[CRC series in pure and applied physics] Mathur, Vishnu Swarup Singh, Surendra Concepts in quantum mechanics (2009, Chapman and Hall CRC)
Pré-visualização50 páginas
Series in PURE and APPLIED PHYSICS Concepts in Quantum Mechanics C7872_FM.indd 1 11/7/08 2:35:20 PM Handbook of Particle Physics M. K. Sundaresan High-Field Electrodynamics Frederic V. Hartemann Fundamentals and Applications of Ultrasonic Waves J. David N. Cheeke Introduction to Molecular Biophysics Jack A. Tuszynski Michal Kurzynski Practical Quantum Electrodynamics Douglas M. Gingrich Molecular and Cellular Biophysics Jack A. Tuszynski Concepts in Quantum Mechanics Vishu Swarup Mathur Surendra Singh C7872_FM.indd 2 11/7/08 2:35:20 PM A C H A P M A N & H A L L B O O K CRC Press is an imprint of the Taylor & Francis Group, an informa business Boca Raton London New York Series in PURE and APPLIED PHYSICS Vishnu Swarup Mathur Surendra Singh Concepts in Quantum Mechanics C7872_FM.indd 3 11/7/08 2:35:20 PM Chapman & Hall/CRC Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2009 by Taylor & Francis Group, LLC Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4200-7872-5 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga- nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Mathur, Vishnu S. (Vishnu Swarup), 1935- Concepts in quantum mechanics / Vishnu S. Mathur, Surendra Singh. p. cm. -- (CRC series in pure and applied physics) Includes bibliographical references and index. ISBN 978-1-4200-7872-5 (alk. paper) 1. Quantum theory. I. Singh, Surendra, 1953- II. Title. III. Series. QC174.12.M3687 2008 530.12--dc22 2008044066 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com C7872_FM.indd 4 11/7/08 2:35:20 PM Dedicated to the memory of Professor P. A. M. Dirac This page intentionally left blank Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 NEED FOR QUANTUM MECHANICS AND ITS PHYSICAL BASIS 1 1.1 Inadequacy of Classical Description for Small Systems . . . . . . . . . . . 1 1.1.1 Planck’s Formula for Energy Distribution in Black-body Radiation 1 1.1.2 de Broglie Relation and Wave Nature of Material Particles . . . . . 2 1.1.3 The Photo-electric Effect . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 The Compton Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.5 Ritz Combination Principle . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Basis of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Principle of Superposition of States . . . . . . . . . . . . . . . . . . 9 1.2.2 Heisenberg Uncertainty Relations . . . . . . . . . . . . . . . . . . . 12 1.3 Representation of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Dual Vectors: Bra and Ket Vectors . . . . . . . . . . . . . . . . . . . . . . 15 1.5 Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.1 Properties of a Linear Operator . . . . . . . . . . . . . . . . . . . . 16 1.6 Adjoint of a Linear Operator . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7 Eigenvalues and Eigenvectors of a Linear Operator . . . . . . . . . . . . . 18 1.8 Physical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.8.1 Physical Interpretation of Eigenstates and Eigenvalues . . . . . . . 20 1.8.2 Physical Meaning of the Orthogonality of States . . . . . . . . . . 21 1.9 Observables and Completeness Criterion . . . . . . . . . . . . . . . . . . . 21 1.10 Commutativity and Compatibility of Observables . . . . . . . . . . . . . . 23 1.11 Position and Momentum Commutation Relations . . . . . . . . . . . . . . 24 1.12 Commutation Relation and the Uncertainty Product . . . . . . . . . . . . 26 Appendix 1A1: Basic Concepts in Classical Mechanics . . . . . . . . . . . . . . 31 1A1.1 Lagrange Equations of Motion . . . . . . . . . . . . . . . . . . . . 31 1A1.2 Classical Dynamical Variables . . . . . . . . . . . . . . . . . . . . . 32 2 REPRESENTATION THEORY 35 2.1 Meaning of Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 How to Set up a Representation . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 Representatives of a Linear Operator . . . . . . . . . . . . . . . . . . . . . 37 2.4 Change of Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5 Coordinate Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5.1 Physical Interpretation of the Wave Function . . . . . . . . . . . . 44 2.6 Replacement of Momentum Observable pˆ by −i~ ddqˆ . . . . . . . . . . . . . 45 2.7 Integral Representation of Dirac Bracket 〈A2| Fˆ |A1 〉 . . . . . . . . . . . 50 2.8 The Momentum Representation . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8.1 Physical Interpretation of Φ(p1 , p2 , · · ·pf ) . . . . . . . . . . . . . . 52 2.9 Dirac Delta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.9.1 Three-dimensional Delta Function . . . . . . . . . . . . . . . . . . 55 2.9.2 Normalization of a Plane Wave . . . . . . . . . . . . . . . . . . . . 56 2.10 Relation between the Coordinate and Momentum Representations . . . . 56 3 EQUATIONS OF MOTION 67 3.1 Schro¨dinger Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2 Schro¨dinger Equation in the Coordinate Representation . . . . . . . . . . 69 3.3 Equation of Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4 Stationary States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Time-independent Schro¨dinger Equation in the Coordinate Representation 72 3.6 Time-independent Schro¨dinger Equation in the Momentum Representation 74 3.6.1 Two-body Bound State Problem (in Momentum Representation) for Non-local Separable Potential . . . . . . . . . . . . . . . . . . . . . 76 3.7 Time-independent Schro¨dinger Equation in Matrix Form . . . . . . . . . . 77 3.8 The