Buscar

Provas Antigas Questões e Respostas P1 cont

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Professor:Professor: Francisco JosFrancisco Joséé MouraMoura
Bibliografia:Bibliografia: HimmelblauHimmelblau, David M. e , David M. e RiggsRiggs, James B.; Engenharia , James B.; Engenharia 
QuQuíímica mica -- PrincPrincíípios e Cpios e Cáálculos, 7a edilculos, 7a ediçção, Editoraão, Editora LTC, 2006. LTC, 2006. 
IntroduIntroduçção aos Processos Quão aos Processos Quíímicosmicos
Provas antigas P1Provas antigas P1
2
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
3025,1 AA pdt
dp
⋅=−
Ap
t
3
A
A Ck
dt
dC
⋅=−
AC
Para uma reação em fase gasosa a 600ºC, a velocidade da reação é:
Onde: é a pressão parcial da espécie A em atm e
Pede-se:
a) Qual a unidade da constante 1,025 na equação de velocidade? 
b) Qual será o valor da constante de velocidade se a pressão for 
expressa em mmHg. 
c) Qual será o valor da constante, k, se a equação de velocidade for: 
é a concentração da espécie A em mol/L e
é o tempo em horas
Onde:
t é o tempo em horas
3
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
Ci
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
a) atm
hr
k atm3⋅ k
1
atm
2 hr⋅
:= mmHg 1torr:=
b) 1.025 1
atm
2 hr⋅
⋅ 1.775 10 6−× 1
mmHg2 hr⋅
=
c) dCA
dt
− k CA
3
⋅ Ri 0.08206
atm L⋅
mol K⋅
⋅:= T 873K⋅:=
pA
nA R⋅ T⋅
V
nA
V
CA
pA
Ri T⋅
dCA
dt
1
Ri T⋅
dPA
dt
⋅
Ri T⋅ dCA⋅
dt
− 1.025 Ri T⋅ CA⋅( )3⋅ dCAdt− 1.025 Ri T⋅( )2⋅ CA3⋅
1.0251 1
atm
2 hr⋅
⋅ Ri T⋅( )2⋅ 5.261 103× L
2
mol2 hr⋅
=
4
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
a) Qual será a pressão (atm) do cilindro quando a temperatura ambiente 
for de 25oC. 
b) Qual a massa de oxigênio (kg) contida no cilindro completamente 
cheio?
c) Qual será a autonomia, em dias, deste cilindro para um tratamento 
doméstico de uma sessão diária de 900 minutos com uma vazão de 
oxigênio de 3 litros por minuto. 
A oxigenoterapia tem aplicação profilática ou curativa, já que é indicada 
nos casos hipoxemia de qualquer origem, como por exemplo, no 
tratamento de doenças pulmonares obstrutivas, pneumonias, enfartos do 
miocárdio e embolias pulmonares. Um cilindro tipo T (50 litros) de uma 
determinada Cia. de gases acomoda até 10m3 de oxigênio medicinal 
medido nas CNTP. 
Dados:
mol
g32M
2O = 2
2
mol
Latm36,1a ⋅=
mol
L032,0b = Kmol
Latm082,0R
⋅
⋅
=; ; e
5
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
ia
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
Autonomia 4day=Autonomia
Va
900 min
day
⋅ 3⋅ L
min
⋅
:=Va 10.9m
3
=Va VO2
Ta
T
⋅:=c) 
mO2 14.3kg=mO2 nO2 MO2⋅:=b)
Pid 218.3atm=Pid
nO2 R⋅ Ta⋅
Vc
:=Pr 197.2atm=Pr
nO2 R⋅ Ta⋅
Vc nO2 b⋅−
a nO2
2
⋅
Vc
2
−:=
nO2 446.7mol=nO2
P VO2⋅
R T⋅
:=a)
b 0.032
L
mol
⋅:=a 1.36 atm L
2
⋅
mol2
⋅:=R 0.082
atm L⋅
mol K⋅
⋅:=Vc 50 L⋅:=Ta 298K⋅:=
MO2 32
gm
mol
:=VO2 10 m
3
⋅:=P 1 atm⋅:=T 273 K⋅:=CNTP 
6
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
Seu assistente apresentou em seu relatório técnico os seguintes dados 
experimentais para a análise de Orsat do gás exaustão da combustão de 
um óleo em um forno: CO2: 11,8 %; CO: 5,0 %; H2: 1,5 %; O2: 1,0 % e 
N2: balanço. O óleo está sendo queimado com 10% de excesso ar. Você 
o cumprimentaria pelo trabalho? 
7
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
ri
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
A resposta é não, pois o número de mols de O 2 requerido (23,7mols) e alimentado (21,5mols) é muito 
discrepante. Não se trabalhou com 10% de excesso de O 2.
nO2req 23.7mol=nO2req nC
1
2
nH⋅
1
2
⋅+:=
H2 + 1/2O 2 = H2OC + O2 = CO2no de O2 requerido:
nH 27.6mol=nH 2 0.015⋅ P⋅ 2 W⋅+:=Balanço do H:
W 12.3mol=W 2 0.21 A⋅ 0.118 P⋅ 1
2
0.05⋅ P⋅+ 0.01 P⋅+




−






⋅:=
0.21 A⋅ 0.118 P⋅
1
2
0.05⋅ P⋅+ 0.01 P⋅+ 1
2
W⋅+Balanço do O 2:
nC 16.8mol=nC P 0.118⋅ P 0.05⋅+:=Balanço do C:
nO2 21.5mol=nO2 0.21 A⋅:=n
o
 de O2 alimentado:
A 102.2mol=A
0.807 P⋅
0.79
:=0.79 A⋅ 0.807 P⋅Balanço do N2:
P 100 mol⋅:=
8
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
Nas plantas industriais algumas vezes usam a pirita (o composto 
desejado na pirita é FeS2) como fonte de SO2. A rocha de pirita contendo 
48,0% de enxofre é completamente queimada por combustão rápida. 
Todo o ferro forma Fe3O4 na cinza (o produto sólido). O gás de exaustão 
do queimador passa por uma água de cal (CaO em água) para produzir 
o bissulfito. O gás de saída do absorvedor tem a seguinte composição 
em volume: SO2: 0,7 %; O2: 2,9 % e N2: 96,4%. Calcular a quantidade de 
ar fornecida ao queimador por kg de pirita queimada. Assumir como 
base de cálculo P = 100 kg.mols. (PM: S: 32; Fe: 56; O: 16 e N: 14). 
9
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
kg de ar/kg de pirita
A 0.21 MO2⋅ 0.79 MN2⋅+( )⋅
F
3.1=
F 1129.5kg:=Find F( ) 1129.5kg=0.21 A⋅ 2 0.43 F⋅
3 MFe⋅
⋅ 0.007 0.029+( ) P⋅+ 0.48 F⋅
MS
+ 0.007 P⋅−
Given
0.21 MO2⋅ 0.79 MN2⋅+ 28.84
1
mol
=F 1000 kg⋅:=
Substituido 1, 2 e 4 em 3, tem-se:
(4) 0.43 F⋅
MFe
3 Y⋅Balanço do Fe:
(3) 0.21 A⋅ 2 Y⋅ 0.007 0.029+( ) P⋅+ Z+Balanço do O2:
(2) 0.48 F⋅
MS
Z 0.007 P⋅+Balanço do S :
(1) A 122kgmol=A 0.964 P⋅
0.79
:=0.79 A⋅ 0.964 P⋅Balanço do N2:
P 100 kg⋅ mol⋅:=MS 32kg
kg mol⋅
⋅:=MFe 56
kg
kg mol⋅
⋅:=MN2 28
kg
kg mol⋅
⋅:=MO2 32
kg
kg mol⋅
⋅:=
10
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
1) A equação abaixo estima o diâmetro médio de partículas a partir dos 
valores de densidade e superfície especifica da amostra: 
espp
p S
6d
⋅ρ
= 
Onde: dp é o diâmetro médio da partícula em metros, ρp é a densidade 
(ρp) das partículas em g/m3 e Sesp é a superfície específica 
medida pelo método BET (Brunauer-Emmett-Teller) em m2/g 
(a) Qual é a unidade da constante 6, 
(b) Calcule o diâmetro médio das partículas (nm) para uma amostra de pó 
cerâmico de nitreto de alumínio (AlN) com densidade (ρp) igual a 3,26 
g/cm3 e superfície específica (Sesp) igual a 85 m2/g, 
(c) Supondo que as partículas são esféricas deduza a equação acima. 
Lembrem-se: 
3
esf 2
d
3
4V 





pi= e 
2
esf 2
d4S 





pi= 
11
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
φ 6
ρ S⋅
1
6
φ⋅ 1
ρ S⋅
N
4
3
⋅ pi⋅
φ
2






3
⋅
N 4⋅ pi⋅
φ
2






2
1
ρ
S
Para 1 grama:(c) 
φ 21.7nm=φ 2.165 10 8−× m=φ 6
ρ A⋅
:=(b) 
Adimensional (a) 
S 4 pi⋅
φ
2






2
V
4
3
pi⋅
φ
2






3
⋅nm 10 9− m⋅:=A 85 m
2
gm
:=ρ 3.26 106× gm
m
3
=ρ 3.26 gm
cm
3
⋅:=
12
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
ta
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
2) Uma solução aquosa de decapagem (retirada de película depositada) 
contendo 8,8% de KI (em massa) está sendo preparada para decapar 
ouro em placas de circuito impresso. A solução desejada deve ser 
preparada pela combinação de uma solução forte (12% de KI e 3% de I2
em H2O) com uma solução fraca (2,5% de KI e 0,625% de I2 em H2O). (a)
Qual deve ser o valor de R, a razão entre as massas de solução forte e 
fraca para fazer a solução de decapagem desejada e (b) qual será a 
concentração de I2 na solução final? (2,5 pontos) 
13
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
(a) C 1kg:= A B+ 1 A 1 B−
0.12 1 B−( ) 0.025B+ 0.088 0.12 0.12B− 0.025B+ 0.088 B 0.088 0.12−
0.095−
:= B 0.337=
A 1 B−:= A 0.663= A
B
1.97=
(b) 0.03A⋅ 0.00625B⋅+
1
100⋅ 2.2= XN2
2.2
100
:=
14
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
do
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
3) Um fluxograma simplificado para a fabricação de açúcar é apresentado na figura abaixo. A 
cana de açúcar é alimentada em um moinho onde o xarope é obtido e o bagaço resultante 
contém 80% em massa de sólidos. O xarope (E) contendo pedaços de sólidos finamente 
divididos é alimentado em uma peneira que remove todo o sólido (rejeito) e produz xarope 
límpido (H), contendo (15%) de açúcar e 85% de água. O evaporador prepara um xarope 
“pesado” com 40% de açucar e o cristalizador produz 1000lb/h de cristais de açúcar. (2,5 
pontos) 
(a) Calcule a água removida no evaporador, em libras/hora; 
(b) Calcule as frações mássicas dos componentes na corrente de rejeito G; 
(c) Calcule taxa de alimentação da cana, em libras/hora; 
(d) Do açúcar contido na cana, qual a percentagem que é perdida no bagaço? 
15
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
H 6666.7lb
hr
=H 2500 lb
hr
J+:=J 4166.7lb
hr
=J
2500 lb
hr
⋅ 0.85⋅ 0.6 2500⋅ lb
hr
⋅−
0.15
:=
2500 lb
h
J+




0.85⋅ 0.6 2500⋅ lb
h
J+H 0.85⋅ 0.6 2500⋅ lb
h
J+H 2500 lb
h
J+Balanço no evaporador:
L 1500 lb
hr
=
L K 1000 lb
hr
⋅−:=K 1000 L+
K 2500 lb
hr
=
K
1000
lb
hr
⋅
0.4
:=K 0.4⋅ 1000
lb
h
r⋅
Balanço no cristalizador:a)
16
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
is
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
0.16 F⋅ 1000 lb
hr
−
0.16 F⋅
100⋅ 74.567=
%Acuçar_perdida 74.1=%Acuçar_perdida
XaB B⋅
0.16 F⋅
100⋅:=
XaB 0.174=XaB
0.16 F⋅ 0.13 E⋅−
B
:=0.16 F⋅ XaB B⋅ 0.13 E⋅+d) 
B 16755.5lb
hr
=B F E−:=F 24574.7lb
hr
=F
0.66E
0.21
:=0.59 F⋅ 0.8 F⋅ 0.8E− 0.14 E⋅+
0.59 F⋅ 0.8 F E−( )⋅ 0.14 E⋅+0.59 F⋅ 0.8 B⋅ 0.14 E⋅+F B E+Balanço no moinho:
b) Balanço na peneira: E G H+ E 0.14⋅ G 0.95⋅ E E 0.14⋅
0.95
H+
E
H
0.8526
:= E 7819.2lb
hr
= G E H−:= G 1152.6lb
hr
=
E 0.13⋅ 0.15H⋅ XaG G⋅+ XaG
E 0.13⋅ 0.15H⋅−
G
:= XaG 0.0143= água 0.05 0.0143−:= água 0.0357=
Açucar = 0.0143, água = 0.0357 e polpa = 0.95 XaG G⋅ 16.499
lb
hr
=
c) 
17
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
4) Responda: (2,5 pontos) 
a) Uma amostra de ar é coletada sobre a água a 20oC. No equilíbrio a pressão total do ar 
úmido é 1 atm. A pressão de vapor da água no equilíbrio, a 20oC, é 17,54 torr; a 
composição do ar seco é 78 mol % de N2, 21 mol % de O2 e 1 mol% de Ar. Calcule as 
pressões parciais de nitrogênio, oxigênio e argônio na mistura úmida. 
 
b) A pressão total de uma mistura de oxigênio e hidrogênio é 1,00 atm. Após a queima da 
mistura, a água formada é retirada. O gás restante é hidrogênio puro e exerce uma 
pressão de 0,40 atm quando medido nas mesmas condições de T e V da mistura 
original. Qual era a composição original da mistura? H2(g) + 1/2O2(g) → H2O(g) 
18
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
pAr 7.4torr=pAr XAr Par⋅:=
pO2 155.9torr=pO2 XO2 Par⋅:=pN2 579.1torr=pN2XN2 Par⋅:=Portanto:
Par 742.5torr=Par P pH2O−:=Pressão do ar seco:
XAr 0.01:=XO2 0.21:=XN2 0.78:=pH2O 17.54torr:=P 1 atm⋅:=T 293 K⋅:=
4) Responda: (2,5 pontos) 
a) Uma amostra de ar é coletada sobre a água a 20oC. No equilíbrio a pressão total do ar 
úmido é 1 atm. A pressão de vapor da água no equilíbrio, a 20oC, é 17,54 torr; a 
composição do ar seco é 78 mol % de N2, 21 mol % de O2 e 1 mol% de Ar. Calcule as 
pressões parciais de nitrogênio, oxigênio e argônio na mistura úmida. 
19
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Provas antigasProvas antigas
b) A pressão total de uma mistura de oxigênio e hidrogênio é 1,00 atm. Após a queima da 
mistura, a água formada é retirada. O gás restante é hidrogênio puro e exerce uma 
pressão de 0,40 atm quando medido nas mesmas condições de T e V da mistura 
original. Qual era a composição original da mistura? H2(g) + 1/2O2(g) ? H2O(g) 
O oxigênio é o reagente limitante!
X é a quantidade de H2 que reage.
Lembrando que a reação é de 1 de 
H2 para 0,5 de O2.
H2 + 0.5 O2 = H2O
Início: X+0,4 0,5.X 0
X 0.4 atm⋅+ 0.5X+ 1 atm⋅ X 0.6atm
1.5
:= X 0.4atm= pH2 0.4 atm⋅ X+:= pH2 0.8atm=
pO2 0.5 X⋅:= pO2 0.2atm= Portanto: XO2 0.2:= XH2 0.8:=

Outros materiais