Buscar

Exercícios de Torres de Resfriamento

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 6 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 6 páginas

Prévia do material em texto

� EMBED CorelDRAW.Graphic.12 ���
OPERAÇÕES UNTÁRIAS C
AULA 5 – Exercícios de fixação sobre torres de resfriamento
PROFESSOR: Nazareno Braga
1. Uma água quente gerada no resfriamento de uma planta de energia nuclear entra em uma torre de resfriamento a 40 ºC e 90 kg/s. A água é resfriada para 25 ºC na torre de resfriamento por um ar que entra na torre a 1 atm, 23 ºC e 60% de umidade relativa e deixa a torre saturado a 32 ºC. Determine: (a) o fluxo de massa do ar na entrada da torre e (b) taxa de escoamento da água de reposição requerida.
Assumptions 1 Steady operating conditions exist and thus mass flow rate of dry air remains constant during the entire process. 2 Dry air and water vapor are ideal gases. 3 The kinetic and potential energy changes are negligible. 4 The cooling tower is adiabatic.
Analysis (a) The mass flow rate of dry air through the tower remains constant 
�, but the mass flow rate of liquid water decreases by an amount equal to the amount of water that vaporizes in the tower during the cooling process. The water lost through evaporation must be made up later in the cycle to maintain steady operation. Applying the mass and energy balances yields
Dry Air Mass Balance:
Water Mass Balance:
 
Energy Balance:
	
Solving for 
,
	
From the psychometric chart (Figure A-33),
	
and
	
From Table A-4,
	
Substituting,
	
Then the volume flow rate of air into the cooling tower becomes
	
(b) The mass flow rate of the required makeup water is determined from
	
2. Uma água quente proveniente de uma planta de resfriamento entre em uma torre de resfriamento a 43 ºC a uma velocidade de alimentação de 45 kg/s. A água é resfriada a 27 ºC por um ar que entra na torre a 1 atm, 24 ºC e 60% de umidade relativa e deixa saturado a 35 ºC. Determine: (a) a vazão volumétrica do ar que entra na torre e (b) vazão mássica requerida para a água de reposição.
Assumptions 1 Steady operating conditions exist and thus mass flow rate of dry air remains constant during the entire process. 2 Dry air and water vapor are ideal gases. 3 The kinetic and potential energy changes are negligible. 4 The cooling tower is adiabatic.
Analysis (a) The mass flow rate of dry air through the tower remains constant 
, but the mass flow rate of liquid water decreases by an amount equal to the amount of water that vaporizes in the tower during the cooling process. The water lost through evaporation must be made up later in the cycle to maintain steady operation. Applying the mass balance and the energy balance equations yields
Dry Air Mass Balance:
	
Water Mass Balance:
	
Energy Balance:	
 
Solving for 
,
	
From the psychometric chart (Figure A-33),
	
and
	
From Table A-4E,
	
Substituting,
	
Then the volume flow rate of air into the cooling tower becomes
	
(b) The mass flow rate of the required makeup water is determined from
	
3. Uma torre está resfriamento uma corrente de água quente de 40 ºC para 25 ºC onde a pressão atmosférica é 96 kPa. Ar entra na torre a 20 ºC e 70% de umidade e deixa saturado a 35 ºC. Determine: a vazão volumétrica do ar que entra na torre e (b) vazão mássica da água de reposição. 
Assumptions 1 Steady operating conditions exist and thus mass flow rate of dry air remains constant during the entire process. 2 Dry air and water vapor are ideal gases. 3 The kinetic and potential energy changes are negligible. 4 The cooling tower is adiabatic.
Analysis (a) The mass flow rate of dry air through the tower remains constant 
�, but the mass flow rate of liquid water decreases by an amount equal to the amount of water that vaporizes in the tower during the cooling process. The water lost through evaporation must be made up later in the cycle to maintain steady operation. Applying the mass and energy balances yields
Dry Air Mass Balance:
	
Water Mass Balance:
	
Energy Balance:
 
Solving for 
�,
	
The properties of air at the inlet and the exit of the tower are calculated to be
	
and
	
From Table A-4,
	
Substituting,
	
Then the volume flow rate of air into the cooling tower becomes
	
(b) The mass flow rate of the required makeup water is determined from
	
System
boundary
1
2
4
32(C
100%
WATER
40(C
90 kg/s
1 atm
23(C
60%
AIR
3
Makeup water
25(C
System
boundary
1
2
4
95(F
100%
WATER
110(F
100 lbm/s
1 atm
76(F
60%
AIR
3
Makeup water
80(F
System
boundary
1
2
4
35(C
100%
WATER
40(C
50 kg/s
96 kPa
20 ºC
70%
AIR
3
Makeup water
25(C
_1361975652/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976166/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_1361976186/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976867/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_1361976877/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_1361977271/ole-[02, 01, 00, 03, 01, 0A, 01, 02]
_1361976873/ole-[02, 01, 00, 03, 01, 0A, 01, 02]
_1361976819/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_1361976830/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976806/ole-[02, 01, 00, 03, 01, 0A, 04, 01]
_1361976811/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_1361976800/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976803/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976795/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976175/ole-[02, 01, 00, 03, 01, 0A, 04, 01]
_1361976180/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976171/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_1361976173/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976138/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_1361976158/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976161/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976140/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_1361975660/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361976133/ole-[02, 01, 00, 03, 01, 0A, 01, 02]
_1361975656/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361975635/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1361975645/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_1361975648/ole-[02, 01, 00, 03, 01, 0A, 04, 01]
_1361975642/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_1361975611/ole-[02, 01, 00, 03, 01, 0A, 01, 02]
_1361975617/ole-[02, 01, 00, 03, 01, 0A, 04, 04]
_937775735/ole-[02, 01, 00, 03, 01, 0A, 01, 02]
_937775770/ole-[02, 01, 00, 03, 01, 0A, 01, 32]
_1192879386.unknown
_937775344/ole-[02, 01, 00, 03, 01, 0A, 01, 02]

Outros materiais