Buscar

Cap IV - Composicao Corporal

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 44 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 44 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 44 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Universidade Técnica de Lisboa 
Faculdade de Motricidade Humana 
 
 
 
Mestrado em Treino de Alto Rendimento 
UC: Crescimento, Maturação e Desempenho Desportivo 
 
 
 
 
TEMA IV 
 
Composição Corporal 
 
 
 
 
 
Docente: Professora Doutora Isabel Fragoso 
 
2010/2011
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
1 
 
 
Índice 
4. Composição corporal .......................................................................................................... 2 
4.1. Conceitos gerais ........................................................................................................... 2 
4.2. Modelo teórico de Behnke .......................................................................................... 3 
4.3. Massa Gorda ................................................................................................................ 5 
4.3.1. Funções da gordura .............................................................................................. 5 
4.3.2. Alterações do adipócito ........................................................................................ 6 
4.3.3. Alteração da massa gorda ao longo do crescimento ............................................ 7 
4.3.4. Normalidade e valores de corte ........................................................................... 8 
4.3.5. Distribuição de gordura corporal .......................................................................... 9 
4.4. Massa Livre de Gordura ............................................................................................. 11 
4.5. Modelos de avaliação da composição corporal ......................................................... 13 
4.6. Níveis de avaliação da composição corporal ............................................................ 15 
4.6.1. Técnicas de avaliação duplamente indirectos .................................................... 17 
4.6.1.1. Bioimpedância (BIA) .................................................................................... 17 
4.6.1.2. Equações antropométricas .......................................................................... 20 
4.6.1.2.1. Modelo de 2 compartimentos .............................................................. 23 
4.6.1.2.2. Modelo de três compartimentos .......................................................... 31 
4.6.1.2.3. Modelo dos 4 compartimentos ............................................................ 33 
4.6.1.2.3.1. Massa Gorda (MG) ......................................................................... 33 
4.6.1.2.3.2. Massa Muscular (MM) ................................................................... 34 
4.6.1.2.3.3. Massa Óssea (MO) ......................................................................... 35 
4.6.1.2.3.4. Massa Residual (MR) ..................................................................... 35 
4.6.1.2.4. Fraccionamento da massa em 5 componentes .................................... 35 
4.6.1.2.4.1. Predicção da Massa da Pele (M PELE) ........................................... 36 
4.6.1.2.4.2. ........................................................................................................ 37 
Predição da Massa Esquelética ou Óssea (M ÓSSEA TOTAL) ........................... 37 
4.6.1.2.4.2.1. A Massa Óssea da Cabeça (M ÓSSEA CABEÇA) ....................... 37 
4.6.1.2.4.2.2. A Massa Óssea da Corpo (M ÓSSEA CORPO) .......................... 38 
4.6.1.2.4.3. Predicção da Massa Adiposa (M ADIPOSA) ................................... 39 
4.6.1.2.4.4. Predicção da Massa Muscular (M MUSCULAR) ............................. 40 
4.6.1.2.4.5. Predicção da Massa Residual (M RESIDUAL) ................................. 42 
4.7. Referências bibliográficas .......................................................................................... 43 
 
 
 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
2 
 
 
4. Composição corporal 
 
4.1. Conceitos gerais 
 
A composição corporal é o estudo dos diferentes componentes químicos do corpo 
humano, a sua análise permite a quantificação de grande variedade de componentes 
corporais, tais como água, proteínas, gordura, glicogénio, minerais, etc., ou a quantificação das 
suas diferentes massas variando as suas quantidades de indivíduo para indivíduo e conforme a 
idade o sexo e o estado físico dos sujeitos. 
 
 
Figura 4.1. Composição molecular do peso corporal. 
 
A Água é o composto químico mais abundante no corpo humano, abrangendo 60% da MC 
no Homem de Referência. A água corporal total (ACT) é distribuída pelos compartimentos 
extracelulares (AEC) e intracelulares (AIC). A Água extracelular inclui cinco 
subcompartimentos: intersticial, plasmático, tecido conectivo, osso e o tracto gastrointestinal. 
Este compartimento pode ser avaliado através da contagem de potássio corporal total e da 
água corporal total. A Água intracelular, compartimento aquoso distribuído no meio 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
3 
 
 
intracelular é um componente molecular cuja avaliação e monitorização são fundamentais, já 
que alterações neste componente estão associadas a alterações no estado nutricional e 
metabólico do organismo. 
A Proteína inclui quase todos os compostos que contêm Azoto, variando de simples 
aminoácidos a nucleoproteinas complexas. Embora existam variadas tipos de proteínas, os 
únicos métodos não invasivos disponíveis permitem estimar apenas a proteína total e as 
proteínas musculares e não musculares. 
O Mineral descreve uma categoria de compostos inorgânicos contendo uma abundância 
de elementos metais (e.g., Cálcio, Sódio, e Potássio) e não metais (e.g., Oxigénio, Fósforo e 
Cloro). Os minerais abrangem quase 5% da MC em adultos saudáveis e são distribuídos em 
dois componentes importantes: mineral ósseo e minerais não ósseos. O maior constituinte do 
mineral ósseo (Mo). 
O Gicogénio é a forma principal de armazenamento dos hidratos de carbono, 
correspondendo a menos de 1kg em adultos saudáveis; os restantes hidratos de carbono são 
considerados insignificantes. Aproximadamente 1 a 2.2% do seu respectivo peso liquído é 
distribuído principalmente no músculo esquelético e fígado sob a forma de glicogénio. 
 Os Lípidos são os compostos não solúveis na àgua sendo os triglicéridos ou gordura 
(armazenada ou específica) uma das principais reservas de energia do corpo humano. Os 
Lípidos essenciais incluêm fosfolípidos, esfingolípidos e esteróides , que são essenciais nos 
processos bioquímicos e fisiológicos. 
 
4.2. Modelo teórico de Behnke 
 
Behnke (1974) propôs dois modelos teóricos (o homem e a mulher de referência), que 
podem servir como referência se desejarmos comparar a composição corporal de diferentes 
indivíduos ou grupos. De acordo com este modelo o homem de referência de Behnke (1974) 
possui mais peso e mais estatura, tem um esqueleto mais pesado, possui mais massa muscular 
e menos massa gorda que a mulher de referência. 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
4 
 
 
Segundo Wilmore e Costill (2001), apesar do padrão proposto por Behnke (1974) seja 
considerado até ao momento o mais correcto, não diferencia a gordura de reserva da gordura 
essencial. McArdle et al (2001) define gordura essencial como a gordura que é necessária para 
o perfeito funcionamento do organismo e que se acumula na medula óssea, no coração, 
pulmões fígado, baço, rins, intestinos, músculos e tecidos ricos em lípidos localizados no 
sistema nervoso central. Nas mulheres, segundo Behnke a gordura específica do sexo 
feminino, presente principalmente na região mamária, região pélvica e faz parte integrante da 
gordura essencial. Assim, o homem e mulher de referênciade Behnke (1974) apresentam uma 
gordura essencial de 3% e 12% (sendo 3% a gordura essencial e 9 % a gordura específica) do 
peso corporal. A gordura de reserva é a gordura acumulada no tecido adiposo subcutâneo e 
representa 15% do peso corporal das mulheres e 12 % do peso corporal dos homens (McArdle 
et al, 2001). O depósito de gordura no tecido adiposo visceral é o que implica mais riscos para 
a saúde, porém o tecido adiposo abdominal é qualitativamente maior, representando 
igualmente um risco grande para a saúde 
 
Quadro 4.1. Modelos teóricos de Behnke. 
 
Devido à grande dificuldade de mensuração e divisão da gordura em gordura essencial e 
de reserva e de avaliação da proteína, mineral ósseo e água intra e extracelular a maioria dos 
cientistas optam por dividir o peso corporal em dois compartimentos, massa gorda e massa 
livre de gordura (Heyward e Stolarczyk, 1996; Wilmore e Costill, 2001). A massa gorda inclui 
todos os lípidos extraíveis do tecido adiposo e dos outros tecidos, a massa livre de gordura 
consiste em todas as restantes substâncias químicas livres de gordura e tecidos orgânicos. 
Variáveis Homem de Referência Mulher de Referência 
Altura 174 cm 163.8 cm 
Peso 70 kg 56.7 kg 
Massa Muscular 31.3 kg (44,7%) 20.4 kg (36%) 
Massa Gorda 10.5 kg (3% e 12%) 15.3 kg (12% e 15%) 
Massa Óssea 10.1 kg (14,4%) 6.8 kg (12%) 
Massa Residual 17.5 kg (25%) 14.2 kg (25%) 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
5 
 
 
4.3. Massa Gorda 
 
4.3.1. Funções da gordura 
 
A quantidade relativa de gordura corporal (% de massa gorda) é a medida de composição 
corporal que mais vezes é avaliada. Esta circunstância prende-se não só com o facto da 
quantidade de gordura de um indivíduo ou população poder estar relacionada com a 
diminuição da qualidade de vida e com o aparecimento de certas doenças mas também com o 
facto de existirem métodos e técnicas de avaliação da gordura relativamente fáceis de utilizar 
e que apresentaremos mais à frente neste capítulo. 
Não obstante a existência desta relação, a gordura não deve ser considerada um tecido 
indesejado no organismo humano. O tecido adiposo apresenta um conjunto de funções úteis 
ao funcionamento orgânico como sejam: 1) função energética, as reservas energéticas do 
organismo encontram-se sobretudo sob a forma de lípidos; 2) função estrutural, as 
membranas celulares são de origem lipídica (lipoproteínas); 3) função reguladora, os lípidos 
são percursores de hormonas semelhantes a esteróides; 4) função de transporte, as vitaminas 
lipossolúveis são transportadas através de partículas lipídicas contidas no sangue; 5) função de 
armazenamento, as vitaminas lipossolúveis são armazenadas nos lípidos; 6) função de controlo 
do apetite, refeições ricas em gordura atrasam o esvaziamento do estômago mantendo a 
sensação de saciedade durante mais tempo; 7) função de amortecimento de choques, há maior 
incidência de fracturas na sequência de quedas em pessoas magras do que em pessoas gordas 
e 8) função de isolamento térmico, as pessoas com maior quantidade de gordura resistem 
melhor ao frio do que as pessoas magras. 
 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
6 
 
 
4.3.2. Alterações do adipócito 
 
A variação da gordura corporal pode acontecer quer devido a variações na quantidade de 
substâncias gordas armazenadas no interior do adipócito (hipertrofia) quer como resultado de 
alterações do número de células adiposas (hiperplasia). 
Até cerca de metade do tempo de gestação o feto praticamente não contém gordura, 
verificando-se durante o último trimestre um desenvolvimento rápido do tecido adiposo, de 
tal forma que, à nascença, a percentagem de gordura varia entre 11% e 16%. No primeiro ano 
de vida, o número de células adiposas triplica embora apresentem 1/4 do tamanho da célula 
adulta. Durante a 2ª infância, seria de esperar que as crianças se tornassem mais lineares e 
que as células adiposas triplicassem de tamanho, embora as alterações hipertróficas sejam 
pouco evidentes particularmente entre os 6 e os 10 anos. Durante o mesmo período, entre os 
2 e os 10 anos, o número de adipócitos aumenta gradualmente. Durante a adolescência a 
hipertrofia e a hiperplasia do adipócito acontecem simultaneamente. No entanto, enquanto as 
crianças obesas podem alcançar um tamanho do adipócito muito próximo do tamanho adulto 
aos 2 anos, sendo o aumento de gordura posteriormente feito quase exclusivamente à custa 
da hiperplasia celular, as crianças magras não apresentam alterações significativas do número 
de células adiposas entre os 2 e os 10 anos de idade apresentando por esta razão uma maior 
resistência ao aumento de peso em fases posteriores e em momentos particulares como 
acontece na gravidez. 
No indivíduo adulto normal, o volume do adipócito está relacionado com a quantidade de 
substâncias gordas armazenadas no interior das células adiposas. Contudo, existe um limite 
biológico, correspondente a um conteúdo lipídico de cerca de 1.0 µg, ou seja, cerca de 20% a 
25% do volume inicial, para além do qual se torna estruturalmente impossível aumentar o 
tamanho das células tornando-se necessário, por esta razão, que se criem novas células 
adiposas de dimensões mais reduzidas mas que facilmente aumentam de volume. As 
propriedades elásticas da célula não só são limitadas como também podem diminuir em 
consequência de sucessivos aumentos e diminuições do tamanho dos adipócitos. 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
7 
 
 
Na prática, um individuo terá mais condições para engordar ou mais dificuldade em 
emagrecer se: (1) durante a fase de crescimento e de diferenciação celular (células gordas e 
fibras musculares) por razões de sedentarismo e aumento de gordura alcançar um corpo 
menos robusto e com maior quantidade de células gordas; (2) se tiver vivido vários episódios 
de emagrecimento e com isso tenha alterado as propriedades elásticas dos tecidos 
particularmente das células gordas diminuindo desta forma a possibilidade de redução do 
tamanho celular e em consequência a possibilidade de redução da saciedade e a manutenção 
do conteúdo lipídico da célula; (3) aumentar exageradamente de gordura durante o 
crescimento já que a diminuição da gordura corporal resulta da redução do conteúdo lipídico 
existente nas células adiposas mas não do seu número tornando-se por este facto e a partir de 
então menos capaz de resistir ao aumento de gordura corporal. 
 
4.3.3. Alteração da massa gorda ao longo do crescimento 
 
Estudos recentes de composição corporal envolvendo técnicas in vivo, têm demonstrado 
que a contribuição da gordura interna e da gordura subcutânea para o estabelecimento da 
quantidade de gordura corporal varia com o género, com a idade e com a própria gordura 
corporal do indivíduo. 
Durante o primeiro ano de vida a massa gorda aumenta cerca de 8% a 9% e atinge valores 
de 22% a 24% da massa corporal total. A curva de crescimento da gordura corporal total 
aumenta lenta e progressivamente sendo, a partir dos 5-6 anos, sempre superior nas 
raparigas. Assim, a quantidade relativa de gordura é, em média, de 14.6% nos rapazes e de 
16.7% nas raparigas (Parizková, 1977, conforme Rowland, 1990). O dimorfismo sexual 
aumenta com a idade. Desta forma, a diferença para a quantidade de massa gorda, que aos 
cinco anos era de ± 2%, aos dez anos passa a ser cerca de 6% (Van Loan, 1996). Este facto 
deve-se a uma evolução divergente do tecido adiposo. Enquanto que, nos rapazes, o valor 
percentual de gordura se mantém mais ou menos estável desde os seis anos até à 
adolescência, nas raparigas a percentagem de gordura corporal aumenta progressivamente 
atingindo cerca de 20% antesdos dez anos de idade (Parizková, 1977, conforme Rowland, 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
8 
 
 
1990). Chumlea et al. (1983) observaram que, entre os 10 e os 18 anos, se verificavam 
incrementos anuais na percentagem de massa gorda e na massa livre de gordura, embora com 
comportamentos diferentes consoante o género. Rowland (1990) refere que, durante a 
adolescência, a percentagem de massa gorda nas raparigas se situa entre os 20% e os 25%, o 
que representa um aumento em relação ao valor observado aos 10 anos de idade. 
Chumlea et al. (1983) observaram igualmente que, entre os 10 e os 20 anos, a 
percentagem de gordura mantém-se mais ou menos constante no género feminino, enquanto 
no género masculino se verifica uma diminuição do valor percentual de gordura (cerca de 2% a 
3%) devido ao aumento acentuado da massa livre de gordura (cerca de 33 kg). 
Pode-se assim concluir que, em relação ao tecido adiposo, o dimorfismo sexual começa a 
ser evidente a partir dos cinco anos, aumentando as diferenças entre os dois géneros com a 
idade até que, no final da adolescência, as raparigas apresentam, em média, 
aproximadamente o dobro da percentagem de massa gorda dos rapazes (Rowland, 1990). 
 
4.3.4. Normalidade e valores de corte 
 
A definição de normalidade baseia-se, habitualmente, na comparação dos valores 
individuais de gordura corporal (massa corporal total - MCT ou índice de massa corporal - IMC) 
com os valores médios da população de referência. Desta forma, considera-se que um 
indivíduo possui uma quantidade de gordura normal se a sua percentagem de gordura ficar 
compreendida entre mais ou menos um desvio padrão em relação ao valor médio apresentado 
pela população de referência. 
Por exemplo, tendo como referência o Quadro 4.2, a percentagem de gordura normal para 
um adulto é de 15% no género masculino e de 23% no género feminino. No entanto, os limites 
de normalidade alteram-se de acordo com a população e a idade dos indivíduos que se 
estiverem a estudar. 
 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
9 
 
 
Quadro 4.2. Percentagem de gordura média para adultos (adaptado de Heyward & Stolarczyk, 1996) 
 HOMEM MULHER 
MUITO MAGRO*  5%  8% 
MAGRO 6% - 14% 9% - 22% 
ACEITÁVEL 15% 23% 
GORDO 16% - 24% 24% - 31% 
OBESO  25%  32% 
 
4.3.5. Distribuição de gordura corporal 
 
O padrão de distribuição de gordura, têm origem em factores como a idade, o dimorfismo 
sexual, o tipo morfológico e a idade de desenvolvimento da obesidade. A maior parte dos 
trabalhos desenvolvidos nesta área baseiam-se no valor das pregas adiposas subcutâneas 
(dada pelo somatório) do tronco (central) e das extremidades (periférica) ou no quociente 
perímetro da cintura/perímetro da anca. Quando este quociente é elevado significa que há 
maior quantidade de gordura na região central (distribuição andróide) e quando é baixo a 
concentração de gordura é maior nas extremidades (distribuição ginóide). O aumento de 
gordura na região abdominal é seguramente mais grave do que a acumulação glúteo-femoral 
porque constitui um factor de risco para o desenvolvimento de doenças cardíacas, de 
acidentes isquémicos transitórios (AIT) ou de diabetes (Hermsdorff & Monteiro, 2004). 
O dimorfismo sexual relativo às diferenças regionais de gordura subcutânea resulta, para 
alguns autores, da acção dos receptores e/ou metabolismo dos adipócitos, assim como da 
actividade da enzima lipoproteína lipase (LPL). Assim, enquanto no género feminino a 
actividade da LPL é maior na região glúteo-femoral, no género masculino há maior tendência 
para armazenar gordura na região abdominal, sendo por isso maior a acção da LPL nesta 
região (McArdle et al., 1996). 
A idade de desenvolvimento da obesidade condiciona o padrão de distribuição de gordura 
uma vez que influencia o desenvolvimento dos adipócitos e em contrapartida o menor 
desenvolvimento de outros tecidos capazes de produção de força e energia. Existe uma maior 
tendência para as situações de obesidade que se iniciam durante a infância e adolescência 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
10 
 
 
serem hiperplásicas, sendo fundamentalmente hipertróficas aquelas que se desenvolvem na 
idade adulta. 
 
 
Figura 4.2. Tipo morfológico e dimorfismo sexual. 
 
Finalmente o tipo morfológico resume o que fomos dizendo relativamente as 
características sexuais e às alterações da idade. Nos primeiros anos apresentamos todos um 
aumento da gordura dita ginoide típica dos endomorfos daqueles que apresentam uma 
predominância do tronco e do aparelho digestivo do mesmo modo que apresentam membros 
proporcionalmente curtos e pouca robustez física. Normalmente ao longo da infância os 
membros tornam-se proporcionalmente mais compridos a gordura torna-se mais distribuída, 
ou seja, menos centrada na zona abdominal e nas coxas e seria de esperar que a crianças 
aumentasse a sua robustez física tornando-se por esse facto mais mesomorfa. Com o acentuar 
da linearidade e sobretudo com a grande predominância dos membros durante a primeira fase 
da adolescência os adolescentes em particular os rapazes aumentam o seu ectomorfismo 
passando a apresentar uma grande fragilidade morfológica e uma diminuição de gordura que 
numa fase posterior aumentará tornando-se assim mais robustos e no caso das raparigas mais 
pesadas e mais gordas. Deste modo não só é mais fácil ter mais vezes mulheres endomorfos e 
com uma gordura tipicamente ginoide como é mais fácil que estas características sejam 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
11 
 
 
acentuadas durante alguns períodos da nossa vida como na primeira infância. O mesmo 
podemos dizer relativamente à robustez física e ao maior valor de mesomorfismo mais vezes 
observado nos rapazes durante a segunda infância e na segunda fase da adolescência 
particularmente naqueles que fazem actividade física regular. Contudo são também estes a 
apresentar sempre que acontece um aumento superior de gordura no tronco particularmente 
durante a fase adulta matura e nas mulheres durante o período de menopausa. 
 
4.4. Massa Livre de Gordura 
 
À nascença, cerca de 89% da massa corporal total é composta por massa livre de gordura 
(11% de proteína, 75% água e 2.5% de outros minerais). A relação entre os fluidos 
extracelulares e intracelulares é de 1.5, sendo 61% da água corporal total extracelular e 39% 
intracelular (Guo et al., 1991). No recém-nascido a percentagem de músculo em relação à 
massa corporal total é cerca de 25%, ou seja, 15% inferior à apresentada pelo adulto de 
referência. À nascença é pouco notório o dimorfismo sexual relativamente à composição 
corporal. 
Regista-se igualmente um incremento da massa livre de gordura que passa a ser o dobro 
da apresentada à nascença. Durante este período os fluidos extracelulares diminuem de 50% 
para 42% da massa livre de gordura, enquanto que os fluidos intracelulares aumentam de 30% 
para 37%. Estas alterações são similares em ambos os géneros. Juntamente com o aumento da 
água intracelular verifica-se um aumento do potássio total (de 49 mEq/kg para 57 mEq/kg) e 
um aumento de cerca de 2% no conteúdo proteico (Fomon et al., 1982). 
Do primeiro para o segundo ano de vida verifica-se uma nova diminuição dos fluidos 
extracelulares, cerca de 2%, um aumento correspondente dos fluidos intracelulares, um 
aumento do potássio corporal e a manutenção do conteúdo mineral ósseo com valores 
idênticos aos apresentados à nascença (Van Loan, 1996). 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
12 
 
 
Aos cinco anos de idade começa a ser notório o dimorfismo sexual. O conteúdo mineral 
ósseo aumenta de3.0% para 3.6% da massa livre de gordura nos rapazes, mas mantém-se 
constante nas raparigas (Van Loan, 1996). 
Verifica-se também uma nova diminuição dos fluidos extracelulares e um aumento dos 
fluidos intracelulares, tendo estas alterações uma maior dimensão nos rapazes do que nas 
raparigas. Esta diferença reflecte não só o maior conteúdo celular apresentado pelos rapazes, 
como o maior valor de potássio corporal, de proteína e de densidade da massa livre de 
gordura (1.078 g/cm3 nos rapazes e 1.073 g/cm3 nas raparigas). A água corporal total diminui 
de 79% para 77% da massa livre de gordura (Lohman, 1989). 
Aos 10 anos, para além das diferenças em relação ao tecido adiposo verifica-se ainda que 
os rapazes possuem um maior conteúdo em proteína (20% da massa livre de gordura 
comparado com os 19% nas raparigas), em mineral ósseo (+ 1%) e em potássio total (+ 3 
mEq/kg), assim como um maior aumento dos fluidos intracelulares. Em contrapartida, 
apresentam uma menor percentagem de água corporal total (75% da massa livre de gordura 
nos rapazes e 77% nas raparigas). 
Na adolescência a água corporal volta a diminuir em ambos os géneros. Durante este 
período de crescimento, a percentagem de água tendo em conta a quantidade de massa livre 
de gordura é ligeiramente superior no género feminino, sendo de 73% nas raparigas e de 72% 
nos rapazes (Van Loan, 1996; Lohman, 1989). 
Boileau et al. (1984) verificaram que, entre a adolescência e a idade adulta, as alterações 
no conteúdo de massa livre de gordura ocorrem essencialmente devido à diminuição da 
quantidade de água e ao aumento da quantidade de mineral ósseo. É a alteração destes dois 
componentes que determina o aumento da densidade da massa livre de gordura, em ambos 
os géneros, desde o nascimento até à idade adulta. No género masculino a densidade da 
massa livre de gordura é de 1.063 g/cm3 à nascença, de 1.078 g/cm3 aos cinco anos e de 1.102 
g/cm3 aos 22 anos de idade. No género feminino os valores da densidade da massa livre de 
gordura são de 1.064 g/cm3, 1.073 g/cm3 e de 1.094 g/cm3, respectivamente, à nascença, aos 5 
anos e aos 22 anos (Lohman, l986; Van Loan, 1996). A densidade da massa gorda mantém-se 
mais ou menos constante no género masculino, uma vez que, entre os 8 e os 10 anos, é de 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
13 
 
 
1.051 g/cm3 atingindo um valor de 1.076 g/cm3 entre os 20 e os 29 anos (Heyward & 
Stolarczyk, 1996). 
Embora os adultos, tal como as crianças e adolescentes, apresentem alterações na 
composição corporal, estas processam-se mais lentamente. Sabe-se que, com o aumento da 
idade, se verifica um aumento da percentagem de massa gorda e da massa corporal total e, 
simultaneamente, a diminuição da massa livre de gordura, do conteúdo mineral ósseo e da 
água corporal (Van Loan, 1996). 
 
4.5. Modelos de avaliação da composição corporal 
 
A avaliação da composição corporal pressupõe a divisão da massa corporal em dois ou 
mais compartimentos, usando diferentes modelos teóricos que permitam obter valores de 
referência da composição corporal necessários ao desenvolvimento de novas técnicas de 
avaliação. Entre os modelos de avaliação da composição corporal destacam-se os propostos 
por Wang et al.(1992), Heyward e Stolarczyk (1996) e Norton e Olds (1996) (Quadro 4.3). 
 
Quadro 4.3. Modelos de Avaliação da Composição Corporal 
Nível Fraccionamento da Massa Corporal Autores 
Atómico MC = H+O+N+C+Na+K+Cl+P+Ca+Mg+S 
Ward et al. (1992) 
Molecular MC = MG+Ag+Pt+Gl+ Mn 
Celular MC = Mcel.+FEC+SEC 
Tecidos, órgãos e sistemas MC = TA+TO+TM+outros tecidos 
Corpo inteiro Medidas Antropométricas 
Totalidade do corpo MC = MG+MLG 
Heyward e Stolarczyk (1996) 
Químico MC = MG+Ag+Pt+ MO 
Anatómico MC = TA+TME+TMnE+TO 
Fluído-Metabólico MC = MG+FIC+FEC+SIC+SEC 
Análise clássica de cadáveres MC = MG+Ag+Pt+MO+MnO 
Norton e Olds (1996) 
2 Compartimentos MC = MG+MLG 
3 Compartimentos MC = MG+Ag+ MLGseca 
4 Compartimentos MC = MG+Ag+MO+MR 
MC = MG+Ag+Pt+ MO 
 
Wang et al. (1992) propuseram um modelo de fraccionamento da massa corporal em 
cinco níveis: 1) Nível I (atómico), compreende cerca de 50 elementos sendo os mais utilizados 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
14 
 
 
o oxigénio (O), o hidrogénio (H), o nitrogénio (N), o carbono (C), o sódio (Na), o potássio (K), o 
cloro (Cl), o fósforo (P), o cálcio (Ca), o magnésio (Mg) e o enxofre (S); 2) Nível II (molecular), 
divide os compostos químicos do organismo em lípidos (MG), água (Ag), proteínas (Pt), 
glicogénio (Gl) e minerais (Mn); 3) Nível III (celular) divide o corpo em massa celular total 
(Mcel), fluidos extracelulares (FEC) e sólidos extracelulares (SEC); 4) Nível IV (tecidos, órgãos e 
sistemas), considera o tecido conjuntivo, onde estão incluídos o tecido adiposo (TA) e ósseo 
(TO), o tecido epitelial, o tecido muscular (TM) e o tecido nervoso e 5) Nível V (corpo inteiro), o 
corpo é analisado de acordo com as suas características morfológicas com medidas de forma, 
tamanho e proporção a quatro níveis cabeça, tronco, membros superiores e membros 
inferiores. 
Para Heyward e Stolarczyk. (1996) o fraccionamento da massa corporal compreende 
quatro níveis de análise: (1) o modelo dos dois compartimentos (totalidade do corpo), que 
divide a massa corporal em massa gorda e massa livre de gordura (MLG); (2) o modelo químico, 
que considera que a massa corporal resulta do somatório de quatro compartimentos que 
incluem, para além da massa gorda, a água, as proteínas e os minerais ósseos (MO); (3) o 
modelo anatómico, que também divide a massa corporal em quatro compartimentos que 
compreendem o tecido adiposo, o tecido muscular esquelético (TME), o tecido muscular não 
esquelético (TMnE) e o tecido ósseo e (4) o modelo fluido - metabólico que subdivide a massa 
corporal em 5 compartimentos que incluem a massa gorda, os fluidos intracelulares (FIC), os 
fluidos extracelulares, os sólidos intracelulares (SIC) e os sólidos extracelulares. 
A avaliação da composição corporal pressupõe a divisão da massa corporal em dois ou 
mais compartimentos, usando diferentes modelos teóricos que permitam obter valores de 
referência da composição corporal necessários ao desenvolvimento de novas técnicas de 
avaliação. Entre os modelos de avaliação da composição corporal destaca-se o proposto por 
Norton e Olds (1996), i.e., cinco níveis de análise: (1) análise de cadáveres clássica, que 
decompõe a massa corporal do corpo (MC) em massa gorda (MG), água corporal total (Ag), 
mineral ósseo (MO), mineral não ósseo (MnO) e proteína; (2) modelo dos dois 
compartimentos, que divide a massa corporal (MC) em massa gorda (MG) e massa livre de 
gordura (MLG); (3) modelo dos três compartimentos, que considera que o massa corporal (MC) 
resulta do somatório da massa gorda (MG), água total (Ag) e massa livre de gordura seca ou 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
15 
 
 
sem água (MLGs) e (4) modelo dos quatro compartimentos com duas variantes, uma que 
decompõe o massa corporal (MC) em massa gorda (MG), água (Ag), mineral ósseo (MO) e 
massa residual (MR) e outra que a decompõe em massa gorda (MG), água (Ag), mineral ósseo 
(MO) e proteína (Pt) 
Segundo Heymsfield et al. (1996) os modelos mais usados são: o de dois compartimentos 
(MG e MLG), o de três compartimentos (MG, Ag e MLGs) e o de quatro compartimentos (MG, 
Ag, MO e MR). 
A determinação da massa corporal implica, em qualquer destes três modelos, a avaliação 
da massa gorda e da massa livre de gordura. Esta última pode ser avaliada na sua globalidade 
(modelo dos dois compartimentos) ou considerando separadamente cada um dos seus 
componentes(modelos dos três e quatro compartimentos). 
A avaliação do compartimento de massa livre de gordura é mais difícil do que a avaliação 
do compartimento anterior uma vez que inclui um maior número de componentes (Ag, MO, Pt 
e MR). A água corporal (Ag) é o componente mais abundante e encontra-se distribuída nos 
líquidos extracelulares (68%) e intracelulares (38%), sendo relativamente fácil de avaliar uma 
vez que a sua estrutura molecular é composta unicamente por monóxido de hidrogénio, ao 
contrário de outros componentes da MLG. 
 
4.6. Níveis de avaliação da composição corporal 
 
Os métodos de avaliação da composição corporal (Quadro 4) podem ser agrupados em 
três níveis de análise: (1) Nível I –Directo, que se baseiam na separação e pesagem dos 
diferentes constituintes corporais através da dissecação de cadáveres; (2) Nível II - Indirectos, 
em que a determinação dos componentes corporais não é feita por manipulação directa mas, 
indirectamente, com base em princípios físicos ou químicos que permitem a sua quantificação. 
Neste nível enquadram-se técnicas de avaliação tais como: a pletismografia, o potássio 40, a 
activação de neutrões, a excreção de creatinina, a densitometria radiológica de dupla energia, 
a ressonância magnética, os ultra-sons, a tomografia axial computorizada e a pesagem 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
16 
 
 
hidrostática; (3) Nível III – Duplamente Indirectos, que se baseiam em equações de regressão 
que tomam como padrão de referência os métodos indirectos, ou seja, são validados a partir 
de um método indirecto, normalmente a densitometria. Neste nível estão englobadas técnicas 
de avaliação tais como: a bioimpedância, a condutividade eléctrica corporal total, a 
interactância de raios infravermelhos e a antropometria. 
Os métodos indirectos, apesar de serem mais precisos, requerem equipamentos 
laboratoriais sofisticados e implicam exames morosos e de alto custo, sendo 
preferencialmente utilizados na validação de outras técnicas ou em estudos de investigação 
que requeiram grande precisão. Os métodos duplamente indirectos são mais económicos, 
rápidos e de fácil aplicação mas não tão fiáveis como os anteriores. 
Não obstante a existência de diferentes modelos de avaliação da composição corporal, as 
técnicas que se utilizam habitualmente em investigação baseiam-se, fundamentalmente, no 
modelo dos dois compartimentos. 
 
Quadro 4.4. Métodos e técnicas de avaliação da composição corporal (Adaptado de Porta et al., 1995) 
DIRECTO 
Dissecação de Cadáveres 
INDIRECTOS 
Físico-Químicos Imagem Densitometria 
Pletismografia Radiologia convencional Pesagem hidrostática 
Absorção de gases Ultra-sons Deslocamento de volume de água 
Diluição de isótopos Tomografia computorizada 
Espectometria de raios gama Ressonância magnética 
Espectrofotometria Densitometria radiologica de dupla energia (DXA) 
Activação de neutrões 
Excreção de creatinina 
DUPLAMENTE INDIRECTOS 
TOBE (Condutividade eléctrica 
corporal total) 
BIA (Bioimpedância) NIR (Interactância de 
infravermelhos) 
ANTROPOMETRIA 
 
Perante a grande variedade de técnicas de avaliação da composição corporal disponíveis 
(Quadro 4) o principal problema que se levanta prende-se com a escolha daquela que melhor 
se adapta aos objectivos do estudo que se pretende desenvolver e às características da 
população a estudar. Visto que não existe nenhuma técnica que seja ideal, antes de se tomar 
qualquer decisão, devem ponderar-se as suas vantagens e desvantagens. 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
17 
 
 
Figura 4.3. Bioimpedância. 
Uma vez que a descrição detalhada das técnicas apresentadas no Quadro 4, ou de outras 
que aí não foram referidas, ultrapassa largamente os objectivos teóricos a que nos propomos, 
limitamo-nos a descrever de forma mais pormenorizada, apenas duas das técnicas de 
avaliação classificadas como duplamente indirectas (bioimpedância e equações 
antropométricas). 
 
4.6.1. Técnicas de avaliação duplamente indirectos 
 
4.6.1.1. Bioimpedância (BIA) 
 
A bioimpedância é um método que avalia essencialmente a quantidade de água total do 
organismo, através da aplicação de uma corrente eléctrica, e baseia-se no princípio de que só 
as substâncias ionizáveis têm capacidade de conduzir a corrente eléctrica. No organismo 
humano, estas substâncias são os electrólitos que se encontram preferencialmente dissolvidos 
na água corporal e nos minerais ósseos. Assim, estando a maior parte da água corporal contida 
na massa livre de gordura, quanto maior for a sua proporção no organismo menor será a 
resistência à passagem da corrente eléctrica. 
 
 
 
 
 
 
 
Quando uma corrente alternada atravessa um organismo, toda a perda de corrente que se 
observa à saída é devida, por um lado, à resistência e por outro lado à capacitância, ou seja, a 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
18 
 
 
quantidade de corrente que fica armazenada no condutor. Chama-se reactância (Xc) à perda 
de corrente que é devida à capacitância. A impedância (Z), que representa a oposição que um 
condutor oferece à passagem de corrente alternada, é uma grandeza vectorial e resulta da 
acção de dois vectores: a resistência e a reactância 
Z2 = R2 + Xc2 (01) 
No organismo humano as estruturas responsáveis pela reactância, que funcionam como 
condensadores de corrente, são: 1) os planos de separação de tecidos e órgãos, que possuem 
estruturas diferentes e constituem verdadeiros interfaces, que podem polarizar-se à passagem 
de corrente e provocar perda de corrente; 2) as membranas celulares, que são formadas por 
proteínas polarizadas de ambos os lados (cargas electronegativas no interior e iões positivos 
no exterior) separadas entre si por lípidos apolares. 
A existência destas estruturas com propriedades de condensador faz com que a corrente 
aplicada a um corpo sofra uma perda de potencial, originando uma diferença de fase entre as 
correntes de entrada e de saída. Esta diferença de fase é representada geometricamente pelo 
ângulo fase cujo valor é designado por θ. Quanto maior for Xc maior será θ e, portanto, maior 
a diferença entre Z e R. 
O ângulo fase varia com a frequência da corrente. Quando a frequência é muito baixa (1 
Khz) a impedância das membranas é tão elevada que não permite a passagem da corrente 
eléctrica. Neste caso a corrente é conduzida apenas através dos líquidos extracelulares, não 
existe reactância, e a impedância é igual à resistência do próprio corpo. Com o aumento da 
frequência, a corrente já penetra as membranas celulares, surge a reactância e o valor do 
ângulo fase aumenta. Se a frequência continuar a aumentar, as membranas celulares tornam-
se outra vez muito difíceis de atravessar e, a partir de uma determinada frequência, tornam-se 
mesmo impenetráveis. 
Segundo Chumlea e Baumgartner (1990), o corpo humano, enquanto condutor de 
corrente, é composto por diferentes estruturas com resistências específicas e pode decompor-
se em cinco cilindros representando o tronco, os membros superiores e os membros 
inferiores. Cada um destes cilindros é formado por cilindros dispostos concentricamente 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
19 
 
 
representando as várias estruturas que o compõem (osso, vasos sanguíneos, músculo e tecido 
adiposo). 
Como o osso e a gordura têm uma resistência maior que o músculo e os vasos sanguíneos 
a corrente é conduzida, preferencialmente, por estas duas últimas vias. Sabendo que a 
resistência é directamente proporcional à resistividade (ρ) e ao comprimento do condutor (C) 
e inversamenteproporcional à sua secção (S), 
R = ρ x C / S (02) 
e como Z é igual a R, então 
Z = ρ x C / S (03) 
podemos dizer que a resistência de um segmento é inversamente proporcional à área 
seccional do músculo e vasos sanguíneos do cilindro a que pertence. Se multiplicarmos ambos 
os membros da equação (3) por C/C obtemos a equação: 
Z x C/C = ρ x C2 (S x C) (04) 
Dado que S x C é igual ao volume do cilindro então: 
Z = ρ x C2 / V (05) 
Ordenando os membros da equação de outra forma obtemos a equação fundamental da 
BIA: 
V = ρ x C2 / Z (06) 
A partir desta equação podemos concluir que a impedância de um corpo depende do seu 
volume (somatório dos volumes dos vários cilindros) e do seu comprimento. 
Para minimizar os erros de medida, a BIA deve ser aplicada seguindo os procedimentos 
propostos por Lukaski et al. (1985). Assim, o indivíduo depois de retirar todos os objectos 
metálicos da superfície do corpo, deita-se em decúbito dorsal sobre um superfície não 
condutora, com os membros superiores e inferiores afastados, respectivamente 30º e 40º. Em 
seguida deve desengordurar-se a pele nos locais onde serão colocados os dois pares de 
eléctrodos. O par de eléctrodos distais ou emissores que estabelecem a entrada e saída da 
corrente é colocado na mão, sobre a cabeça do 2º metacarpo, e no pé sobre a cabeça do 3º 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
20 
 
 
metatarso. Os eléctrodos proximais ou sensores, que servem para detectar a diferença de 
potencial entre eles, são colocados paralelamente aos eléctrodos emissores, na mão a nível do 
pulso a meia distância entre as apófises estiloides do rádio e do cúbito e no pé na região dorsal 
da articulação tibio-társica a meia distância entre os dois maléolos. 
Para além destes cuidados metodológicos é importante considerar que a validade dos 
resultados da BIA podem ser afectados por factores como: o nível de hidratação do indivíduo, 
a fase do ciclo menstrual e a temperatura da pele. 
Segundo McArdle et al. (1996) mesmo que se respeitem as condições referidas 
anteriormente quando se compara a predição da quantidade de gordura feita através da 
bioimpedância com a obtida por pesagem hidrostática verifica-se que, enquanto em atletas ou 
indivíduos magros, a BIA sobrestima a gordura corporal, em indivíduos obesos ela é 
subestimada. 
 
4.6.1.2. Equações antropométricas 
 
Desde o início do século XX que a antropometria tem sido utilizada para avaliar o tamanho 
e as proporções dos diferentes segmentos corporais. Apesar da medida das pregas adiposas 
ser utilizada na avaliação morfológica dos indivíduos desde 1915, s sua aplicação no 
desenvolvimento de equações de predição da densidade corporal e da percentagem de massa 
gorda apenas teve início nos anos 60 e 70. Actualmente existe, na literatura da especialidade, 
grande número de equações que utilizam o valor das pregas adiposas para avaliar a 
quantidade de gordura corporal total. 
As técnicas antropométricas são aquelas que mais se aplicam em estudos de campo, que 
envolvam a avaliação de grande número de indivíduos, tanto pela facilidade de obtenção das 
medidas antropométricas (e.g. pregas adiposas) como pelos baixos custos materiais e 
temporais a estas associados. Para além disso, através desta técnica podem ser avaliados 
padrões de distribuição da gordura corporal e estabelecidos perfis antropométricos. 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
21 
 
 
Figura 4.4. Medição das pregas 
adiposas 
 
 
 
 
 
 
 
 
Quando, para avaliar a densidade corporal e a gordura corporal total, se utilizam equações 
antropométricas cujas variáveis independentes são as pregas adiposas é importante conhecer 
os pressupostos desta utilização e as limitações que cada equação apresenta. Para além disso, 
como estas equações são específicas para a população que serviu de base à sua elaboração, é 
fundamental que o utilizador se certifique das semelhanças em relação à idade, género, etnia, 
nível de actividade física e quantidade de gordura corporal, entre a população que pretende 
estudar e a população original. Deve igualmente garantir a similaridade quer do aparelho de 
medida quer da localização anatómica das pregas adiposas utilizadas. 
Normalmente as equações antropométricas desenvolvidas para predizer a densidade 
corporal utilizam como método standard de comparação a hidrodensitometria (pesagem 
hidrostática). Assim, o valor de densidade corporal, obtido a partir da pesagem hidrostática, 
será considerado como a variável dependente e as medidas antropométricas, obtidas antes da 
pesagem hidrostática, serão as variáveis independentes que permitirão predizer a densidade 
corporal. A equação de regressão múltipla final incluirá apenas a combinação das medidas 
antropométricas que melhor explicam a densidade corporal. 
O valor da densidade corporal obtido através das equações antropométricas é 
seguidamente utilizado para determinar a percentagem de gordura pela aplicação das 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
22 
 
 
equações de Siri (1961)1, de Brosek et al. (1963)2 ou de qualquer uma das equações 
alternativas a estas, apresentadas no Error! Reference source not found.. 
Para além dos erros associados à utilização das equações, que permitem converter o valor 
da densidade corporal em percentagem de massa gorda, existem igualmente erros relativos às 
equações antropométricas utilizadas para obter o valor da densidade corporal. 
Quando se empregam as equações antropométricas que utilizam o valor das pregas 
adiposas para predizer a densidade corporal assumem-se como verdadeiros os seguintes 
pressupostos: 
1 - A compressibilidade da pele e do tecido adiposo subcutâneo é constante; 
2 - A espessura das pregas não varia de local para local nem em populações distintas; 
3 - A distribuição relativa de gordura é constante em cada indivíduo; 
4 - Existe uma proporção fixa entre a gordura interna e externa; 
5 - Existe uma relação linear entre a gordura corporal total e o valor das pregas adiposas; 
6 - Existe uma relação inversa entre a gordura subcutânea e a densidade corporal. 
Sempre que estes pressupostos não se verificam a densidade corporal é afectada por um 
erro de predição. Entre os factores que mais contribuem para o erro associado às equações de 
regressão que utilizam as pregas adiposas destacam-se: 1) a variação da compressibilidade da 
pele em diferentes populações, em homens e mulheres (maior nos homens) e em diferentes 
idades (menor nos indivíduos mais velhos); 2) a utilização, nas equações de regressão, de 
apenas algumas pregas adiposas não permite que se considerem os padrões individuais de 
distribuição de gordura corporal, sendo portanto aconselhável incluir nestas equações pregas 
da região superior e inferior do tronco, dos membros superiores e dos membros inferiores; 3) 
a não existência de uma proporção fixa entre a gordura interna e externa é evidente no 
aumento que a razão gordura interna/gordura externa apresenta com a idade e no género 
feminino; 4) a diminuição da gordura subcutânea não resulta num aumento constante da 
densidade corporal. Assim, se dois indivíduos com somatórios de pregas distintos 
 
1 % MG = [(4.95/ DC) - 4.50] x 100 
2 % MG = [(4.57/ DC) - 4.142] x 100 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
23 
 
 
apresentarem a mesma diminuição do valor total das pregas, as alteraçõesa nível da 
densidade corporal e da percentagem de massa gorda são mais notórias (maior incremento de 
densidade corporal e maior decréscimo da percentagem de gordura) no sujeito que tiver o 
somatório de pregas inferior. 
Os erros de predição associados às equações antropométricas são: para atletas, entre 
0.0061 g/cm3 e 0.0080 g/cm3 (2.7 - 3.6%) e para não atletas entre 0.0057 g/cm3 e 0.0125 g/cm3 
(2.6 – 5.9%) (Norton & Olds, 1996). 
Considerando os erros associados à utilização das equações antropométricas parece-nos 
importante que o cálculo da quantidade relativa de gordura corporal de um indivíduo ou grupo 
de indivíduos seja feito através da utilização do maior número de equações possível3, sendo a 
percentagem de massa gorda final igual à média aritmética das percentagens de gordura 
obtidas através de cada equação de predição utilizada. Assim, o resultado final da avaliação da 
composição corporal deve ser apresentado aos indivíduos, não como uma medida única de 
percentagem de massa gorda mas como um intervalo de variação da gordura relativa (% MG ± 
1 sd). 
 
4.6.1.2.1. Modelo de 2 compartimentos 
 
Partindo do princípio que, em qualquer corpo, a massa gorda (MG) tem uma densidade 
constante, e que os vários componentes da massa livre de gordura (MLG) têm sempre a 
mesma densidade e proporções fixas4, é possível obter um conjunto de equações que 
permitem determinar a percentagem de gordura corporal a partir da densidade corporal. 
Sabendo que, a densidade é igual à razão entre a massa corporal e o volume (Dc = MC/V), 
que a massa corporal é igual à soma da massa gorda e da massa livre de gordura (MC = MG + 
 
3 As equações devem ser seleccionadas de acordo com o género, a idade, o nível maturacional, a etnia e a 
distribuição de gordura corporal dos indivíduos. 
4
 As proporções dos diferentes componentes da massa livre de gordura são de 73.8% para a água, 19.4% para 
as proteínas e 6.8% para os minerais. 
 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
24 
 
 
MLG) e que o volume corporal é a razão entre a massa e a densidade dos seus componentes (V 
= Massa/d). 
A ideia central deste método é medir a densidade corporal de dois componentes. A 
metodologia utilizada para isso foi o princípio de Arquimedes ("qualquer corpo mergulhado 
num líquido recebe, da parte deste, uma impulsão vertical de baixo para cima, cuja intensidade 
é igual à massa de líquido deslocada"). Este princípio estabelece que o volume de um objeto é 
igual à quantidade de água que ele desloca quando submerso. Como a densidade de um 
objeto é definido como o peso por unidade de volume, então a densidade (DC) pode ser 
determinada se se conhece o peso do assunto no ar e, quando completamente submerso na 
água. Agora, se a capacidade de sustentação de um indivíduo reflete a quantidade de massa 
lipídica em relação ao peso total e da massa lipídica livre, torna-se evidente que há uma 
relação direta entre a densidade da massa corporal humana e teor de lipídios (contanto de 
acordo com o modelo de dois componentes). 
O valor da densidade de 0,9 g/mL para gordura foi obtido a partir de estudos Rathbum e Pace 
(1945) na análise química de 50 porcos da Índia, eviscerado e raspada. Outros estudos sobre a 
análise química de três corpos do sexo masculino 25, 35 e 46 anos, jogou uma densidade de 
massa livre de conteúdo lipídico 1.1 g/cm3 (Brozek et al., 1963). Apesar de ter sido Behnke, 
que em 1942 introduziu o conceito de divisão física em dois componentes (massa gorda e 
magra) foram Rathbum Pace e que desenvolveu a primeira equação para determinar a 
percentagem do teor de lipídios [% teor lipídico = ((5.548/DC)∙5.044)∙100]. 
As duas fórmulas mais conhecidas para calcular a % de gordura a partir dos valores da 
densidade corporal são a de Siri (1961) e Brozek (1963). A fórmula mais popular é a de William 
Siri, de 1961, que admite como constantes para a densidade da massa livre de lipídos o valor 
de 1,1. g/cm3 e para a massa lipídica o valor de 0.901 gr/cm3 . A fórmula de Brozek atribuí às 
mesmas componentes valores 1.1033 gr/cm3 e 0.88876 gr/cm3, respectivamente. Estas duas 
fórmulas de conversão (da densidade corporal para o conteúdo percentual de gordura), 
produzem estimativas similares (variam entre: 0,5 e 1,0%; 1,0300 a 1.0900 gr/cm3). 
A avaliação da composição corporal através de técnicas antropométricas é económica e de 
aplicação simples e rápida. Desta forma são as técnicas antropométricas que mais se aplicam 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
25 
 
 
em estudos de campo, que implicam a avaliação de grande número de indivíduos. Para além 
disso, através destas técnicas podem ser avaliados os padrões de distribuição da gordura 
corporal e estabelecidos perfis antropométricos. 
Quando, para avaliar a densidade corporal e a gordura corporal total, se utilizam equações 
antropométricas cujas variáveis independentes são as pregas adiposas, é importante conhecer 
os pressupostos de utilização e as limitações que cada equação apresenta. Para além disso, 
como estas equações são específicas para a população que serviu de base à sua elaboração é 
fundamental que o utilizador se certifique das semelhanças em relação à idade, sexo, etnia, 
nível de actividade física e quantidade de gordura corporal, entre a população que pretende 
estudar e a população original. Deve igualmente garantir a similaridade quer do aparelho de 
medida quer da localização anatómica das pregas adiposas utilizadas. 
Normalmente as equações antropométricas desenvolvidas para predizer a densidade 
corporal utilizam como método standard de comparação a hidrodensitometria (pesagem 
hidrostática). Assim, o valor de densidade corporal, obtido a partir da pesagem hidrostática, 
será considerado como a variável dependente e as medidas antropométricas, obtidas antes da 
pesagem hidrostática, serão as variáveis independentes que permitirão predizer a densidade 
corporal. A equação de regressão múltipla final incluirá apenas a combinação das medidas 
antropométricas que melhor explicam a densidade corporal. 
O valor da densidade corporal obtido através das equações antropométricas é 
seguidamente utilizado para determinar a percentagem de gordura pela aplicação das 
fórmulas de Siri, de Brosek. 
Quando se empregam as equações antropométricas que utilizam o valor das pregas adiposas 
para predizer a densidade corporal assumem-se como verdadeiros os seguintes pressupostos: 
(1) A compressibilidade da pele e do tecido adiposo subcutâneo é constante; (2) A espessura 
das pregas não varia de local para local nem em populações distintas; (3) A distribuição relativa 
de gordura é constante em cada indivíduo; (4) A proporção entre a gordura profunda (2/3) e 
a gordura subcutânea (1/3) é constante, pelo que a massa gorda total pode ser determinada 
a partir da gordura subcutânea; (5) Existe uma relação linear entre a gordura corporal total e o 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
26 
 
 
valor das pregas adiposas; (6) Existe uma relação inversa entre a gordura subcutânea e a 
densidade corporal. 
Sabe-se, no entanto, que nem sempre aqueles pressupostos se verificam. Os factos que 
constituem potenciais fontes de erro são: (1) a variação da compressibilidades da pele em 
diferentes populações, em homens e mulheres (maior nos homens) e com a idade (menor nos 
indivíduos mais velhos), (2) a utilização, nas equações de regressão, de apenas algumas 
medidas de pregas adiposas não sendo considerados os padrões individuais de distribuição de 
gordura corporal. Sendo portanto aconselhável incluir, nas equações antropométricas, pregas 
da região superiore inferior do tronco, dos membros superiores e dos membros inferiores, (3) 
a alteração da razão entre gordura interna e externa que aumenta com a idade, é maior nas 
mulheres, podendo diminuir ou não sofrer alteração com o nível de gordura., (4) a diminuição 
da gordura subcutânea não resulta num aumento constante da densidade corporal. Por 
exemplo, se dois indivíduos com somatórios de pregas distintos apresentarem uma diminuição 
de 12 mm no valor total das pregas, a densidade corporal aumenta mais naquele que cujo 
somatório de pregas era menor e consequentemente a percentagem de gordura diminui. 
Os erros de predição associados às equações antropométricas são: (1) para atletas, entre 
0.0061 g/cm3 - 0.0080 g/cm3 (2.7 - 3.6%); (2) para não atletas, entre 0.0057 g/cm3 - 0.0125 
g/cm3 (2.7 - 3.6%). 
Considerando os erros associados à utilização das equações antropométricas devem 
fornecer-se ao indivíduo, não uma medida única de percentagem de massa gorda mas um 
intervalo de variação da gordura relativa (% MG  1 sd) para além do valor de percentagem de 
massa gorda. 
Face ao elevado número de equações antropométricas existentes, à sua especificidade em 
relação à população que serviu de base à sua dedução e à grande variabilidade de pregas 
adiposas que integram, haverá alguma forma de seleccionar as equações antropométricas 
tendo em vista a minimização dos erros associados à determinação da massa gorda ou da 
densidade corporal? 
Parece-nos importante que a quantidade relativa de gordura de um indivíduo ou grupo de 
indivíduos seja calculada através da utilização do maior número de equações possível 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
27 
 
 
escolhidas tendo em consideração: (1) O sexo, a idade, o nível maturacional e a etnia; (2) 
distribuição de gordura corporal. 
Neste caso deve calcular-se, em primeiro lugar, o somatório total das pregas adiposas do 
indivíduo ou grupo de indivíduos que foram avaliados. Em seguida calcula-se o somatório das 
pregas que integram cada equação antropométrica. Finalmente, seleccionam-se as equações 
cujo somatório de pregas se aproxime mais do somatório total de pregas adiposas 
apresentadas pelo indivíduo. 
 
Quadro 4.5. Equações para o cálculo da Densidade Corporal de acordo com o método de Dunin & Womersley 
(1974)
5
. 
Idades Masculino Feminino 
17-19 1.1620 – 0.0630 x log (TRI + BSF + SBS + SIL) 1.1549 – 0.0678 x log (TRI + BSF + SBS + SIL) 
20-29 1.1631 – 0.0632 x log (TRI + BSF + SBS + SIL) 1.1599 – 0.0717 x log (TRI + BSF + SBS + SIL) 
30-39 1.1422 – 0.0544 x log (TRI + BSF + SBS + SIL) 1.1423 – 0.0632 x (log (TRI + BSF + SBS + SIL) 
40-49 1.1620 – 0.0700 x log (TRI + BSF + SBS + SIL) 1.1333 – 0.0612 x (log (TRI + BSF + SBS + SIL) 
50+ 1.1715 – 0.0779 x log (TRI + BSF + SBS + SIL) 1.1339 – 0.0645 x (log (TRI + BSF + SBS + SIL) 
 
 
5
 Durnin JVGA, Womersley J. Body fat assessed from total body density and its estimation from skinfold 
thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutrition. 1974; 32: 77-97. 
 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
28 
 
 
Quadro 4.6. Equações de predição da densidade corporal (Dc) em atletas (Método: Pregas adiposas). 
Sexo Etnia/Idade/Modalidades Equação Referência 
Fe
m
in
in
o
 
Não especificada 
11 - 19 anos 
Track & Field, Ginástica, 
Mergulho e Luta 
Dc = 1.1046 – 0.00059 (TRI + SBS + MDX + SIL +ABD + CRL + GML) + 0.0000006 (TRI + SBS + MDX + SIL +ABD + CRL + GML) 2 , SEE = 0.0060 
Dc = 1.0987 – 0.00122 (TRI + SBS + SIL) + 0.00000263 (TRI + SBS + SIL) 2 , SEE = 0.0060 
Thorland et 
al. (1984) 
Não especificada 
11 - 41 anos 
Badminton, Basquetbol, Hokei, 
Lacrosse, Ginástica, Orientação, 
Halterofilismo, Remo, Track & Field, 
Netball, Futebol, Softbol e Voleibol 
Dc = 1.17484 – 0.07229 log10 (TRI + SBS + SESP + GML), SEE = 0.0064 
Dc = 1.1783 – 0.07179 log10 (TRI + SBS + PTL + SESP + GML), SEE = 0.0064 
Dc = 1.15931 – 0.06772 log10 (TRI + SESP + GML), SEE = 0.0066 
Dc = 1.18562 – 0.08258 log10 (TRI + SBS + GML), SEE = 0.0064 
Whiters et al. 
(1987) 
Não especificada 
14 - 17 anos 
Bailarinas 
Dc = 1.1533 – 0.0643 log10 (BIC+TRI+SBS+SIL) 
Eliakim et al. 
(2000) 
M
as
cu
lin
o
 
Não especificada 
19-22 anos 
Não especificadas 
Dc = 1.10647 – 0.00162(SBS) – 0.00144(ABD) – 0.00077 (TRI) + 0.00071(MDX), SEE = 0.0060 
Forsyth & 
Sinnig, (1973) 
Não especificada 
18-26 anos 
Voleibol, Ginástica, Basquetebol, 
Futebol, Lacrosse, L.evant de peso, 
Tênis, Soccer, Natação, Golf, Track, & 
Fields e Baseball 
Dc = 1.0982 – 0.000815 (TRI + SBS + ABD) + 0.00000084 (TRI + SBS + ABD)2, SEE = 0.0071 
Dc = 1.09665 – 0.00103 ( TRI) – 0.00056 (SBS) – 0.00554 (ABD) , SEE = 0.0072 
Dc = 1.1886 – 0.03049 log10 (PTL +ABD + CRL) – 0.00027 (idade), SEE = 0.0083 
Dc = 1.10938 - 0.0008267 (PTL + ABD + CRL) + 0.0000016(PTL + ABD + CRL)2 – 0.0002574 (idade) , SEE = 0.0077 
Dc = 1.21394 – 0.03101 log10 (SBS +MDX +PTL+ABD +SIL +TRI +CRL) – 0.00029 (idade), SEE = 0.0082 
Dc = 1.112 – 0.00043499 (PTL + MDX + TRI + SBS + ABD + SIL + CRL) + 0.00000055 (PTL + MDX + TRI + SBS + ABD + SIL + CRL)2 – 0.00028826 (idade), 
SEE = 0.0078 
Dc = 1.103 – 0.00168(SBS) – 0.00127 (ABD), SEE = 0.0060 
Sinning et al. 
(1985) 
Não especificada 
17.4 ± 1.0 anos 
Track & Field, Ginástica, Mergulho e 
Luta 
Dc = 1.1136 – 0.00154 (TRI + SBS + MDX) + 0.00000516 (TRI + SBS + MDX) 2 , SEE = 0.0056 
Dc = 1.1091 – 0.00052 (TRI + SBS + MDX + SIL + ABD + CRL + GML) + 0.00000032 (TRI + SBS + MDX + SIL + ABD + CRL + GML) 2 , SEE = 0.0055 
Thorland et 
al. (1984) 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
29 
 
 
A densidade corporal ou percentagem de massa gorda final obtém-se calculando a média 
aritmética dos valores determinados a partir das diferentes equações. 
No caso de se utilizarem equações de predição da densidade corporal pode-se determinar 
a quantidade relativa de gordura corporal através das fórmulas de Siri ou Brozek ou utilizando 
as formulas adaptadas de Siri apresentadas no Quadro X seleccionada de acordo com o sexo, a 
idade e a etnia do indivíduo que estamos a medir. 
Equação de Siri (1961): % MG = [(4.95 / DC) - 4.50] x 100 (07) 
Equação de Brozek (1963): % MG = [(4.57 / DC) – 4.142] x 100 (08) 
 
Quadro 4.7. Fórmulas para converter a densidade corporal em percentagem de massa gorda (Adaptado de 
Heyward & Stolarczyk, 1996). 
POPULAÇÃO IDADE SEXO % MASSA GORDA MLG (g/cm
3
) 
Índio Americano 18-60 Feminino [(4.81 / Dc) - 4.34] x 100 1.108 
Negro 18-32 Masculino [(4.37 / Dc) - 3.93] x 100 1.113 
 24-79 Feminino [(4.85 / Dc) - 4.39] x 100 1.106 
Hispânico 20-40 Feminino [(4.87 / Dc) - 4.41] x 100 1.105 
Japonês 18-48 Masculino [(4.97 / Dc) - 4.52] x 100 1.099 
 Feminino [(4.76 / Dc) - 4.28] x 100 1.111 
 61-78 Masculino [(4.87 / Dc) - 4.41] x 100 1.105 
 Feminino [(4.95 / Dc) - 4.50] x 100 1.100 
Branco 7-12 Masculino [(5.30 / Dc) - 4.89] x 100 1.084 
 Feminino [(5.35 / Dc) - 4.95] x 100 1.082 
 13-16 Masculino [(5.07 / Dc) - 4.64] x 100 1.094 
 Feminino [(5.10 / Dc) - 4.66] x 100 1.093 
 17-19 Masculino [(4.99 / Dc) - 4.55] x 100 1.098 
 Feminino [(5.05 / Dc) - 4.62] x 100 1.095 
 20-80 Masculino [(4.95 / Dc) - 4.50] x 100 1.100 
 Feminino [(5.01 / Dc) - 4.57] x 100 1.097 
Níveis de gordura 
Anorexia 15-30 Feminino [(5.26 / Dc) - 4.83] x 100 1.087 
Obeso 17-62 Feminino [(5.00 / Dc) - 4.56] x 100 1.098 
 
Conhecendo a percentagem de massa gorda (%MG) e a massa corporal do indivíduo 
calcula-se o peso de massa gorda (PMG) aplicando a seguinte regra de três simples: 
Massa Corporal - 100 
PMG- %MG 
Ou seja, 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
30 
 
 
PMG = (Massa Corporal x % MG) / 100 (09) 
Sabendo que, no modelo das duas componentes, a massa corporal total (MC) é igual à 
soma da massa gorda (PMG) e da massa livre de gordura (PMLG) então: 
PMLG = MC – PMG (10) 
Em certos casos é importante calcular o peso optimal (PO), ou seja, a massa corporal que 
um indivíduo deverá atingir se variar a sua quantidade relativa de gordura corporal mas 
mantiver a quantidade de massa livre de gordura. Para tal aplica-se a equação: 
PO = PMLG/(1 - % MG que se pretende atingir) (11) 
Considerando que a quantificação da gordura corporal é uma das formas de avaliação da 
composição corporal mais utilizada e que os limites de normalidade para a percentagem de 
gordura se alteram com a idade e com sexo, apresentamos de seguida tabelas de referência 
para a percentagem de gordura normal para crianças, adolescentes e adultos (Quadro 4.8 e 
4.9). 
 
Quadro 4.8. Percentagem de gordura normal para homens e mulheres. 
 18-25 anos 26-35 anos 36-45 anos 46-55 anos 56-65 anos 
M
as
cu
lin
o
 Excelente 4%-6% 8%-11% 10%-14% 12%-16% 13%-18% 
Bom 8%-10% 12%-15% 16%-18% 18%-20% 20%-21% 
Acima da média 12%-13% 16%-18% 19%-21% 21%-23% 22%-23% 
Normal 14%-16% 18%-20% 21%-23% 24%-25% 24%-25% 
Abaixo da média 17%-20% 22%-24% 24%-25% 26%-27% 26%-27% 
Mau 20%-24% 24%-27% 27%-29% 28%-30% 28%-30% 
Muito Mau 26%-36% 28%-36% 30%-39% 32%-38% 32%-38% 
Fe
m
in
in
o
 Excelente 13%-16% 14%-16% 16%-19% 17%-21% 18%-22% 
Bom 17%-19% 18%-20% 20%-23% 23%-25% 24%-26% 
Acima da média 20%-22% 21%-23% 24%-26% 26%-28% 27%-29% 
Normal 23%-25% 24%-25% 27%-29% 29%-31% 30%-32% 
Abaixo da média 26%-28% 27%-29% 30%-32% 32%-34% 33%-35% 
Mau 29%-31% 31%-33% 33%-36% 35%-38% 36%-38% 
Muito Mau 33%-43% 36%-49% 38%-48% 39%-50% 39%-49% 
Adaptado de Pollock & Wilmore (1993), citado por Filho (1999). 
 
 
 
 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
31 
 
 
 
Quadro 4.9. Percentagem de gordura normal para crianças e adolescentes dos 7 aos 17 anos. 
 Masculino Feminino 
Excessivamente Baixa  6%  12% 
Baixa 6.01% – 10.0% 12.01% - 15.0% 
Adequada 10.01% - 20.0% 15.01% - 25.0% 
Moderadamente Alta 20.01% - 25.0% 25.01% - 30.0% 
Alta 25.01% - 31.0% 30.01% - 36.0% 
Excessivamente Alta  31.01%  36.01% 
Adaptado de Deurenberg, P., Pieters, J.J.L. & Hautuast, J.G.L. (1990), citado por Filho, J.F. (1999). 
 
4.6.1.2.2. Modelo de três compartimentos 
 
Partindo-se do princípio de que a massa corporal total (kg) é igual à unidade e pode ser 
representada, no modelo de três compartimentos, pela soma da massa gorda, da água e da 
massa livre de gordura seca (MG+Ag+MLGs = 1) e assumindo como constantes as densidades 
de cada um destes componentes consegue-se deduzir uma equação que permite determinar a 
percentagem de gordura corporal a partir da densidade corporal e cuja dedução matemática 
(semelhante à do modelo anterior) é apresentada de seguida: 
DC = (MG +Ag+ MLGs) / [(MG/dmg)+(Ag/dAg)+ (MLGs /dmlgs)] (12) 
Como a densidade total do corpo é igual à soma das partes que o constituem, 
MG+ Ag +MLGseca = 1 (13) 
DC = 1 / [(MG/dmg)+( Ag/dAg)+ (MLGs / dmlgs) (14) 
Ou seja, 
1/ DC =[(MG/dmg)+( Ag/dAg)+ (MLGs / dmlgs)] (15) 
Resolvendo a equação em ordem a MG: 
MG = dmg { 1/ DC – (Ag/dAg) - [(1-MG- Ag)/ dmlgs]} (16) 
Substituindo na fórmula anterior as densidades da massa livre de gordura seca, da água e 
da massa gorda por 1.569 g/cm3, 0.9937 g/cm3 e 0.9007 g/cm3, respectivamente, obtemos: 
MG = 0.9007 { 1/ DC – (Ag /0.9937) - [(1-MG-Ag)/ 1.569]} (17) 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
32 
 
 
MG = 0.9007/ DC – 0.906410 Ag -0.574060+0.574060 MG+0.574060 Ag (18) 
0.425940 MG = 0.9007/ DC – 0.332350 Ag -0.574060 (19) 
MG = 2.114617/ DC – 0.780274 Ag – 1.347749 (20) 
Chegamos assim à equação final: 
% MG = [(211.5/ Dc) – (78.0 Aga )– 134.8] (21) 
Onde: 
Aga = Ag (kg)/massa corporal (kg) (22) 
A água total pode ser calculada como recurso às seguintes equações apresentadas no 
quadro 4.10. 
 
Quadro 4.10. Anthropometry-derived TBW (Total body Water) calculation. 
Nomenclatura 
Equação Referência 
UK PT 
TBW-58 Ag-58 
0.58 x Peso (kg) Keshaviah 
(1991)
6
 
TBW-W Ag-W 
Masculino: Ag = 2.447 – (0.09156 x Idade) + (0.1074 x Estatura) + (0.3362 x 
Peso) 
Feminino: Ag = -2.097 + (0.1069 x Estatura) + (0.2466 x Peso) 
Watson et al. 
(1980)
7
 
TBW-H Ag-H 
Masculino: Ag = (0.194786 x Estatura) + (0.296785 x Peso) – 14.012934 
Feminino: Ag = (0.34454 x Estatura) + (0.183809 x Peso) – 35.270121 
Hume & 
Weyers 
(1971)
8
 
TBW-C Ag-C 
Ag = -0.07493713 x Idade – 1.01767992 x Masculino + 0.12703384 x Estatura – 
0.04012056 x Peso + 0.57894981 x Peso + 0.57894981 x Peso + 0.57894981 x 
Diabetes – 0.00067247 x Peso
2
 – 0.03486146 x (Idade x Masculino) + 
0.11262857 x (Masculino x Peso) + 0.00104135 x (Idade x Peso) + 0.0186104 x 
(Estatura x Peso), Onde: Masculino = 1; Diabetes = 1. 
Chertow et 
al. (1997)
9
 
 
 
6Keshaviah, P. R. (1991). Quantitative approaches to prescribing peritoneal dialysis. In: La Greca, G., Ronco, C., Feriani, M., 
Chairamonte, S., Conz, P., eds. Peritoneal Dialysis: Proceedings of the Fourth international Course on Peritoneal Dialysis. 
Wichtig Editore, Milano, pp. 53-60. 
7 Watson, P. E., Watson, I. D., Batt, R. (1980). Total body water volumes for adult male and females estimated from simple 
anthropometric measures. Am J Clin Nutr, 33, 27-39. 
8 Hume, R., Weyes, E. (1971). Relationship between total body water and surfasse área in normal and obese subjects. J. Clin 
Pathol, 24, 234-238. 
9 Chertow, G. M., Lazarus, J. M., Lew, N. L., Ma, L., Lowrie, E. G. (1997). Development of a population-specific regression 
equation to estimate total body water in hemodialysis patients. Kidney Int, 51, 1578-1582. 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
33 
 
 
4.6.1.2.3. Modelo dos 4 compartimentos 
 
O modelo de avaliação da composição corporal de quatro compartimentos de proposto 
por Norton e Olds (1996), apresenta duas variantes: 
MC = MG + Ag + MO + MR (23) 
MC = MG + Ag + MO + Pt (24) 
A composição corporal de quatro compartimentos também pode ser avaliada de acordo 
com o seguinte somatório: 
MC = MG + MO + MM + MR (25) 
Estes são alguns exemplos de equações de predição que podem ser utilizadas para o 
cálculo dos componentes corporais: 
 
4.6.1.2.3.1. Massa Gorda (MG) 
 
Pode ser calculada a partir das equações apresentadas no Quadro 4.11. 
 
MG = % MG x PESO (26) 
 
 
 
10 LEGID, J., SEGOVIA, J. & SILVARREY, F. (1996). Manual de Valoración Funcional. Ediciones Eurobook. 
Quadro 4.11. Equações de predição da massa adiposa. 
Referência Equação 
Faulkner (1968)
a
 MG (%) = Ʃ4skinfolds (TRI + SBS + SIL + ABD) x 0.153 + 5.783Yuhasz (1974) 
MG (♂, %) = 0.1051 * (Ʃ4skinfolds (TRI + SBS + SIL + GEM)) + 2.585 
MG (♀, %) = 0.1548 * (Ʃ4skinfolds (TRI + SBS + SIL + GEM)) + 3.580 
a
Resulta da equação de Yuhasz (1962)
10
 
ABSF = TRI – Prega Tricipital; SBS – Prega Subescapular; SIL - Prega Iliocristal ou Suprailíaca. 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
34 
 
 
4.6.1.2.3.2. Massa Muscular (MM) 
 
Pode ser calculada a partir das equações apresentadas no Quadro 4.12. 
 
 
 
11 Matiegka, J. (1921). The testing of physical efficiency. Am J Phys Anthropol, 4 (3), 423-430. 
12 Heymsfield, S. B., McManus, C., Smith, J., Stevens, V. and Nixon, D. W. (1982). Anthropometric measurement of muscle 
mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr, 36, 680-690 
13 Martin, A.D., Spenst, L.F., Drinkwater, D.T. and Clarys, J.P. (1990). Anthropometric estimation of muscle mass in men. 
Medicine and Science in Sport and Exercise, 22(5), 729-733. 
14 Lee, R. C., Wang, Z., Heo, M., Ross, R., Janssen, I. and Heymsfield, S. B. (2000). Total-body skeletal muscle mass: 
development and cross-validation of anthropometric prediction models. Am J Clin Nutr, 72 (3), 796-803. Erratum in: Am J Clin 
Nutr 2001 May;73 (5):995. 
15 Doupe, M.B., Martin, A.D., Searle, M.S., Kriellaars, D.J. and Giesbrecht, G.G. (1997). A new formula for population-based 
estimation of whole body muscle mass in males. Can. J. Appl. Physiol., 22(6), 598-608 
Quadro 4.12. Equações de predição da massa muscular (UK). 
Reference Equations 
Matiegka (1921)
11
 MMUSCLE (g) = r
2 
* HT(cm) * 6.5 
r = (r1 + r2 + r3 + r4) / 4 
r1 to r4 being the average radii (cm) of the extremities without skin and 
subcutaneous adipose tissue as determined from circumferences and skinfolds 
measured on (i) r1 – the flexed arm above the belly of the biceps, (ii) r2 – the 
forearm at the maximum girth, (iii) r3 – the thigh halfway between the trochanter 
and the lateral epicondyle of the femur, and (iv) r4 – the leg at the maximum calf 
girth. 
Heymsfield et al. (1982)
12
 MM = HT(cm
2
) * (0.0264 + 0.0029 * SARM), SARM = 9 to 11 cm
2
 
(♀) SARM (cm
2
) = ((FAG(cm) – π * TPSF)
2
 / 4 * π) - 6.5; 
(♂) SARM(cm
2
) = ((FAG(cm) – π * TPSF)
2
 / 4 * π) - 10 
Martin et al. (1990)
13
 MM = HT(cm) (0.0553 * CTHG
2
 + 0.0987 * FAG
2
 + 0.0331 * CCAG
2
) – 2445 
(R
2
 = 0.97, SEE = 1.53) 
Lee et al. (2000) 
1st 14
 MM (kg) = HT(m) * (0.00744 * CAGR(cm)
2
 + 0.00088 * CTHG(cm)
2
 + 0.00441 * 
CCAG(cm)
2
) + 2.4 * Sex - 0.048 * Age + Race + 7.8 
(R
2
 = 0.91, SEE = 2.2 kg) 
Sex = 0 for female and 1 for male; Race = -2.0 for Asian, 1.1 for African American, and 
0 for white and Hispanic. 
Lee et al. (2000) 
2nd
 MM (kg) = 0.244 * WT + 7.80 *HT + 6.6 * Sex - 0.098 * Age + Race -3.3 
(R
2
 = 0.86, p < 0.0001, SEE = 2.8 kg) 
Sex = 0 for female and 1 for male; Race = -1.2 for Asian, 1.4 for African American, and 
0 for white and Hispanic. 
Doupe et al. (1997)
15
 MM (g) = HT * ((0.031 * CTHG
2
) + (0.064 * CCAG
2
) + (0.089 * CAGR
2
)) - 3006 
Legend: CAGR = Upper arm girth corrected for triceps skinfold; CCAG = Calf girth corrected for medial calf skinfold; 
CTHG = Thigh girth corrected for front thigh skinfold; FAG = Forearm girth; HT = Height; SARM = Corrected arm 
muscle area; WT = weight. 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
35 
 
 
4.6.1.2.3.3. Massa Óssea (MO) 
 
Utiliza a equação de Van Dobeln, modificada por Rocha (1974)16,17 que inclui a estatura e 
dois diâmetros ósseos: 
MO (kg) = 3.02 x (ALT2 x DSU x DBCF x 400)0.712 (27) 
Sendo, 
ALT – Altura; DBCF – Diâmetro Bicôndilo-Femural; DSU – Diâmetro Estilio-Ulnar. 
 
4.6.1.2.3.4. Massa Residual (MR) 
 
Calcula-se pelas constantes propostas por Wurch (1974)18,3, e inclui órgãos, líquidos, etc. 
Masculino: MR (kg) = PESO x 24.1 / 100 (28) 
Feminino: MR (kg) = PESO x 20.9 / 100 (29) 
 
4.6.1.2.4. Fraccionamento da massa em 5 componentes 
 
O método de avaliação da composição corporal é indirecto, consistindo no fraccionamento 
antropométrico da massa corporal em 5 componentes estruturais (Kerr, 1988; Ross et al., 
2004): (1) pele; (2) tecido adiposo; (3) músculo; (4) osso; (5) tecido residual. 
 
 
 
16 Rocha, M. (1975). Peso ósseo do brasileiro de ambos os sexos de 17 a 25 anos. Arquivos de Anatomia e Antropología, 1: 
445-451. 
17 De Rose, E., Pigatto, E., & De Rose, R. (1984). Cineantropometria, educação física e treinamento desportivo. Rio de Janeiro: 
FAE, 1984;80. 
18 Würch, A. (1974). La femme et le sport. Med Sport Française , 4: 441-445. 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
36 
 
 
4.6.1.2.4.1. Predicção da Massa da Pele (M PELE) 
 
Para calcular a superfície corporal: 
SC= CSA x PESO
0.425 x ALT0.725 / 10000 (30) 
Onde: 
SC = Superfície, em m2; 
Csa = 68.308 sexo masculino com idade > 12 anos 
 73.074 sexo feminino com idade > 12 anos 
 70.691 para rapazes e raparigas com idade < 12 anos 
 ou utilizar a média do valor feminino e masculino de Csa > 12 anos 
PESO = Massa corporal expressa como peso, em Kg; 
ALT = Estatura ou altura, em cm. 
 
Para calcular a massa da pele: 
MS = SC x TSK x 1.05 (31) 
Onde: 
MS = Massa da pele, em kg; 
SC = Superfície, em m2; 
TSK = 2.07 – espessura da pele para o sexo masculino (dado obtido a partir de 
cadáveres), em mm; 1.96 mm – espessura da pele para o sexo feminino (dado 
obtido a partir de cadáver) em mm; 
1.05 = Densidade da pele (dado obtido de dissecção cadavérica). 
 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
37 
 
 
4.6.1.2.4.2. Predição da Massa Esquelética ou Óssea (M ÓSSEA TOTAL) 
 
A massa esquelética ou óssea resulta do cálculo da massa óssea da cabeça e da massa 
óssea do corpo. 
 
4.6.1.2.4.2.1. A Massa Óssea da Cabeça (M ÓSSEA CABEÇA) 
 
Para calcular o score de proporcionalidade Phantom para a massa óssea da cabeça: 
Z ÓSSEA CABEÇA = (PCAB – 56.0) / 1.44 (32) 
Onde: 
PCAB = Perímetro da cabeça; 
56.0 = Perímetro Phantom da cabeça, em cm; 
1.44 = Desvio standard Phantom para o perímetro da cabeça. 
 
Para calcular a massa óssea da cabeça: 
M ÓSSEA CABEÇA = (Z ÓSSEA CABEÇA x 0.18) + 1.20 (33) 
Onde: 
M ÓSSEA CABEÇA = Massa óssea da cabeça, em kg; 
Z ÓSSEA CABEÇA = Score de porporcionalidade Phantom para a massa óssea da 
cabeça; 
0.18 = Constante do método para desvio standard da massa óssea Phantom da 
cabeça, em kg; 
1.20 = Constante do método para média da massa óssea Phantom da cabeça, 
em kg. 
FMH, UTL 
MTAR, CMDD, (4) Composição corporal 
38 
 
 
4.6.1.2.4.2.2. A Massa Óssea da Corpo (M ÓSSEA CORPO) 
 
O cálculo da massa óssea do corpo inicia-se com o cálculo do seguinte somatório: 
S ÓSSEA CORPO = Σ (DBA + DBC + (2 x DBCU) + (2 x DBCF) (34) 
Onde: 
DBA = Diâmetro biacromial; 
DBC = Diâmetro bicristal; 
DBCU = Diâmetro bicôndilo-umeral; 
DBCF = Diâmetro bicôndilo-femoral. 
 
Para calcular o score de proporcionalidade Phantom para a massa óssea do corpo: 
Z ÓSSEA CORPO = [S ÓSSEA CORPO x (170.18 / ALT) – 98.88] / 5.33 (35) 
Onde: 
170.18 = Constante de altura Phantom; 
ALT = Altura do sujeito; 
98.88

Outros materiais