Buscar

Fisica experimental - exp IV - Teorena me Stevin

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Universidade Estácio de Sá
Curso de Engenharia de Telecomunicações
Disciplina – Física Experimental II
TEMA
PRINCIPIO DE STEVIN
 
Aluno – Heverton Vieira – 201402052677
Turma – 3011
INTRODUÇÃO.
 A experiência tem como objetivo apresentar o conceito que rege o Principio de Stevin através de dados coletados em praticas realizadas. O conhecimento de pressão manométrica será o foco em questão, onde serão relacionadas observações a respeito da característica física do liquido, mediante as equações pertinentes. Nesta atividade, utilizaremos manômetros de tubo de vidro conhecidos por manômetros de tubo aberto. O manômetro de tubo aberto é basicamente um tubo de vidro em forma de U, com uma porção líquida no seu interior (trecho yy’). O prolongamento de um dos seus ramos se encontra no interior do recipiente cuja pressão desejada se pretende medir enquanto a outra fica livre e em contato com a camada atmosférica. No equilíbrio, o valor da pressão manométrica que atua na superfície do liquido manométrico, é dada pela seguinte relação: 
Pm = µgΔh = P1
 Esse conceito se relaciona também com o Teorema de Stevin, ou o princípio fundamental da hidrostática, a partir do momento em que há uma variação de pressão entre dois pontos.
ΔP = µgΔh
 "A diferença entre as pressões de dois pontos de um fluido em equilíbrio é igual ao produto entre a densidade do fluido, a aceleração da gravidade e a diferença entre as profundidades dos pontos."
2.	OBJETIVO.
 Executar o passo a passo das experiências no intuito de elucidar a utilização do manômetro para aquisição da habilidade proposta com as questões denotadas da experiência, verificando que a pressão manométrica indicada num ponto situado a uma determinada profundidade de um liquido em equilíbrio é igual ao produto do peso específico pela profundidade do ponto, que sua pressão é igual à pressão que atua sobre a superfície livre do líquido mais o produto do peso específico pela profundidade do ponto e reconhecer que dois pontos situados no mesmo nível de um líquido em equilíbrio suportam pressões iguais.
	Reconhecer que a diferença de pressão entre dois pontos, no interior de um líquido em equilíbrio é igual ao produto do desnível entre os dois pontos pelo peso específico do líquido.
 - Procedimento Experimental
 Foi adicionado com o auxílio de uma seringa e um prolongador, 3 ml de água no manômetro, com as terminações abertas; para que não gerasse bolhas e que ficasse em nível, diminuindo a taxa de erro de leitura.
 - Materiais Utilizados: 
 - 01 Painel hidrostático.
 - 01 Suporte com haste, tripé e sapatas niveladoras.
 - 01 Seringa de 10 ml com prolongador.
 - 01 Copo de Becker de 250 ml.
 - 01 volume de Água.
Questionário: 
 * 4.2 - Qual a pressão manométrica que atua, neste caso, sobre a superfície aberta y do manômetro? Justifique sua resposta. 
 R: Devido ao fato de estarmos no nível do mar, toma-se a consideração de que a pressão que atua de 0 m seria de 1 Atm, o que anularia qualquer leitura manométrica.
 *4.3 - Supondo que a superfície y’ suba 5 mm, quantos milímetros deve descer a superfície y?
 R: 5 mm
 *4.4 - Qual é, nesse caso, o desnível manométrico Delta H? 
 R: 5 mm
 * 4.5 - Supondo o tubo do manômetro uniforme, qual o desnível para uma ascensão de 4 mm para 7,5 mm na superfície y’ do líquido manométrico? 
 R: 3,5mm
 *4.6 - Para determinar o Delta H faça a leitura da variação de posição sofrida pelas superfícies y e y’ numericamente em milímetros. 
 R: 34mm – 26mm = 8mm
 *4.7- Introduza o valor numérico do Delta direto na expressão do calculo da pressão manométrica.
R: Delta H = 8mm.
Anotações das posições hy e hy’ ocupadas pelas suas superfícies manométricas: 
 R: B3 = 28 – A3=28
 * 4.10 Existe alguma relação entre a pressão (devida à massa líquida) em um ponto de um líquido em equilíbrio e a profundidade deste ponto? Represente matematicamente esta relação. 
 R: Sim, quanto maior a profundidade maior a pressão que atua sobre o ponto, pois na fórmula a pressão é diretamente proporcional à densidade, que relaciona a massa, e à profundidade.
 Pm = μg∆h, onde Pm é pressão manométrica, μ é densidade, g é gravidade e ∆h é profundidade.
* 4.11 Como é determinada a constante de proporcionalidade “P” existente entre P e h?
 R: Peso especifico. 
•	Verifique as posições de y e y’ ocupadas pelas superfícies manométricas e complete a primeira linha da Tabela 1.
Tabela 1 – Dados experimentais.
	Temperatura durante as medições = ____28 ºC Aproximadamente
	Profundidade 
hcopo de backer
	Dados no manômetro
	
	y’ (mm)
	y (mm)
	Δhy (mm)
	Pm = 9,8. Δh (N/m²)
	h1 = mm
	 28 mm
	 28 mm
	 00 mm
	 0 x 9,8 = 00 Nm²
	h2 = mm
	 30 mm
	 26 mm
	 4 mm
	 4 x 9,8 = 39,2 Nm²
	h3 = mm
	 31 mm
	 25 mm
	 6 mm
	 6 x 9,8 = 58,8 Nm²
	h4 = mm
	 32 mm
	 24 mm
	 8 mm
	 8 x 9,8 = 78,4 Nm²
	h5 = mm
	 33 mm
	 23 mm
	 10 mm
	 10 x 9,8 = 98 Nm²
* 4.12 Determine o valor do peso específico “” do líquido contido no becker e qual a sua unidade de medida em SI?
 R: 165 x 10 = 1650 N.
 * 4.13 Mostre que a equação obtida (P=ph) pode ser expressa como: 
R: 165 x 9,8 x 10. 
 * 4.14 Trace o gráfico Pm versus a profundidade h. 
P = Po + μ g h 
 4 – Conclusão - Ao término do experimento, foi constatado que a pressão que atua no painel, é a atmosférica, mesmo utilizando a pinça para fechar uma das extremidades, a outra permaneceu aberta, podendo assim, sofrer a ação desta pressão. Em uma segunda situação, com as duas extremidades fechadas, verificou-se que a pressão é a manométrica. Posteriormente, pode-se averiguar a relação entre a pressão manométrica em um ponto de um liquido em equilíbrio e a profundidade deste ponto, quanto maior a profundidade, maior a pressão.
 E ao final deste trabalho, foi possível concluir de que maneira os conceitos de pressão atuam em um sistema relacionado ao experimento. 
Bibliografia:
•	Apostila de Física Experimental II, Roteiros para Experimentos de Física.
•	HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. v. 2. 6. ed. Rio de Janeiro, RJ 2006.
•	HALLYDAY, D.; RESNICK, R.; WALKER J. Fundamentos de Física, Vol. 2: gravitação, ondas e termodinâmica. 8° Edição. Rio de Janeiro, LTC, 2011.

Outros materiais