A maior rede de estudos do Brasil

Grátis
37 pág.
TUTORIA   FISIO 2   FISIOLOGIA RENAL

Pré-visualização | Página 2 de 17

que também contêm cargas negativas, criam restrições adicionais para a filtração das proteínas plasmáticas. Assim, todas as camadas da parede capilar glomerular representam barreiras à filtração das proteínas do plasma.
A Filtrabilidade dos Solutos é Inversamente Relacionada ao seu Tamanho: A membrana capilar glomerular é mais espessa que a da maioria dos outros capilares, mas também é muito mais porosa e, portanto, filtra líquidos com mais alta intensidade. Apesar da alta intensidade da filtração, a barreira de filtração glomerular é seletiva na determinação de quais moléculas serão filtradas, com base no seu tamanho e em sua carga elétrica
A filtrabilidade de 1,0 significa que a substância é filtrada tão livremente quanto a água; filtrabilidade de 0,75 significa que a substância é filtrada apenas 75% tão rapidamente quanto a água. Note que eletrólitos, tais como sódio e pequenos compostos orgânicos como a glicose, são livremente filtrados. Conforme o peso molecular da molécula se aproxima ao da albumina, a filtrabilidade rapidamente diminui em direção ao de zero.
DETERMINANTES DA FG: A FG é determinada (1) pela soma das forças hidrostáticas e coloidosmóticas através da membrana glomerular que fornecem a pressão efetiva de filtração; e (2) pelo coeficiente glomerular Kf . 
Expressa matematicamente, a FG é igual ao produto de Kf pela pressão líquida de filtração: 
FG = Kf × Pressão líquida de filtração 
A pressão efetiva de filtração representa a soma das forças hidrostáticas e coloidosmóticas que favorecem ou se opõem à filtração através dos capilares glomerulares. Essas forças incluem (1) a pressão hidrostática, nos capilares glomerulares (pressão hidrostática glomerular, PG ) que promove a filtração; (2) a pressão hidrostática na cápsula de Bowman (PB ), por fora dos capilares que se opõe à filtração; (3) a pressão coloidosmótica das proteínas plasmáticas (pG ) que se opõe à filtração; e (4) a pressão coloidosmótica das proteínas na cápsula de Bowman (pB ) que promove a filtração. (Sob condições normais, a concentração de proteínas, no filtrado glomerular é tão baixa que a pressão coloidosmótica do líquido, na cápsula de Bowman, é considerada nula.) 
Portanto, a FG pode ser expressa como: 
FG = Kf × (PG − PB − pG + pB ) 
Embora os valores normais para os determinantes da FG não tenham sido medidos diretamente em seres humanos, eles foram estimados em animais, como cães e ratos. Com base nos resultados em animais, as forças normais aproximadas, que favorecem e se opõem à filtração glomerular nos seres humanos, são as seguintes:
CONTROLE FISIOLÓGICO DA FILTRAÇÃO GLOMERULAR E DO FLUXO SANGUÍNEO RENAL: Os determinantes da FG mais variáveis e sujeitos ao controle fisiológico incluem a pressão hidrostática glomerular e a pressão coloidosmótica capilar glomerular. Essas variáveis, por sua vez, são influenciadas pelo sistema nervoso simpático, por hormônios e por autacoides (substâncias vasoativas são liberadas nos rins, agindo localmente) e outros controles por feedback intrínsecos aos rins.
A INTENSA ATIVAÇÃO DO SISTEMA NERVOSO SIMPÁTICO DIMINUI A FG: Essencialmente, todos os vasos sanguíneos renais, incluindo as arteríolas aferentes e eferentes, são ricamente inervados pelas fibras nervosas simpáticas. A forte ativação dos nervos simpáticos renais pode produzir constrição das arteríolas renais e diminuir o fluxo sanguíneo renal e a FG. A estimulação simpática leve ou moderada tem pouca influência no fluxo sanguíneo renal e na FG. Por exemplo, a ativação reflexa do sistema nervoso simpático, resultante de diminuições moderadas na pressão dos barorreceptores do seio carotídeo ou receptores cardiopulmonares, tem pouca influência sobre o fluxo sanguíneo renal ou a FG. Entretanto, mesmo aumentos ligeiros na atividade simpática renal podem provocar uma redução na excreção de sódio e água, ao elevar a reabsorção tubular renal. Os nervos simpáticos renais parecem ser mais importantes na redução da FG durante distúrbios graves agudos que duram de alguns minutos a algumas horas, tais como os suscitados pela reação de defesa, isquemia cerebral ou hemorragia grave. No indivíduo saudável em repouso, o tônus simpático parece ter pouca influência sobre o fluxo sanguíneo renal.
CONTROLE HORMONAL E AUTACOIDE DA CIRCULAÇÃO RENAL: Existem vários hormônios e autacoides que podem influenciar a FG e o fluxo sanguíneo renal, como resumido na Tabela.
Norepinefrina, Epinefrina e Endotelina Provocam Constrição dos Vasos Sanguíneos Renais e Diminuem a FG: Os hormônios que provocam constrição das arteríolas aferentes e eferentes, causando reduções na FG e no fluxo sanguíneo renal, incluem a norepinefrina e epinefrina liberadas pela medula adrenal. Em geral, os níveis sanguíneos desses hormônios acompanham a atividade do sistema nervoso simpático; assim, a norepinefrina e a epinefrina têm pouca influência sobre a hemodinâmica renal, exceto sob condições extremas, como hemorragia grave. Outro vasoconstritor, a endotelina, é peptídeo que pode ser liberado por células endoteliais vasculares lesionadas dos rins, assim como por outros tecidos. O papel fisiológico desse autacoide não está completamente esclarecido. Entretanto, a endotelina pode contribuir para a hemostasia (minimizando a perda sanguínea) quando um vaso sanguíneo é cortado, o que lesiona o endotélio e libera este poderoso vasoconstritor. Os níveis de endotelina plasmática também estão aumentados em várias doenças associadas à lesão vascular, tais como toxemia da gravidez, insuficiência renal aguda e uremia crônica, e podem contribuir para a vasoconstrição renal e diminuição da FG, em algumas dessas condições fisiopatológicas.
A Angiotensina II, Preferencialmente, Provoca Constrição das Arteríolas Eferentes na Maioria das Condições Fisiológicas: Poderoso vasoconstritor renal, a angiotensina II pode ser considerada como hormônio circulante ou como autacoide produzido localmente, visto que é formado nos rins e na circulação. Receptores para a angiotensina II estão presentes em praticamente todos os vasos sanguíneos dos rins. No entanto, os vasos sanguíneos pré-glomerulares, especialmente as arteríolas aferentes, aparentam estar relativamente protegidos da constrição mediada pela angiotensina II, na maioria das condições fisiológicas, associadas à ativação do sistema renina-angiotensina, tais como dieta pobre em sódio duradoura ou pressão de perfusão renal reduzida devido à estenose da artéria renal. Essa proteção se deve à liberação de vasodilatadores, especialmente óxido nítrico e prostaglandinas, que neutralizam o efeito vasoconstritor da angiotensina II nesses vasos sanguíneos. As arteríolas eferentes, entretanto, são muito sensíveis à angiotensina II. Como a angiotensina II preferencialmente ocasiona constrição das arteríolas eferentes, o aumento dos níveis de angiotensina II eleva a pressão hidrostática glomerular, enquanto reduz o fluxo sanguíneo renal. Deve-se considerar que a formação aumentada de angiotensina II, em geral, ocorre em circunstâncias associadas à diminuição da pressão arterial ou de depleção volumétrica que tende a diminuir a FG. Nessas circunstâncias, o nível aumentado de angiotensina II, ao provocar constrição das arteríolas eferentes, auxilia prevenindo as diminuições da pressão hidrostática glomerular e da FG; ao mesmo tempo, porém, a redução do fluxo sanguíneo renal causada pela constrição arteriolar eferente contribui para o fluxo reduzido pelos capilares peritubulares, o que, por sua vez, aumenta a reabsorção de sódio e água. Assim, níveis aumentados de angiotensina II que ocorrem com dieta hipossódica ou com depleção de volume ajudam a preservar a FG e a excreção normal de produtos indesejáveis do metabolismo, tais como a ureia e a creatinina, que dependem da filtração glomerular para sua excreção; ao mesmo tempo, a constrição das arteríolas eferentes, induzida pela angiotensina II, eleva a reabsorção tubular de sódio e de água, o que ajuda a restaurar o volume e a pressão sanguínea. 
O Óxido Nítrico