2   Lista 06
1 pág.

2 Lista 06

Disciplina:Cálculo II21.529 materiais667.760 seguidores
Pré-visualização1 página
Universidade de Mogi das Cruzes

6ª Lista de Exercícios de Cálculo I \u2013 A

Assunto: Diferenciação Profª Maria Helena Campanellli

Exerc.s 181 a 183. Aplique a definição para achar a derivada da função.

181. f (x) = 3x²-5x \u20132 182. g (t) =
 183. h (s) =

Exerc.s 184 e 185. Determine o coeficiente angular da reta tangente ao gráfico de f no ponto indicado.

184. f (x) = x³ + 3 ; P (-2 , -5) 185. f (x) =
 + 1 ; P (4 , 3)

Exerc.s 186 e 187. Ache a equação da reta tangente ao gráfico de f no ponto indicado.

186. f ( x ) =
 ; P (2, 2) 187. f ( x) =
 ; P (1 , 1)

Exerc.s 188 e 189. Ache o coeficiente angular e a equação da reta tangente ao gráfico
no ponto (1 , 1) .
188. y =
 189. y =

Exerc.s 190 a 195. Indique os valores de x nos quais a função não é diferenciável. Explique por que ?

190. y = | x \u2013 3 | 191. y = | x² - 9 | 192. y =

193. y =
 194. y =
 195. y =

Exerc.s 196 a 220. Ache a derivada da função.

196. f (x) =
 197. g (x) = 6
 + 2

198. f (s) =
-
 +
 199. h (t) = 2
 +
 -

200. f (x) =
 201. f (r) = 5 -
+

202. g(x) =
 203. h(x) =

204. f (x) =
 205. g (x) =

206. h (t) =
 207. s (t) =
 208. f(x) =
+
 209. g (x) =

210. h (t) =
 211. f (t) =

212. g (x) = (x² + 2).(x+ 1) 213. h (t) = (t² + 1)(1 - t³)

214. f (x) = (2x + 1)(x - 1)(1 - x) 215. g (t) =

216. f(t) =
 217. f (x) =
 218. h (t) =
 219. f (x) =
 220. f (x) =

Respostas:

181. 6x \u20135 182.
 183.

184. 12 185.
 186. y = 2x \u20132

187. y = - x +2 188.
 ;
 189. \u20132 ; y = -2x + 3

190. x = 3 (nó) 191. x= -3 e x = 3 (cúspide) 192. x = 1

193. x = 3 (cúspide) 194. x= -1 (descontinuidade) 195. x = 0 (tangente vertical)
196.
 197.
 198.

199.
 200.
 201.

202.
 203.
 204. 24x.(3x²+1)³ 205.
 206.
 207.

208.
 209.
 210.

211.
 212. 3x² + 2x + 2 213.

214. 6x²- 6x 215.
 216. (3t -1).(t + 2)³.(9t + 4)

217.
 218.
 219.

220.

_1080234081.unknown

_1080241998.unknown

_1080250070.unknown

_1080635762.unknown

_1084228485.unknown

_1084228638.unknown

_1084228671.unknown

_1084228740.unknown

_1084228574.unknown

_1084228445.unknown

_1084228469.unknown

_1084228425.unknown

_1080419501.unknown

_1080419728.unknown

_1080419873.unknown

_1080419532.unknown

_1080419540.unknown

_1080419405.unknown

_1080419428.unknown

_1080419346.unknown

_1080242777.unknown

_1080247829.unknown

_1080249347.unknown

_1080243102.unknown

_1080243260.unknown

_1080243413.unknown

_1080243215.unknown

_1080242890.unknown

_1080242210.unknown

_1080242679.unknown

_1080242654.unknown

_1080242030.unknown

_1080237212.unknown

_1080238474.unknown

_1080239052.unknown

_1080237333.unknown

_1080235438.unknown

_1080235780.unknown

_1080234315.unknown

_1080221246.unknown

_1080230682.unknown

_1080232162.unknown

_1080232965.unknown

_1080233273.unknown

_1080232374.unknown

_1080232393.unknown

_1080232265.unknown

_1080231128.unknown

_1080231384.unknown

_1080231478.unknown

_1080231196.unknown

_1080230782.unknown

_1080221527.unknown

_1080221716.unknown

_1080230515.unknown

_1080230598.unknown

_1080230467.unknown

_1080221535.unknown

_1080221327.unknown

_1080220662.unknown

_1080221162.unknown

_1080221216.unknown

_1080221007.unknown

_1080220187.unknown

_1080220245.unknown

_1080220021.unknown