10" 69,70 Canto da cerca da propriedade 
P-04 209° 10' 20" 53,10 Canto da cerca da propriedade 
B 
A 00° 00' 00" 30,00 Distancia medida de B para A 
P-01 30° 30' 10" 84,20 Canto da cerca da propriedade 
P-02 139° 45' 20" 52,30 Canto da cerca da propriedade 
P-03 232° 15' 20" 48,50 Canto da cerca da propriedade 
P-04 340° 45' 00" 79,40 Canto da cerca da propriedade 
 
 
 
 
 
 
 
 
4 - Ordenadas ou Coordenadas Retangulares: Este método é pouco preciso por exigir um 
grande número de medidas diretas no terreno, por este motivo costuma-se empregá-lo em 
operações que não demandem grande exatidão. É um método muito utilizado para efetuar 
amarrações de detalhes naturais e artificiais, como rios e caminhos sinuosos. São utilizados 
teodolito, trena e balizas. 
 
1º Exemplo - Consiste em determinar um alinhamento (abscissa) mais ou menos paralelo ao 
detalhe a ser levantado, e com distâncias tomadas perpendiculares a este alinhamento 
(ordenadas), amarramos os detalhes. 
 
 
 
Como se pode verificar, entre as ordenadas, formam-se trapézios. Desta maneira podemos aplicar 
a fórmula para o cálculo da área: 
 
 A = ( B + b ).h 
 2 
Para os trapézios teremos: 
 A1 = ( y0 + y1 ). (x1 – x0) 
 2 
E assim sucessivamente para os demais trapézios, e ao final somamos todas as áreas : At = A1 + 
A2 + ... 
 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
47 
 
2º Exemplo - consiste em escolher-se uma direção na área, direção esta que recebe a 
denominação de eixo, de modo que ao caminhar-se sobre ela haja boa visualização de todos os 
detalhes importantes da área a ser levantada. 
Esta direção ou alinhamento, em geral,é ao longo da dimensão maior da área. Percorre-se o eixo 
identificando-se a existência ou não de detalhes a esquerda ou a direita; ao passo que mede-se 
suas distancias ortogonais (perpendiculares) que caracterizam a posição de detalhe; uma 
distancia e sobre o eixo e a outra é a perpendicular do eixo ao detalhe. O perpendicularismo em 
geral é obtido a trena através da triangulação retangular: 0,0m – 3,0m – 4,0m (7,0) – 5,0m (12,0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CADERNETA DE CAMPO 
 
 
PONTO 
MARCADO 
DISTÂNCIA 
SOBRE O 
EIXO 
DISTÂNCIA 
AO EIXO 
POSIÇÃ
O 
OBSERVAÇÃO 
P-0 0,00 0,00 -------- Canto da cerca da propriedade 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
48 
P-1 22,00 31,10 E Bordo esquerdo da Pista 
P-2 26,00 29,80 D Cerca da propriedade 
P-3 40,50 47,20 D Cerca da propriedade/Margem do Rio 
P-4 47,50 34,90 E Canto da porteira 
P-5 53,00 48,80 D Margem do Rio 
P-6 54,00 39,50 E Canto da porteira 
P-7 59,10 72,50 D Canto da cerca da propriedade 
P-8 72,10 31,80 E Canto da casa (sede) 
P-9 78,10 25,10 E Canto da casa (sede) 
P-10 88,00 33,20 E Canto da casa (sede) 
 
 
 
 
 
 
 
 
 
 
 
5 - Caminhamento: É o método de levantamento mais utilizado para qualquer tipo de área e 
relevo devido ao seu grau de precisão. Utiliza-se teodolito, trena e balizas. Consiste nas seguintes 
operações de campo e escritório: 
 
5.1 - Campo: 
 
5.1.1 - Reconhecimento da área a ser levantada: Partindo-se de um ponto tomado como origem 
(0=PP), percorre-se a área, caminhando sobre as divisas ou o mais próximo possível delas, 
materializando os vértices da poligonal com piquetes, os quais deverão se intervisíveis na ordem 
que seguem, ou na necessidade procede-se abertura de picadas na mata, para a visibilidade 
entre eles. Quando da não possibilidade de coincidir o alinhamento da poligonal com a divisa do 
terreno, procedemos a partir dos vértices da poligonal a amarração desta divisas. 
 
 
 
 
5.1.2 - Medição das distâncias horizontais: Podem ser diretas, indiretas ou eletrônicas. Na 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
49 
determinação direta das distâncias devemos ter o cuidado de manter sempre a trena na 
horizontal, evitando-se tomar medidas inclinadas e evitando-se também a catenária. 
 
 
 
A determinação indireta das distâncias é feita através de taqueometria e a eletrônica através de 
distanciômetros eletrônicos e prismas. 
 
 
 
 
5.1.3 - Amarração de detalhes naturais e artificiais: Poderá ser feita por qualquer processo de 
levantamento planimétrico já descrito, sendo o mais utilizado a irradiação. 
 
 
 
5.1.4 - Anotações de caderneta de campo: Na caderneta de campo deverão constar os seguintes 
itens: 
 
5.1.4.1 - Número da estação. 
5.1.4.2 - Ângulo horizontal na estação. 
5.1.4.3 - Azimute ou Rumo inicial. 
5.1.4.4 - Distancias horizontais. 
5.1.4.5 - Croqui. 
5.1.4.6 - Ângulo e distância das amarrações. 
 
Nas estações totais todos os dados são armazenados na memória interna (ângulos, distâncias 
horizontais, desníveis, descrição dos pontos, altura do instrumento, altura do prisma e outros). 
 
 
5.2 - Trabalho de escritório: 
 
5.2.1 - Cálculo: Compreende o cálculo da planilha através do uso de computadores ou com o 
auxílio de calculadoras científicas, bem como o cálculo das amarrações para a obtenção das 
coordenadas de todos os pontos e posterior representação gráfica. 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
50 
 
 
 
 
5.2.2 - Representação gráfica: Poderá ser realizada em computadores com programas de CAD, 
ou manualmente em par de eixos cartesianos na escala adequada. 
 
 
 
Planilha Topográfica: 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
51 
 
 
Est Ang. Ext. corr Ang. Ext. Azimute Dist. 
(m) 
Sen. Cos Proj. X Proj. Y 
0=P
P 
 45 01’20” 84,85 0,7074 0,7068 60,02 59,97 
01 243 26’10
” 
-1’ 243 25’1
0” 
108 26’3
0” 
63,25 0,9486 -
0,3163 
60,00 -20,01 
02 251 33’50
” 
-1’ 251 32’5
0” 
179 59’2
0” 
40,10 0,0002 -
0,9999 
0,01 -40,10 
03 270 01’00
” 
 270 01’0
0” 
270 00’2
0” 
119,92 -
0,9999 
0,0001 -119,92 0,01 
0=P
P 
315 01’00
” 
 315 01’0
0” 
45 01’20” = 0,11 = - 0,13 
 [ ] = 
239,95 
[ ] = 
120,09 
 Kx = 0,11 / 239,95 = 0,00045842883934 
 Ky = 0,13 / 120,09 = 0,00108252144225 
 
 
 
 
 
Corr. X Corr. Y Proj. X Proj. Y Coord. 
X 
Coord. 
Y 
 X Y X.Proj.Y Y.Proj.X 
-0,03 0,07 59,99 60,04 0,00 0,00 59,99 60,04 3601,7996 3601,799
6 
-0,03 0,02 59,97 -19,99 59,99 60,04 179,9
5 
100,0
9 
-3597,2005 6002,397
3 
 0,04 0,01 -40,06 119,96 40,05 239,9
3 
40,04 -9611,5958 0,4004 
-0,05 -119,97 0,01 119,97 -0,01 119.9
7 
-0,01 1,1997 1,1997 
 0,00 0,00 
 = -
0,11 
 = 0,13 = -
9605,797 
= 
9605,797 
 ÁREA = 4802,8985 m2 
 
 
A representação gráfica se faz em um par de eixos cartesianos, através das coordenadas (X,Y) da 
planilha. 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
52 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1º a - EXEMPLO 
 
Para que se utilize este método é necessário que escolha-se e materialize-se no terreno, 
pontos que consistiram nos vértices de uma poligonal base (V1, V2, V3, V4, V5, V6, V7, V8). 
Os procedimentos executados em um dos vértices serão repetidos nos demais vértices. 
Centraliza-se o aparelho (teodolito) no vértice (estação); zera-se no vértice anterior (ré) e 
gira-se o teodolito para visar os detalhes e o vértice posterior (vante); lê-se os ângulos 
respectivos (que pode ser azimutal, por deflexão, interno ou externo) e a cada ponto 
visado na estação, e também ao vértice posterior. 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
53 
 
ERRO FECHAMENTO ANGULAR 
 
∑ ang= ( ∑ ang. lidos ± 2 ) 180° 
 = (6 + 2 ) 180° = 1440° 
 
∑ = 1439° 58’ 30” -1440° 
= 00° 01’ 30” Erro Angular 
 
Onde podemos concluir que 
 00°01’30” : 9 
= 00°00’15” Para cada estação 
 
 
ESTAÇÃO 
PONTO 
VISADO 
ANGULOS 
LIDOS COMPEN 
DIST 
(M) 
OBSERVAÇÃO 
A-0 NM 00° 00’ 00” -- Cerca/riacho 
 A-1 90° 52’ 48” 31,71 Cerca 
A-1 A-2 256° 51’ 10” 256° 51’ 25” 17,99 Cerca 
A-2 A-3 167° 05’ 00” 167° 05’ 15” 57,92 Cerca 
A-3 A-4 251° 29’ 10” 251° 29’ 25” 91,19 Cerca 
A-4 A-5 273° 00’ 10” 273° 00’ 25” 81,19 Cerca 
A-5 A-0 259° 57’ 10” 259° 57’ 25” 93,32 Cerca 
A-0 A-1 231° 35’ 50” 231° 36’ 05” 31,71 Ângulo de Fechamento 
 ∑ = 1439° 58’ 30” ∑ = 1440° 
 
 
1º b - EXEMPLO 
 
 
 
TOPOGRAFIA – PLANIMETRIA E ALTIMETRIA 
 
 
54 
 
Azimute inicial = 132° 15’ 20” Ângulo de fechamento= 58° 40’ 40” 
 
ELEMENTOS ANGULARES 
ESTAÇÃO 
PONTO 
VISADO 
ANGULOS 
LIDOS COMPEN 
DIST 
(M) 
OBSERVAÇÃO 
E-00 NM 
E-01 E-02 265° 10’ 40” 265° 10’ 20” 60,30 Canto da cerca da propriedade 
E-02 E-03 73° 09’ 40” 73° 09’ 20” 80,20 Canto da cerca da propriedade 
E-03 E-04 243° 07’ 30” 243° 07’ 10” 30,30 Canto da cerca da propriedade 
E-04 E-05 65° 39’ 30” 65° 39’ 10” 91,10 Canto da cerca da propriedade 
E-05 E-06 107° 12’ 00” 107° 11’ 40” 72,15 Canto da cerca da propriedade 
E-06 E-07 225° 37’ 40” 225° 37’ 20” 24,10 Canto da cerca da propriedade 
E-07 E-08 71° 03’ 40” 71° 03’ 20” 91,18 Canto da cerca da propriedade 
E-08 E-00 150° 21’ 40” 150° 21’ 20” 68,50 Canto da cerca da propriedade 
E-00 E-01

Outros materiais

Outros materiais