A maior rede de estudos do Brasil

Grátis
37 pág.
TUTORIA   FISIO 2   FISIOLOGIA RENAL

Pré-visualização | Página 4 de 17

proximais. Essa reabsorção de sódio diminui o aporte de sódio para a mácula densa, o que suscita diminuição na resistência das arteríolas aferentes, mediada pelo feedback tubuloglomerular, como discutido antes. A resistência arteriolar aferente diminuída então eleva o fluxo sanguíneo renal e a FG. Essa FG aumentada permite a manutenção da excreção de sódio em nível próximo do normal enquanto aumenta a excreção de produtos indesejáveis do metabolismo proteico, como a ureia. 
Mecanismo semelhante também pode explicar o aumento acentuado do fluxo sanguíneo renal e na FG, que ocorre com grandes aumentos nos níveis de glicose sanguínea em pessoas com diabetes melito não controlado. Visto que a glicose, como alguns dos aminoácidos, também é reabsorvida junto com o sódio no túbulo proximal, o aumento do aporte de glicose aos túbulos faz com que eles reabsorvam sódio em excesso, junto com a glicose. Essa reabsorção do excesso de sódio diminui, por sua vez, a concentração de cloreto de sódio na mácula densa, ativando feedback que leva à dilatação de arteríolas aferentes e ao subsequente aumento no fluxo sanguíneo renal e na FG. Esses exemplos demonstram que o fluxo sanguíneo renal e a FG per se não são as principais variáveis controladas pelo mecanismo do feedback tubuloglomerular. O principal objetivo desse feedback é assegurar o aporte constante de cloreto de sódio ao túbulo distal, onde ocorre o processamento final da urina. Dessa maneira, distúrbios que tendem a aumentar a reabsorção do cloreto de sódio, nas regiões tubulares antes da mácula densa, ocasionam incremento do fluxo sanguíneo renal e da FG, o que contribui para a normalização do aporte de cloreto de sódio, de modo que intensidades normais da excreção de sódio e da água possam ser mantidas. Sequência oposta de eventos ocorre quando a reabsorção tubular proximal está reduzida. Por exemplo, quando os túbulos proximais estão danificados (o que pode ocorrer como resultado de envenenamento por metais pesados, como mercúrio, ou por grandes doses de fármacos, como a tetraciclina), a capacidade de reabsorção do cloreto de sódio é diminuída. Como consequência, grandes quantidades de cloreto de sódio chegam ao túbulo distal e, sem as compensações apropriadas, causam rapidamente depleção excessiva do volume. Uma das respostas compensatórias importantes parece ser a vasoconstrição renal, mediada por feedback, que ocorre em resposta ao aporte aumentado de cloreto de sódio à mácula densa, nessas circunstâncias.
Esses exemplos novamente demonstram a importância do mecanismo de feedback para assegurar que o túbulo distal receba quantidades apropriadas de cloreto de sódio e de outros solutos tubulares e, também, volume de líquido adequado para que quantidades apropriadas dessas substâncias sejam excretadas na urina.
DESCREVER A REABSORÇÃO:
Após o filtrado glomerular entrar nos túbulos renais, ele flui pelas porções sucessivas do túbulo — túbulo proximal, alça de Henle, túbulo distal, túbulo coletor e, finalmente, ducto coletor — antes de ser excretado como urina. Ao longo desse curso, algumas substâncias são seletivamente reabsorvidas dos túbulos de volta para o sangue enquanto outras são secretadas, do sangue para o lúmen tubular. 
Por fim, a urina total formada representa a soma de três processos renais básicos: — filtração glomerular, reabsorção tubular e secreção tubular — 
como se segue: Excreção urinária = Filtração glomerular − Reabsorção tubular + Secreção tubular 
Para muitas substâncias, a reabsorção tem papel bem mais importante do que o da secreção na determinação da intensidade final de excreção urinária. No entanto, a secreção é responsável por quantidades significativas de íons potássio, íons hidrogênio e de outras poucas substâncias que aparecem na urina.
A REABSORÇÃO TUBULAR INCLUI MECANISMOS PASSIVOS E ATIVOS: Para que a substância seja reabsorvida, ela deve primeiro ser transportada (1) através das membranas epiteliais tubulares para o líquido intersticial renal e, posteriormente; (2) através da membrana dos capilares peritubulares, retornar ao sangue. Dessa forma, a reabsorção de água e de solutos inclui uma série de etapas de transporte. A reabsorção, através do epitélio tubular, para o líquido intersticial, inclui transporte ativo ou passivo pelos mesmos mecanismos básicos, para o transporte através de outras membranas celulares do corpo. Por exemplo, água e solutos podem ser transportados, tanto através das membranas celulares (via transcelular) quanto através dos espaços juncionais entre as junções celulares (via paracelular). A seguir, após a absorção, através das células epiteliais tubulares, para o líquido intersticial, a água e os solutos são transportados pelo restante do caminho através das paredes dos capilares peritubulares, para o sangue, por ultrafiltração, que é mediada por forças hidrostáticas e coloidosmóticas. Os capilares peritubulares têm comportamento bem parecido com o das extremidades venosas da maioria dos outros capilares, pois neles existe força efetiva de reabsorção, que move o líquido e os solutos do interstício para o sangue.
TRANSPORTE ATIVO: O transporte ativo pode mover o soluto contra gradiente eletroquímico e requerer energia derivada do metabolismo. O transporte que é acoplado diretamente à fonte de energia, como, por exemplo, a hidrólise de trifosfato de adenosina (ATP), é denominado transporte ativo primário. Um exemplo desse mecanismo é a bomba sódio/potássio de adenosina trifosfatase (ATPase) que funciona ao longo da maior parte do túbulo renal. O transporte que é acoplado indiretamente à fonte de energia, por exemplo, a fornecida por gradiente iônico, é chamado transporte ativo secundário. A reabsorção de glicose pelo túbulo renal é exemplo de transporte ativo secundário. Embora os solutos possam ser reabsorvidos pelo túbulo, por mecanismos ativos e/ou passivos, a água é sempre reabsorvida por mecanismo físico passivo (não ativo) denominado osmose, o que significa difusão da água de região de baixa concentração de soluto (alta concentração de água) para uma de alta concentração de soluto (baixa concentração de água).
O Transporte Ativo Primário através da Membrana Tubular Está Ligado à Hidrólise de ATP: A importância especial do transporte ativo primário é que ele pode mover solutos contra seu gradiente eletroquímico. A energia para esse transporte ativo vem da hidrólise de ATP, por meio da ATPase ligada à membrana, que também é um componente do mecanismo transportador que liga e move solutos através das membranas celulares. Os transportadores ativos primários conhecidos nos rins incluem a sódio-potássio ATPase, a hidrogênio ATPase, a hidrogênio-potássio ATPase e a cálcio ATPase. 
Bom exemplo de sistema de transporte ativo primário é a reabsorção de íons sódio através da membrana tubular proximal. Nos lados basolaterais da célula epitelial tubular, a membrana celular tem extenso sistema de sódio-potássio ATPase que hidrolisa ATP e usa a energia liberada para transportar íons sódio para fora da célula, em direção ao interstício. Ao mesmo tempo, o potássio é transportado do interstício para o interior da célula. A operação dessa bomba iônica mantém concentrações intracelulares baixas de sódio e altas de potássio, e cria carga efetiva negativa de cerca de −70 milivolts dentro da célula. Esse bombeamento ativo do sódio para fora da célula, através da membrana basolateral da célula, favorece a difusão passiva de sódio através da membrana luminal da célula, do lúmen tubular para dentro da célula, por duas razões: (1) Existe gradiente de concentração que favorece a difusão de sódio para dentro da célula, pois a concentração intracelular de sódio é baixa (12 mEq/L) e a concentração de sódio do líquido tubular é elevada (140 mEq/L); (2) o potencial intracelular negativo de −70 milivolts atrai os íons sódio positivos do lúmen tubular para dentro da célula. A reabsorção ativa de sódio pela sódio-potássio ATPase ocorre na maioria dos segmentos do túbulo. Em certas partes do néfron, existe