Buscar

APOSTILA_CÁLCULO_I_-_ENGENHARIAcompleta

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 24 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 24 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 24 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

�PAGE \* MERGEFORMAT�1�
1 - LIMITE DE UMA FUNÇÃO
INTRODUÇÃO.
A noção de limite de uma função, e o uso do mesmo é de fundamental importância na compreensão e, consequentemente, no desenvolvimento de grande quantidade de tópicos no campo das ciências que lidam com a Matemática.
O Cálculo Diferencial e Integral é uma parte da matemática, toda ela, fundamentada no conceito de Limite.
Deve-se a Cauchy (1789-1857), matemático francês, a formulação precisa de Limite.
NOÇÃO DE LIMITE.
Seja uma placa metálica quadrada que se expande uniformemente porque está sendo aquecida. Se x é o comprimento do lado, a área da placa é dada por A = x². Quanto mais x se avizinha de 3, a área A tende a 9 centímetros quadrados.
Utilizando a ideia intuitiva de limite, calcule: 
	x
	0,5
	0,9
	0,99
	→1
	f(x)
	1,5
	1,9
	1,99
	→2
	X
	1,5
	1,1
	1,01
	→1
	f(x)
	2,5
	2,1
	2,01
	→2
Simbolicamente temos:
2) Calcule o 
	
	x
	
	
	
	→2
	f(x)
	
	
	
	→
	x
	
	
	
	→2
	f(x)
	
	
	
	→
3) Calcule o 
	x
	
	
	
	→1
	f(x)
	
	
	
	→
	x
	
	
	
	→1
	f(x)
	
	
	
	→
4) Calcule o 
	x
	
	
	
	→3
	f(x)
	
	
	
	→
	x
	
	
	
	→3
	f(x)
	
	
	
	→
5) Calcule o 
	x
	
	
	
	→2
	f(x)
	
	
	
	→
	x
	
	
	
	→2
	f(x)
	
	
	
	→
6) Calcule o 
	x
	
	
	
	→1
	f(x)
	
	
	
	→
	x
	
	
	
	→1
	f(x)
	
	
	
	→
7) Calcule o 
	x
	
	
	
	→2
	f(x)
	
	
	
	→
	x
	
	
	
	→2
	f(x)
	
	
	
	→
8) Calcule o 
	x
	
	
	
	→3
	f(x)
	
	
	
	→
	x
	
	
	
	→3
	f(x)
	
	
	
	→
9) Calcule o 
	x
	
	
	
	→2
	f(x)
	
	
	
	→
	x
	
	
	
	→2
	f(x)
	
	
	
	→
Definição Formal de Limite de uma função:
Seja f uma função definida em todo número de algum intervalo aberto I, contendo a, exceto possivelmente no próprio número a. O limite de f(x) quando x se aproxima de a é L, que pode ser escrito como 
se para qualquer ε > 0, mesmo pequeno, existir um δ > 0, tal que 
Traduzindo-se em palavras, a definição acima afirma que os valores da função f(x) aproximam-se de um limite L quando x aproxima-se de um número a se o valor absoluto da diferença entre f(x) e L puder ser tão pequeno quanto desejarmos, tomando-se x suficientemente próximo de a, mas não igual a a.
É importante percebermos que na definição acima nada é mencionado sobre o valor da função quando x=a. Isto é, não é necessário que a função esteja definida para x=a, a fim de que 
exista.
Exemplo 1) Seja f a função definida pela equação f(x) = 4x-1. Dado que 
 encontre um δ para ε = 0,01 tal que 
Exemplo 2) Usando a definição, demonstre que 
Exemplo 3) Seja f a função definida pela equação f(x)= 2x+1. Dado que 
 encontre um δ para ε = 0,001 tal que |f(x)-3|<0,001 sempre que 0<|x-1|<δ.
Exemplo 4) Usando a definição, demonstre que 
.
TEOREMAS SOBRE LIMITES
TEOREMA DA UNICIDADE	
 
 
n) 
o) 
p) 
Limites no infinito.
Consideremos a função f definida por 
 e analisemos, mediante uma tabela, o seu comportamento quando os valores de x crescem ilimitadamente através de valores positivos.
	x
	
	
	
	1
	2
	3
	4
	10
	100
	1.000
	10.000
	100.000
	f(x)
	4
	3
	2
	1
	0,5
	0,3
	0,25
	0,1
	0,01
	0,001
	0,0001
	0,00001
Pela tabela constatamos que quando x cresce ilimitadamente através de valores positivos, os valores da função se aproximam cada vez mais de 0 (zero). Simbolicamente, representamos tal fato por: 
 que se lê: “limite de f de x, quando x tende a mais infinito, é igual a zero”.
Observação: Quando uma variável independente x está crescendo ilimitadamente através de valores positivos, escrevemos: 
 Devemos enfatizar que + 
 não é um número real. O símbolo + 
 indica, portanto, o comportamento da variável independente x.
Consideremos agora, para a mesma função, uma tabela onde os valores da variável x decrescem ilimitadamente através de valores negativos.
	x
	-
	
	
	-1
	-2
	-3
	-10
	-100
	-1.000
	-10.000
	f(x)
	-4
	-3
	-2
	-1
	
	
	-0,1
	-0,01
	-0,001
	-0,0001
Observando a tabela anterior verificamos que à medida em que os valores de x decrescem ilimitadamente através de valores negativos, os valores da função se aproximam cada vez mais de 0 (zero). Usando o simbolismo 
 para indicar os valores de x que estão decrescendo ilimitadamente, representamos simbolicamente o fato acima por 
 que se lê: “limite de f de x, quando x tende a menos infinito, é igual a zero.
Propriedades dos limites no infinito.
P1) Limite de um Polinômio.
Sendo 
poderemos sempre escrever 
Sendo n um inteiro positivo e a₀ um número real diferente de zero, quatro casos há a considerar:
Exercícios) Calcule o limite das funções seguintes, quando 
P2) Limite de uma função racional.
Exercícios) Calcule os limites indicados:
Limites infinitos.
Consideremos a seguinte função para conceituarmos os limites infinitos:
	x
	4
	3
	2
	
	
	
	
	
	
	
	f(x)
	
	
	2
	
	8
	32
	50
	200
	20.000
	
Observamos que quando o valor de x se aproxima cada vez mais de 1, pela direita, o valor f(x) cresce ilimitadamente. Simbolicamente, escrevemos:
o que significa que podemos tornar f(x) tão grande quanto desejarmos, bastando para isto, tomarmos valores de x suficientemente próximos de 1, porém maiores que 1.
Se considerarmos os valores de x próximos de 1, porém menores que 1, temos:
	x
	0
	
	
	
	
	
	
	
	
	f(x)
	2
	
	8
	32
	50
	200
	20.000
	2.000.000
	
Notamos que a medida que o valor de x se aproxima de 1, pela esquerda, o valor f(x) cresce ilimitadamente. Simbolicamente, escrevemos:
.
Concluímos então que, quando o valor de x se aproxima de 1, seja pela esquerda, seja pela direita, o valor f(x) cresce ilimitadamente e simbolizamos tal fato por
.
De modo geral, quando o valor de x se aproxima de um número a e f(x) cresce ilimitadamente, escrevemos 
 o que significa que o valor f(x) não sofre limitação quando o valor de x se aproxima de a, ou seja, que o limite de f quando x tende para a, não existe.
Propriedades do limites infinitos.
Sendo a um número real qualquer e, sendo 
Calcule os limites:
Funções contínuas.
Ao calcular o limite de diferentes funções, observa-se que há casos em que o limite da função quando x tende para a é igual ao valor da função quando x é igual a a, isto é,
Definição: Seja y = f(x) uma função definida em um intervalo I e seja 
Diz-se que f é contínua em x = a se 
Decorre da definição que f(x) é contínua em x = a se, e somente se, forem verificadas as seguintes condições:
Quando pelo menos uma dessas condições não for verificada, dizemos que f é descontínua em x = a.
Exercícios.
a)Verifique se a função f(x) = 2x²-3 é contínua em x = 3.
b) Verifique se é contínua em x = 2 a função
c) Verifique se a função f(x) = 2x -1 é contínua em x = 0.
d) Verifique se a função f(x) = x²-2x é contínua em x = 1.
e) Verifique se é contínua em x = 3 a função
f) Verifique se é contínua em x = 0 a função
2 – DERIVADAS
2.1 Definição: O conceito de derivada foi introduzido em meados dos séculos XVII e XVIII em estudos de problemas de Física ligados ao estudo dos movimentos. Entre outros, destacam-se neste estudo o físico e matemático inglês Isaac Newton (1642-1727), o filósofo e matemático alemão Gottfried Leibniz (1646-1716) e o matemático francês Joseph-Luis Lagrange (1736-1813 – nasceu em Turim, na Itália, mas viveu praticamente toda sua vida na França).
	As ideias preliminarmente introduzidas na Físicaforam aos poucos sendo incorporadas e outras áreas do conhecimento. Em Economia e Administração o conceito de derivada é utilizado principalmente no estudo gráfico de funções, determinação de máximos e mínimos e cálculo de taxas de variação de funções.
	Consideremos uma função f(x) e sejam x₀ e x₁ dois pontos de seu domínio; sejam f(x₀) e f(x₁) as correspondentes imagens conforme o gráfico abaixo:
	Chamamos de taxa média de variação de f, para x variando de xₒ até x₁, ao quociente:
f(x₁)-f(xₒ)/x₁-xₒ.
	Tal taxa mede o ritmo de variação da imagem em relação à variação de x. Observemos ainda que a taxa média de variação depende do ponto de partida xₒ e da variação de x, dada por x₁-xₒ.
	Usando o símbolo ∆ para indicar uma variação, podemos indicar a taxa média de variação de f pela relação:
				
Definição: A derivada de uma função f é a função indicada por f’, tal que seu valor em qualquer número x no domínio de f é dado por:
Exercícios.
Através da fórmula geral de derivação, encontre as derivadas das funções nos pontos indicados:
f(x)= 2x+1;
f(x)= x-2;
f(x)= 2x;
f(x)= x+1;
f(x)= -2x-1;
f(x)= -2x;
f(x)= 3x+2;
f(x)= -x-1;
f(x)= x²-x;
f(x)= x²-1;
f(x)= 3x²-x+5;
f(x)= -x²;
f(x)= -2x²+x;
f(x)= x²+2x.
Um móvel se desloca numa trajetória de equação s = 5t², s em metros e t em segundos. Determine:
O espaço percorrido pelo móvel nos intervalos de tempo [3; 4]; [3; 3,5]; [3; 3,1] e [3; 3,01];
As velocidades médias nesses intervalos;
A velocidade instantânea para t = 3s;
Encontre sua velocidade 5s após a partida;
Encontre sua velocidade inicial.
Um móvel se desloca conforme uma equação horária de equação s = -2t²+4, s em metros e t em segundos. Determine:
O espaço percorrido pelo móvel nos intervalos de tempo [1; 2]; [1; 1,5]; [1; 1,1] e [1; 1,01];
As velocidades médias nesses intervalos;
A velocidade instantânea para t = 1s;
Encontre sua velocidade 3s após a partida;
Encontre sua velocidade inicial;
Um móvel desce num plano inclinado segundo a equação s = 12t²+6t. 
Determine o espaço percorrido pelo móvel nos intervalos de tempo [2; 3]; [2; 2,5] e [2; 2,1];
As velocidades médias nesses intervalos;
A velocidade instantânea para t=2s;
Encontre sua velocidade 3s após a partida;
Encontre sua velocidade inicial.
Para um corpo em queda livre, a equação do movimento é 
 onde g é a aceleração da gravidade 
 e e é a distância, em metros, percorrida pelo corpo em t segundos, desde o início da queda.
Encontre a equação da velocidade no instante t₁ = t.
2.3 Regras de derivação.
Derivada da função constante:
Se f(x) = c → f’(x)=0.
Derivada de uma potência:
Se f(x) = xⁿ → f’(x)= n.xⁿ⁻¹, n Є N.
Obtenha a derivada das funções seguintes, usando as regras de derivação:
2.4 Propriedades das derivadas.
* Derivada de uma soma de funções:
Se h(x) = f(x) + g(x), então h’(x) = f’(x) + g’(x).
Derivada de um produto de funções:
Se h(x) = f(x) . g(x), então h’(x) = f(x).g’(x) + g(x).f’(x).
Derivada de um quociente de funções:
Obtenha a derivada de cada função usando as regras de derivação e as propriedades das derivadas.
	
	2.5 Regra da função composta – regra da cadeia.
Seja a função composta y = h(x) = f(g(x)), sendo g derivável em x e f derivável em g(x). Nestas condições, h’(x) = f’(g(x)) . g’(x).
	
	Use a regra da cadeia para obter a derivada das funções:
	
	2.6 A derivada como uma taxa de variação.
	1) Seja A cm² a área de um quadrado de x cm de lado.
a) Encontre a taxa de variação média da área do quadrado por variação de centímetro no comprimento do lado quando x varia de [3; 3,2]; [3; 3,1] e [3; 3,01];
b) Encontre a taxa de variação instantânea quando o lado é igual a 3 cm.
2) Um cubo de metal está sendo aquecido e seu volume está se expandindo. 	Determine a taxa de variação de seu volume por variação na sua aresta no instante em que sua aresta mede 4 	cm.
	3) Determine a taxa de aumento da área de um disco circular de metal que está sendo 	aquecido no instante em que seu raio mede 4 m.
4) Um tanque em forma de cilindro com altura de 80 cm e raio da base de 20 cm, está 	se enchendo de água. Determine a taxa de aumento de seu volume pela variação de sua altura no instante em que a altura da água for de 4 cm.
	5) A função custo total para a produção de um determinado produto é C(x)= 5x + 5000, 	onde x representa a quantidade produzida. Determine a função custo marginal.
A função receita total de um determinado produto é R(x) = 10x, onde x representa a quantidade vendida. Determine a função receita marginal.
Dada a função receita R(x) = -4x²+500x, obtenha:
A receita marginal;
Rmg(10) e a interpretação do resultado;
Rmg(20) e a interpretação do resultado.
2.7 Taxas de variação relacionadas.
	Notemos que se duas grandezas estão relacionadas entre si, através de uma 	terceira grandeza, então suas taxas de variação em relação a esta grandeza, da qual 	cicunstancialmente dependem, também o estarão.
Exercícios.
1) Um quadrado se expande de modo que seu lado varia a razão de 5 cm/s. Achar a 	taxa de variação de sua área no instante em que o lado mede 15 cm.
 	2) Um cubo se expande de modo que sua aresta varia à razão de 12,5 cm/s. Achar a 	taxa de variação de seu volume no instante em que sua aresta mede 10 cm.
	3) Um tanque em forma de cone com o vértice para baixo mede 12 cm de altura e tem 	no topo um diâmetro de 12 m. Bombea-se água à taxa de 4 m³/min. Ache a taxa com 	que o nível de água sobe:
	a) quando a água tem 2 m de profundidade;
	b) quando a água tem 8 m de profundidade.
	4) Uma pedra lançada numa lagoa provoca uma série de ondulações concêntricas. Se o 	raio r da onda exterior cresce uniformemente à taxa de 1,8 m/s, determine a taxa com 	que a área da água perturbada está crescendo:
	a) quando r = 3 m;
	b) quando r = 6 m.
	5) Ao se aquecer um disco circular de metal, seu diâmetro varia à razão de 0,01 	cm/min . Quando o diâmetro está com 5 metros, a que taxa está variando sua área. 
	6) Um tanque em forma de cilindro tem 80 cm de altura e raio da base 20 cm. 	Bombeia-se água à taxa de 4 cm/min. Ache a taxa com que o nível da água sobe:
	a) quando a água tem 30 cm de profundidade;
	b) quando a água tem 50 cm de profundidade.
	7) Uma chapa quadrada de metal está sendo aquecida de forma que sua área está se 	expandindo à taxa de 80 cm²/s. Quando seu lado mede 4 cm, determine a taxa de 	aumento de seu lado. 
	8) Um tanque em forma de cone invertido mede 3 m de altura, raio da base de 1 m e 
	e está se enchendo de água de forma que sua altura varia à razão de 1,5 m/min. 	Determine a taxa de aumento de sua altura quando a altura da água for de 2 m.
Derivada de função logarítmica:
Se f(x) = lnx → f’(x) = 
Derivada de função exponencial:
	2.8 Máximos e mínimos.
		Se a função f admite derivada segunda nos pontos críticos, e supondo que esta 	seja contínua no domínio considerado, podemos empregá-la para examinar cada 	ponto crítico e classificá-lo.
		Seja x₀ a abscissa de um ponto crítico, se f’’(x₀)>0, o gráfico de f é convexo para 	x próximo de x₀, isto é, f tem aí concavidade voltada para cima e então f(x₀) é um 	mínimo local de f.
		Se f’’(x₀)<0, o gráfico de f é côncavo para x próximo de x₀, isto é, f tem 	concavidade voltada para baixo, e nesse caso f(x₀) é um máximo local de f.
		Resumindo:
		
Obtenha os pontos de máximo ou de mínimo (quando existirem) das funções abaixo:
f(x) = x²-4x+5
f(x) = 6x-x²
f(x) = -x²+10x-32
f(x) = x²-4x+8
f(x) = 2x+1
f(x) = 
f(x) = 
f(x) = 
f(x) = x³+7x²-5x
f(x) = 2x³-2x²-16x+1
f(x) = 4x-x²
f(x) = 
f(x) = 
f(x) = -x²+2x
Deseja-se construir uma piscina retangular com 900 m² de área. Quais as dimensões para o perímetro seja mínimo?
Deseja-se construir uma área de lazer, comformato retangular, e 1600 m² de área. Quais as dimensões para que o perímetro seja mínimo?
De todos os retângulos de perímetro igual a 100 m, qual o de área máxima?
Obtenha dois números cuja soma seja 100 e cujo produto seja máximo.
Qual o número real positivo que, somado a seu inverso, dá o menor resultado possível?
Um homem deseja construir um galinheiro com formato retangular, usando como um dos lados uma parede de sua casa. Quais as dimensões que dever ser utilizadas para que a área seja máxima, sabendo-se que ele pretende usar 20 m de cerca?
Com relação ao exercício anterior, se ele quisesse construir um galinheiro com área de 16 m², quais as dimensões que utilizariam a menor quantidade de material para a cerca?
Imagine que a trajetória de uma pedra lançada ao ar seja um trecho da parábola dada por: y = -5x²+20x (x e y em metros). 
Em que altura estará a pedra quando seu deslocamento horizontal for de 1 m?
O gráfico da trajetória da pedra;
Em qual tempo e qual altura a pedra atingirá o ponto máximo?
Gerador é um aparelho que transforma qualquer tipo de energia em energia elétrica. Se a potência P, em watts, que um certo gerador lança num circuito elétrico é dada por: P = 20i – 51i² onde i é a intensidade de corrente elétrica, que atravessa o gerador, em amperes. Para que intensidade da corrente esse gerador lança no circuito sua potência máxima? 
		
	
� EMBED Equation.3 ���
� EMBED Equation.3 ���
� EMBED Equation.3 ���
� EMBED Equation.3 ���
� EMBED Equation.3 ���
� EMBED Equation.3 ���
_1448265997.unknown
_1448266014.unknown
_1448266383.unknown
_1448274787.unknown
_1456052415.unknown
_1456318237.unknown
_1456572177.unknown
_1456572456.unknown
_1456572550.unknown
_1456572224.unknown
_1456572116.unknown
_1456061950.unknown
_1456062030.unknown
_1456053725.unknown
_1456054582.unknown
_1456052740.unknown
_1448275590.unknown
_1454432586.unknown
_1456051187.unknown
_1456051324.unknown
_1454855301.unknown
_1448362505.unknown
_1448362645.unknown
_1448275203.unknown
_1448275446.unknown
_1448274999.unknown
_1448273889.unknown
_1448274500.unknown
_1448274667.unknown
_1448274153.unknown
_1448266631.unknown
_1448273481.unknown
_1448266507.unknown
_1448266022.unknown
_1448266026.unknown
_1448266030.unknown
_1448266032.unknown
_1448266033.unknown
_1448266034.unknown
_1448266031.unknown
_1448266028.unknown
_1448266029.unknown
_1448266027.unknown
_1448266024.unknown
_1448266025.unknown
_1448266023.unknown
_1448266018.unknown
_1448266020.unknown
_1448266021.unknown
_1448266019.unknown
_1448266016.unknown
_1448266017.unknown
_1448266015.unknown
_1448266005.unknown
_1448266010.unknown
_1448266012.unknown
_1448266013.unknown
_1448266011.unknown
_1448266007.unknown
_1448266008.unknown
_1448266006.unknown
_1448266001.unknown
_1448266003.unknown
_1448266004.unknown
_1448266002.unknown
_1448265999.unknown
_1448266000.unknown
_1448265998.unknown
_1448265975.unknown
_1448265988.unknown
_1448265993.unknown
_1448265995.unknown
_1448265996.unknown
_1448265994.unknown
_1448265990.unknown
_1448265992.unknown
_1448265989.unknown
_1448265984.unknown
_1448265986.unknown
_1448265987.unknown
_1448265985.unknown
_1448265979.unknown
_1448265981.unknown
_1448265982.unknown
_1448265983.unknown
_1448265980.unknown
_1448265977.unknown
_1448265978.unknown
_1448265976.unknown
_1448265967.unknown
_1448265971.unknown
_1448265973.unknown
_1448265974.unknown
_1448265972.unknown
_1448265969.unknown
_1448265970.unknown
_1448265968.unknown
_1448265963.unknown
_1448265965.unknown
_1448265966.unknown
_1448265964.unknown
_1448265960.unknown
_1448265962.unknown
_1448265958.unknown
_1448265959.unknown
_1448265925.unknown

Outros materiais