Buscar

Biofísica da Função renal

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Biofísica da Função renal 
A função renal é formada por um conjunto de órgãos que filtram o sangue, produzem e excretam a urina - o principal líquido de excreção do organismo. É constituído por um par de rins, um par de ureteres, pela bexiga urinária e pela uretra.
1. O Rim
O rim destaca-se no Sistema Renal por ser a unidade funcional do mesmo. Este é um dos emunctórios destinados a manter a constância do meio interno. Pode-se dizer que a função do rim é: "Cooperar na manutenção do regime estacionário do meio interior." É ele que excreta a maioria dos subprodutos metabólicos do corpo - exclua gás carbônico e um pouco de água que partem pelos pulmões. Eles também regulam a concentração da maioria das químicas no plasma sanguíneo. Cada rim contém mais de 1 milhões de néfrons. Cada néfron é uma unidade completa.
 Figura 1. Secção de um rim
Para desempenhar esse papel, o rim exerce, entre outras, as seguintes funções, em relação ao meio interno:
* Controle do volume hídrico;
* Controle do pH;
* Controle da osmolaridade. 
Essa tarefa renal é feita através da Excreção e Reabsorção de vários íons, metabólitos e substâncias exógenas, e principalmente, água. Para excretar e reabsorver, o rim usa três processos bem delineados:
1. Filtração Glomerular – Nessa etapa, o rim filtra do plasma sanguíneo todas as substâncias de baixa massa molecular, retendo quase a totalidade das proteínas. Esse processo se realiza no glomérulo.
2. Reabsorção Tubular – Nessa etapa, o rim escolhe as substâncias que devem voltar, e devolve essas substâncias ao meio interno. Esse processo se passa nas estruturas que vêm após o glomérulo.
3. Secreção Tubular – Nessa etapa, o rim expulsa substâncias que foram filtradas, mas devem ser excretadas em quantidade maior do que a filtrada. É um mecanismo complementar a da filtração. A secreção se dá em estruturas pós-glomerulares. A secreção é um mecanismo importante nos processos de regulação do meio interno. Existem processos secretórios ativos e passivos. Em resumo, as funções principais do rim, são:
Função mecanismo:
Excreção
Filtração Glomerular 
Secreção Tubular
Reabsorção
Reabsorção Tubular
2. Néfron
Figura 2.Unidade básica: Néfron
A unidade básica é o néfron figura 2. O funcionamento do néfron, em linhas gerais, é bastante simples:
1º O sangue entra pela artéria aferente passa pelos capilares glomerulares, sai pela artéria eferente, e circula com íntima proximidade com o setor urinário, dividindo seu fluxo entre os capilares peritubulares , (por onde passa a maior parte) e pelos vasos retos. 
2º Em seguida os dois fluxos desembocam na veia renal, voltando á circulação venosa geral. Ao passar pelo glomérulo, uma fração de água, e pequenos solutos, passa pela membrana filtrante, deixando um sangue enriquecido em proteínas, passar pela artéria eferente. Ocorreu a filtração.
3º O líquido filtrado é contido pela cápsula de Bowman, que é impermeável, e envolve o glomérulo. Daí, o fluxo filtrado se desloca para os túbulos proximais, alça de Henle, e passa aos tubos distais, e daí ao tubo coletor.No trajeto entre os túbulos proximais e tubo coletor ocorrem os mecanismos de Reabsorção e Secreção.
Na reabsorção, parte dos componentes do filtrado volta ao setor sanguíneo e na secreção, ao contrário, substâncias do setor A vão para o setor urinário. Ao fim dos tubos coletores, já praticamente como urina o fluido passa aos cálices ureteres e bexiga. Está formada a urina.
2.1O funcionamento do Néfron
2.1.1Os Mecanismos Básicos Renais 
Filtração – Reabsorção – Excreção
Figura 3. Funcionamento de um Néfron
Um modelo interessante para estudar esses três processos renais, é o da figura 3, que representa um néfron simplificado. Nesse modelo, os três processos ocorrem da seguinte forma:
Filtração – A membrana filtrante está sempre aberta, e permite a passagem de substâncias que podem ser filtradas. 
O transporte é passivo.
Reabsorção – Se a comporta R estiver fechada, para uma determinada substância, não há reabsorção. Se estiver aberta, essa substância é reabsorvida. O processo pode ser ativo ou passivo.
Secreção – Se a comporta S estiver fechada para uma determinada substância, não há secreção. Se estiver aberta, essa substância é secretada. O processo pode ser ativo ou passivo.
2.1.2 Filtração Glomerular 
A filtração do plasma nos glomérulos obedece às diferenças de pressão existentes no glomérulo. A pressão nas artérias arqueadas é de aproximadamente 100 mmHg. As duas principais áreas de resistência ao fluxo renal através do néfron são as arteríolas aferente e eferente. A pressão de 100 mmHg na arteríola aferente, cai para uma pressão média de 60 mmHg nos capilares do glomérulo, sendo esta a pressão que favorece a saída do filtrado do plasma para a cápsula de Bowman. A pressão no interior da cápsula de Bowman é de cerca de 18 mmHg. Como nos capilares glomerulares 1/5 do plasma filtra para o interior da cápsula, a concentração de proteínas aumenta cerca de 20% à medida que o sangue passa pelos capilares do glomérulo, fazendo com que a pressão coloido-osmótica do plasma se eleve de 28 para 36 mmHg, com um valor
Figura 4. Detalhe Glomérulo
médio de 32 mmHg, nos capilares glomerulares. A pressão no interior da cápsula de Bowman e a pressão coloido-osmótica das proteínas do plasma são as forças que tendem a dificultar a filtração do plasma nos capilares glomerulares. Dessa forma a pressão efetiva de filtração nos capilares glomerulares é de apenas 10 mmHg, ou seja, a diferença entre a pressão arterial média nos capilares (60 mmHg) e a soma da pressão da cápsula de Bowman com a pressão coloido-osmótica do plasma. A membrana capilar glomerular tem poros de aproximadamente 30 angstroms de diâmetro e, portanto, partículas de maiores dimensões, podem atravessar esses poros. Seu peso molecular é da ordem de 80.000 a 90.000 daltons. A destruição normal de hemácias produz uma pequena quantidade de hemoglobina livre no plasma sanguíneo. 
Os glomérulos dispõem de um mecanismo especial capaz de manter essas pequenas quantidades de hemoglobina livre em concentrações de aproximadamente 5%. Se a destruição de hemácias aumenta e gera concentrações de hemoglobina elevadas (100-125 mg%), os mecanismos glomerulares de processamento da hemoglobina se esgotam e ocorre a filtração para a urina. Como a hemoglobina filtrada não é reabsorvida, esse pigmento protéico aparece na urina; é a hemoglobinúria. Portanto, quando a hemoglobina aparece na urina significa que houve uma grande quantidade de destruição de hemácias. Diversos fatores podem afetar a filtração glomerular. O fluxo sanguíneo renal aumentado pode aumentar o coeficiente de filtração e a quantidade final de urina produzida. O grau de vaso constrição das arteríolas aferentes dos glomérulos faz variar a pressão glomerular e consequentemente a fração de filtração glomerular. O mesmo ocorre na estimulação simpática neurogênica ou através de drogas simpáticas como a adrenalina, por exemplo. O estímulo pela adrenalina produz constrição intensa das arteríolas aferentes, com grande redução da pressão nos capilares glomerulares que podem reduzir drasticamente a filtração do plasma e consequente formação de urina. 
Forças físicas na filtração
Por que se forma o filtrado? 
A causa é a soma das forças a favor e contra a formação, com resultante a favor. O mecanismo é simples: as forças similares de cada setor (sanguíneo e urinário) se opõem. A PosmU pela falta de proteínas é desprezível e não é considerada. Essa pressão é suficiente para expulsar o fluido, e os solutos de pequena massa molecular, que vão constituir o filtrado. A pressão de filtração Pfil, é um mecanismo altamente eficiente para controlar o volume filtrado. Quando Pfil aumenta ou diminui, o volume do filtrado acompanha as variações. Esse mecanismo é feito através da vaso constrição das artérias aferente e eferente. A vaso constrição pode ocorrer simultaneamente nas artérias aferentes e eferentes, e o volume do filtrado continuar o mesmo. Isso ocorre em situaçõesemergenciais, quando é necessário desviar o grande fluxo sanguíneo renal para outros setores.
Ritmo da filtração glomerular
A quantidade (volume) de plasma que é filtrado por minuto, recebe o nome de RFG, e constitui um parâmetro fundamental em nefrologia. O RFG é cerca de 21% do FRP, ou seja:RFG = 600 x 21 = 125 ml.min-1100Isto é, aproximadamente 1/5 do FRP é espremido como filtrado no glomérulo. Esse RFG em 24 horas é:RFG = 125 ml. Min-1 x 60 min.h-1 x 24 = 180.000 ml. 24h-12.1.3 
Reabsorção Tubular 
O filtrado glomerular que alcança os túbulos do néfron flui através do túbulo proximal, alça de Henle, túbulo distal e canal coletor, até atingir a pelve renal. Ao longo desse trajeto mais de 99% da água filtrada no glomérulo é reabsorvida, e o líquido que penetra na pelve renal constitui a urina propriamente dita. O túbulo proximal é responsável pela reabsorção de cerca de 65% da quantidade de água filtrada nos capilares glomerulares, sendo o restante reabsorvido na alça de Henle e no túbulo distal. A glicose e os aminoácidos são quase inteiramente reabsorvidos com a água enquanto outras substâncias, por não serem reabsorvidos nos túbulos, tem a sua concentração no líquido tubular aumentada em cerca de 99 vezes. A reabsorção da glicose exemplifica bem os mecanismos de reabsorção de determinadas substâncias dentro dos túbulos renais. Normalmente não existe glicose na urina ou no máximo, existem apenas ligeiros traços daquela substância, enquanto no plasma a sua concentração oscila entre 80 e 120 mg%. Toda a glicose filtrada é rapidamente reabsorvida nos túbulos. À medida que a concentração plasmática de glicose se aproxima dos 200 mg%, o mecanismo reabsortivo é acelerado até atingir o ponto máximo, em que a reabsorção se torna constante, não podendo ser mais aumentada. Esse ponto é chamado limiar de reabsorção da glicose. Acima do valor plasmático de 340 mg%, a glicose deixa de ser completamente absorvida no sistema tubular e passa para a urina, podendo ser facilmente detectada pelos testes de glicosúria. Os produtos terminais do metabolismo, como a uréia, creatinina e uratos têm outro tratamento nos túbulos renais. Apenas quantidades moderadas de uréia, aproximadamente 50% do total filtrado, são reabsorvidas nos túbulos enquanto a creatinina não é reabsorvida. Os uratos são reabsorvidos em cerca de 85%, da mesma forma que diversos sulfatos, fosfatos e nitratos. Como todos são reabsorvidos em muito menor proporção que a água, a sua concentração aumenta significativamente na urina formada. A reabsorção nos túbulos renais obedece à diferença de concentração das substâncias entre o espaço intersticial peritubular e os vasos retos peritubulares. A reabsorção de água é dependente da reabsorção de íon sódio, que é o soluto mais reabsorvido nos túbulos renais. Existem ainda dois mecanismos de intercâmbio muito importantes. O primeiro se refere à troca de íon sódio (Na+) pelo íon hidrogênio (H+), nos túbulos, como parte dos mecanismos de regulação renal do equilíbrio ácido-básico. Quando há necessidade de eliminar íon hidrogênio, os túbulos secretam ativamente o hidrogênio para a luz, dentro do filtrado e, em troca, para manter o equilíbrio iônico absorvem o íon sódio. O outro mecanismo de intercâmbio corresponde à reabsorção de íons cloreto (Cl-) quando há necessidade de se eliminar ácidos orgânicos pelo mecanismo de secreção tubular. Os mecanismos de transporte na reabsorção tubular podem ser ativos ou passivos, dependendo da necessidade de utilizar energia celular para a sua realização. O sódio, a glicose, os fosfatos e os aminoácidos estão entre as substâncias cujo transporte é feito com utilização de energia celular, transporte ativo, enquanto o transporte da água, uréia e cloretos não necessitam consumir a energia das células (transporte passivo).·Uso da Reabsorção para Controle Homeostático Conforme as necessidades metabólicas do meio interno, o rim pode reabsorver mais ou menos, oi íons K+, Na+, Cl-, HCO3--, H2PO4+, e ainda, secretar H+ ou NH4+, para controlar o pH e a osmolaridade do meio interno.
Figura 5– capilares que reabsorvem as substâncias úteis dos túbulos renais
Transporte Máximo de Reabsorção 
Tal parâmetro está relacionado com a capacidade máxima de reabsorção de uma substância. Seu conceito é o seguinte: A glicose, como já mencionado, é 100% reabsorvido do filtrado. No entanto, observa-se que, em diabéticos, aparece glicose na urina, quando a concentração plasmática de glicose excede certo nível. Isso ocorre porque a concentração de glicose no filtrado (a mesma do plasma) excedeu a capacidade máxima de reabsorção do rim. Esse nível de reabsorção máximo, expressado em mg.min-1 é o Transporte máximo de reabsorção

Outros materiais

Materiais relacionados

Perguntas relacionadas

Materiais recentes

Perguntas Recentes