Buscar

Apostila Ventilação Mecânica.pdf

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 114 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 114 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 114 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

APOSTILA VENTILAÇÃO MECÂNICA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
http://www.concursoefisioterapia.com 
 
 
 
 
 
 
 
 
 
SUMÁRIO 
 
 
Breve histórico da ventilação mecânica 
Anatomia das vias aéreas superiores 
Fisiologia envolvida com ventilação mecânica invasiva 
Intubação traqueal 
Técnica de ventilação com máscara facial 
Objetivos, indicações e contra-indicações da ventilação mecânica 
Princípios da ventilação mecânica 
 - trabalho respiratório 
 - fase inspiratória 
 - mudança fase inspiratória para expiratória 
 - fase expiratória 
 - mudança fase expiratória para inspiratória 
 - ondas de pressão vias aéreas 
 - ondas de fluxo 
Modos básicos de ventilação mecânica 
 - ventilação controlada e assistido-controlada 
 - ventilação mandatória intermitente sincronizada 
Ciclagem em ventilação mecânica 
 - volume, pressão, tempo e fluxo 
Modos ventilatórios 
 - ventilação ciclada avolume 
 - ventilação ciclada a pressão 
 - ventilação ciclada a tempo 
 - ventilação ciclada a fluxo 
 - pressão positiva contínua vias aéreas 
Complicações da ventilação mecânica 
 - efeitos pulmonares 
 - efeitos cardiovasculares 
 - função neurológica, renal, hepática e gastrointestinal 
PEEP 
 - PEEP fisiológica 
 - titulando a PEEP 
 - resposta respiratória PEEP 
 - resposta hemodinâmica 
 - resposta renal 
 - resposta na pressão intracraniana 
Pressão de suporte 
 - efeitos fisiológicos da PSV 
Ajustes iniciais do ventilador 
 - modo ventilatório 
 - FiO² 
 - VC e FR 
 - taxa de fluxo e relação I:E 
 - pausa inspiratória 
 - pressões vias aéreas e PEEP 
 - sensibilidade 
 - PSV 
 - alarmes 
 
 
Breve histórico da ventilação mecânica 
 
HISTÓRIA (a.C.) 
 
As primeiras citações sobre a teoria da respiração aparecem nos escrito antigos Egípcios, 
Chineses e Gregos. O ato de ventilar artificialmente seres humanos data de 800 a.C. e está 
documentado no Velho testamento Bíblico, citação ao Profeta Elisha que induziu uma pressão 
respiratória da sua boca a boca de uma criança que estava morrendo (II Kings, 4:34-35). 
 
460 - 370 a.C. Hipócrates descreveu a função da respiração no “Tratado do ar" e 
o tratamento para as situações iminentes de sufocamento por meio da canulação 
da traquéia ao longo do osso da mandíbula. Esta foi provavelmente a primeira 
citação sobre intubação orotraqueal. 
 
 
 
 
 
 
384 - 322 a.C. Aristóteles notou que animais colocados dentro de caixas 
hermeticamente fechadas morriam. Primeiramente, pensou que a morte ocorria 
pelo fato dos animais não conseguirem se resfriar. Outros estudos levaram-no a 
conclusão de que o ar fresco era essencial para a vida. 
 
 
 
 
HISTÓRIA (d.C.) 
 
Século II d.C. Galeno, físico grego, realizou diversos estudos sobre anatomia em 
várias espécies de animais. Ele afirmava que a anatomia dos seres humanos era 
similar. Seus ensinamentos foram seguidos por muitos séculos. Desde a sua morte 
até 13oo anos após, religiosos e políticos proibiram a dissecção e os estudos 
científicos em humanos. 
 
 
 
1530 Paracelsus (1493-1541) usou um fole conectado a um tubo inserido na boca 
de um paciente para assistir a ventilação. Foi-lhe creditado a primeira forma de 
ventilação artificial. 
 
 
 
 
1541 - 1564 Vesalius introduziu um cano na traquéia de um animal que estava 
morrendo e somente através da ventilação restabeleceu o batimento cardíaco. 
Vesalius foi o primeiro a desbravar as leis vigentes e dissecou cadáveres 
humanos. Os seus registros compreendem 7 volumes de anatomia ilustrada, foi a 
primeira obra com descrição acurada do corpo humano. 
 
 
1635 - 1703 Robert Hooke se interessou em estabelecer a causa da morte 
quando o tórax era aberto durante cirurgias. Realizou estudos em animais e 
percebeu que era possível sustentar a vida bombeando ar nos pulmões. Ventilou 
os animais por meio de um fole conectado a um tubo inserido na traquéia através 
de um orifício no pescoço abaixo da epiglote. Primeiramente, achou que os 
movimentos do tórax e pulmões é que mantinham a vida. Em outros estudos, 
inseriu um cano nas vias aéreas e liberou um fluxo constante de ar através dele, 
conseguiu manter os pulmões expandidos e sustentou a vida mesmo na 
ausência dos movimentos respiratórios. Por fim, concluiu que o ar fresco e não o movimento 
respiratório é essencial à vida. 
 
1763 - Smelie usou um tubo de metal flexível e bombeou ar para dentro dos pulmões. 
 
1775 - John Hunter desenvolveu um sistema com duplos balões para 
ressucitação de animais, um balão para entrada de ar fresco e outro para 
retirada do ar ruim. Ele também recomendou a compressão com o dedo sobre a 
laringe para prevenir a entrada de ar no estômago. Esta técnica foi adaptada 
para humanos e é utilizada atualmente. 
 
 
 
1786 - Kite criou um mecanismo limitado a volume que usou com foles. Foi importante por ser o 
primeiro dispositivo volumétrico. 
 
1790 - Courtois usou um pistão e um cilindro junto com um balão para ventilação. 
 
1796 - Forthergill usou um tubo nasal e um fole para ventilação artificial. 
 
 
1864 - Jones patenteou um dos primeiros ventiladores de pressão 
negativa. 
 
 
 
 
 
 
1876 - Primeiro "iron lung" do Dr. Alfred Woillez. Aparelho onde 
seria possível submeter o paciente a uma ventilação sustentada por 
verdade diminuição da pressão atmosférica à volta da caixa torácica, 
sendo necessário que as vias aéreas mantivessem-se em contato com 
a pressão atmosférica normal. Isso permitiria uma geração de fluxo 
inspiratório de forma mais efetiva, ocasionando a expansão da caixa 
torácica e, portanto permitindo restaurar de forma aceitável o processo 
de ventilação pulmonar. Este equipamento tinha o acionamento do fole manualmente. 
 
1876 - Dr. Woillez de Paris desenvolveu o "espirophore" similar ao 
pulmão de aço - "iron lung". 
1860 - Diversos respiradores com pressão negativa foram inventados. 
 
 
 
1880 - Macewen desenvolveu o tubo endotraqueal. 
 
 
 
 
 
 
 
1886 - Tuffier e Hallion realizaram com sucesso uma ressecção de parte do 
pulmão utilizando um tubo endotraqueal com "cuff"e uma válvula de não-
reinalação. 
 
 
 
 
 
 
1889 - Dr. Egon Braun desenvolveu uma caixa de 
ressucitação para crianças. 
 
 
 
 
 
 
 
 
 
 
 
1893 - Fell e O'Dwyer usaram uma cânula laríngea conectada a um 
balão acionado com os pés para ventilação durante cirurgias. 
 
 
 
 
 
1895 - Kirstein desenvolveu um autoscópio para a visão direta. 
 
1895 - Jackson inventou o laringoscópio. 
 
 
 
 
 
1902 - Matas usou o ar comprimido para acionar o aparato de Fell-O'Dwyer durante cirurgia. 
 
 
 
 
 
1904 - Sauerbruch usou ventilação negativa contínua ao redor do corpo 
para atender a necessidade ventilatória durante cirurgia. 
 
 
 
 
 
 
 
 
 
 
1905 - Brauer usou pressão positiva contínua nas vias aéreas superiores durante cirurgia. 
 
1909 - Janeway e Green desenvolveram um ventilador com pressão positiva intermitente (IPPV) 
para uso em cirurgias. 
 
1907 - Heinrich Drager recebeu a patente do "pulmotor" para 
ressucitação, acionado pelo ar comprimido ou oxigênio. 
 
 
 
 
 
 
 
 
 
 
1916 - Severy e 1926 Schwake construiram 
ventiladores de pressão negativa que requeriam 
posição de pé do paciente. 
 
 
 
 
 
 
 
 
 
1928 - Drinker e Shawdesenvolveram um ventilador de 
pressão negativa conhecido como "iron lung". Foi muito 
utilizado para suporte de vida prolongado. 
 
 
 
 
 
 
 
 
 
1930 - Poulton e Barack introduziram o CPPB (continuous positive pressure breathing) para tratar 
edema pulmonar agudo cardiogênico. 
 
 
1931 - Emerson desenvolveu um "iron lung" similar ao de Driker e 
Shaw que se tornou largamente comercializado. 
 
 
 
 
 
 
 
 
 
 
1936 - As dificuldades de se oferecer cuidados gerais, como 
banho, alimentação e medicação a pacientes em pulmões de 
aço, a imobilidade forçada e a impossibilidade de tossir eram 
causadoras de inúmeras complicações infecciosas 
pulmonares. Apesar de todas as suas limitações, a demanda 
por pulmões de aço era muito grande e sua disponibilidade 
limitada em muitos hospitais. Como a demanda os espaço e 
pessoal especializado para os cuidados eram escassos, 
surgiu uma adaptação chamada de “couraça” um "pulmão de 
aço" que envolvia só o tórax. 
 
1940 - Crafoord, Frenckner e Andreason desenvolveram o 
"espiropulsator", um ventilador para IPPV. 
 
 
 
 
 
 
 
 
 
 
1941-1945 - Morch desenvolveu um ventilador para IPPV. 
 
1951 - Dr. Forrest Bird construiu o primeiro respirador de pressão 
positiva acionado por magnetos. Denominado Bird Mark 7. 
 
 
 
 
 
 
 
 
 
 
1953 - Richard Salt desenvolveu 
o "Oxford inflating ballows” foi 
muito utilizado no tratamento da 
poliomielite. 
 
 
 
 
 
 
 
 
 
1953 - Saxon G.A. e Meyer G.H. desenvolveram um dispositivo eletromecânico para substituir o 
centro respiratório humano durante VM. O dispositivo regulava a pressão inspiratória pelo EtCO². 
Foi o primeiro registro da utilização da alça-fechada durante a VM. 
 
1955 - J.H. Emerson de Massachusetts, patenteou um ventilador que produzia vibrações nas 
vias aéreas dos pacientes (100 a 1500 vibrações por minuto). Foi-lhe creditada a invenção do 
primeiro ventilador de alta frequência. 
 
1956- O "iron chest" da Drager, também conhecido como "chest respirator". Respirador de 
pressão negativa ao redor do tórax desenvolvido para longa permanência. 
1967 - A PEEP (positive end expiratory pressure) foi introduzida nos respiradores por pressão 
positiva. Ashbaugh, Petty, Bigelow e Levine reviveram a idéia do CPPB e aplicaram-na durante a 
ventilação mecânica, denominando de PEEP, para o tratamento da SDRA (Síndrome do 
desconforto respiratório agudo). 
 
1970 - Robert Kirb e colaboradores desenvolveram uma técnica denominada de "intermitent 
mandatory ventilation - IMV" para ventilar crianças com "IRDS - idiopathic respiratory distress 
syndrome". 
 
1971 - Gregory e colaboradores reportaram o uso do CPAP para tratar IRDS em recém-
nascidos. 
1971 - Oberg e Sjonstrand introduziram a ventilação com pressão positiva de alta frequência 
(HFPPV). 
 
1973 - John Downs e colaboradores adaptaram o sistema de Ventilação Mandatória Intermitente 
(VMI) para adultos e também o propuseram como método de desmame do suporte ventilatório. 
 
1980 - Ventilação por pressão positiva de alta frequência ganhou destaque na literatura como uma 
abordagem experimental de VM. 
 
Atualmente os ventiladores são equipamentos que utilizam multiprocessadores, 
fornecendo diversas formas de ventilação. 
 
 
 
 
 
 
 
Referências bibliográficas 
 
 
Drinker PA, McKhann CF 3rd. Landmark perspective: The iron lung. First practical means of 
respiratory support. JAMA. 1986;255(11):1476-80. 
 
Bach JR. A historical perspective on the use of noninvasive ventilatory support alternatives. Respir 
Care Clin N Am. 1996;2(2):161-81. 
 
Fisioterapia em Terapia Intensiva - http://fisioterapiaemterapiaintensiva.blogspot.com/ 
 
Pilbeam, Suzan. Mechanical ventilation: Physiologycal and clinical applications. 3 ed. Mosby. 
1998. 
 
Tobin, Martin J. Principles and practice of mechanical ventilation. McGraw-Hill. 1994. 
 
Clinical Window Web Journal. Mechanical Ventilation, A Historical Perspective (december 2006). 
 
Christofer M. Burke, Fernando A. Zepeda, Douglas R. Bacon and Steven H. Rose. A historical 
perspective on use of the laryngoscope as a tool in anesthesiology. Anesthesiology 2004; 100: 
1003-6. 
 
Amer Chaikhouni. History of Medicine: The magnificent century of cardiothoracic surgery. Volume 
8 , n. 4, december 2007 - february 2008. 
 
Ernst Bahns. Drager: The history of ventilation Tecnologhy. It began with the pulmotor - one 
hundred year of artificial ventilation. 2007. 
 
J.X. Brunner. History and principles of closed-loop control applied to mechanical ventilation. MJS-
NVIC. 2002. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Anatomia das vias aéreas superiores 
 
 
 
1. Língua 
2. Orofaringe 
3. Laringe 
4. Glote 
5. Cordas Vocais 
6. Cartilagem Tireóide 
7. Cartilagem Cricóide 
8. Traquéia 
9. Esôfago 
 
 
Vista lateral das vias aéreas superiores 
 
1- corneto superior; 
2- corneto médio; 
3- corneto inferior; 
4-palato duro; 
5-palato mole; 
6-cavidade oral; 
7-língua; 
 
 
8-úvula; 
9-nasofaringe; 
10-orofaringe; 
11-adenóide. 
 
Laringe 
 
Caracteriza-se por ser um arcabouço tubular constituído de cartilagens, músculos e 
ligamentos, com as funções de respiração, fonação e proteção das vias aéreas; 
No homem, a laringe tem cerca de 5 cm de comprimento, sendo um pouco menor na 
mulher. 
Estende-se da epiglote (C4) até a borda inferior da cartilagem cricóide (começo da traquéia). 
 
 
 
Cartilagens, ligamentos e músculos da laringe 
 
Cartilagem Tireóide 
 
É a maior das cartilagens laríngeas, situando-se acima da cricóide e ligada a esta pelo 
ligamento cricotireoidiano; 
Constituída por duas placas quadradas fundidas anteriormente na linha média, com sua 
borda superior projetando-se para fora numa proeminência conhecida como "Pomo de Adão"; 
No seu interior, situam-se as cordas vocais. 
 
 
 
 
Cartilagem tireóide, frente e perfil 
 
 
 
 
Cordas vocais localizadas no espaço interior da cartilagem tireóide 
 
Cartilagem Cricóide 
 
Localizada no início da traquéia, tem formato de anel. 
Na criança até 9 anos possui forma circular, sendo nesta faixa etária a parte mais estreita 
da laringe; 
No adulto, ao contrário, assume aparência oval, e a parte mais estreita passa a ser o 
espaço entre as cordas vocais (glote). 
 
Cartilagem tireóide, ligamento cricotireóideo e cartilagem cricóide 
Epiglote 
 
 
 
Fibrocartilagem em forma de "U" situada na entrada da laringe, conectada anteriormente 
por ligamentos ao osso hióide; sua borda livre se projeta em direção à faringe. 
A epiglote não tem significado funcional e sua ausência não altera os mecanismos de 
proteção da laringe. 
 
Posição da epiglote e demais cartilagens na laringe. 
 
Cordas Vocais 
 
As cordas vocais são constituídas por duas pregas músculo-membranosas que à 
laringoscopia direta tem aspecto de um triângulo com ápice inserido na parede anterior da 
cartilagem tireóide, e sua base, posteriormente nas cartilagens aritenóides ("V" invertido); 
O espaço entre as cordas vocais verdadeiras denomina-se "glote", que no adulto é o 
ponto mais estreito da laringe. 
 
 
Inervação 
 
A laringe é inervada por dois ramos do vago: 
 
(1) nervo laríngeo superior: 
 
 - ramo interno: "sensitivo" 1/3 superior e médio da laringe; 
 - ramo externo: "motor" músculo cricotireoidiano. 
 
 
 
(2) nervo laríngeo inferior (recorrente): 
 
 - "sensitivo" (1/3 inferior da laringe); 
 - "motor" todos os músculos, com exceção do cricotireoidiano 
 
 
TraquéiaA traquéia é continuação da laringe, na forma de um tubo membranoso com 
aproximadamente 1,5 cm de diâmetro por 10 a 12 cm de comprimento; 
Tem início em C6 abaixo da cartilagem cricóide e termina bifurcando-se na carina, a nível de 
T5 no 2º espaço intercostal (ângulo de Louis); 
Suas paredes são reforçadas por cerca de 16 a 20 anéis cartilaginosos incompletos, 
empilhados uns sobre os outros e ligados por tecido conjuntivo. 
 
Carina ou crista ântero-posterior, ou esporão sagital. 
 
É o ponto onde a traquéia termina e também, o mais sensível a estímulos. 
 
 
Principais medidas da traquéia e dos brônquios 
 
 
 
 
Referencias bibliográficas 
 
Bonner JT, Hall JR. Respiratory Intensive Care of the Adult Patient. St. Louis: CV Mosby, 1985:90. 
 
NETTER, Frank H.. Atlas de Anatomia Humana. 2ed. Porto Alegre: Artmed, 2000. 
 
Respiração PHILIPPE-EMMANUEL SOUCHARD – Summus 
 
Tratado de Fisiologia Médica ARTHUR C. GUYTON & JOHN E. HALL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fisiologia envolvida com ventilação mecânica invasiva 
 
O sistema respiratório tem por objetivos básicos colocar o ar ambiente em contato 
com o sangue, visando à retirada de gás carbônico, a troca, transporte e entrega de O² para 
os tecidos do organismo, permitindo respiração celular aeróbia. A esta troca denominamos 
HEMATOSE, e a mesma ocorre ao nível do interstício alvéolo-capilar e capilar-tecido. Os 
alvéolos são unidades microscópicas, que são circundados por vasos capilares. Se 
pudéssemos estender toda a superfície alveolar de um pulmão estima-se uma área média de 
setenta metros quadrados. 
Outras funções do pulmão e do sistema respiratório podem ser resumidas em permitir a 
excreção de substâncias voláteis, síntese de substâncias como angiotensina II, ação 
filtrante para grandes partículas provenientes do sistema venoso, atuar como reservatório 
sanguíneo e participar do sistema de tampão ácido-básico do organismo. 
A caixa torácica tem um tônus basal que mantém sua conformação e atua diretamente 
no processo ventilatório, tanto na inspiração (processo ativo, com gasto de energia) como no 
retorno, através das forças de recolhimento, para seu ponto de repouso, por assim dizer. Vários 
feixes de músculos participam dessa ação. 
 A expiração assim sendo, é um processo habitualmente passivo, sem necessidade de 
contração de feixes musculares em particular. Porém pode ser feita de forma ativa, como nos 
reflexos de tosse e espirro, ou quando o indivíduo assim o desejar. 
O diafragma é um músculo de atuação inspiratória, que divide anatomicamente a caixa 
torácica da cavidade abdominal dos seres humanos. 
 
 
Representação esquemática do m. diafragma, face torácica. 
 
É muito importante entender que os pulmões têm uma arquitetura muito delicada e que seu 
funcionamento adequado depende essencialmente da preservação dessa arquitetura. 
Weibel descreveu as vias aéreas e classificou-as conforme as divisões brônquicas em 
gerações, sendo que até a 17.a geração em média, observou-se a composição das vias aéreas 
exclusivamente de cartilagens e epitélio respiratório, pseudo-estratificado cilíndrico ciliado. 
(Zona de Condução de Weibel). A partir da geração seguinte, começam a surgir alvéolos 
compondo as paredes das vias aéreas, havendo, portanto possibilidade de troca gasosa desde ali. 
À medida que se avança nas vias aéreas, gradualmente aumenta o número de alvéolos até que 
nas gerações mais terminais apenas alvéolos compõem as vias aéreas, que se findarão nos 
sacos alveolares. (Zona Respiratória de Weibel). 
 
 
 
 
 
Zonas de Weibel 
 
Quaisquer agressões diretas às vias aéreas serão retiradas com eficácia pela tosse e 
esteira mucociliar na Zona de Condução. Depois disso, caso o agente agressor vá mais 
adiante, será necessária ação celular e linfática para a “limpeza” e reestruturação da 
arquitetura alveolar. 
Os alvéolos são pequeninos “sacos de ar” cuja arquitetura é formada de células finas, 
de composição, chamadas pneumócitos tipo I e células maiores, que tem função, dentre outras, 
de produzir a surfactante, substância com a função de quebrar a tensão superficial da fina 
camada fisiológica de líquido que preenche os alvéolos, impedindo que essa força os faça 
colapsar. 
 
Esquema da estrutura normal do parênquima pulmonar 
 
Processos de agressão ao pulmão que resultem em inflamação poderão causar edema, 
com espessamento do interstício alvéolo-capilar, e devido ao aumento da permeabilidade levar 
ao preenchimento da luz alveolar com liquido, proteínas, células e mediadores 
inflamatórios. Isso fará a diluição do surfactante e permitirá o colapsamento alveolar e, portanto a 
perda de sua função. 
 
 
 Assim sendo, quando se coloca um paciente em ventilação mecânica invasiva, a 
utilização da prótese endotraqueal acarretará o prejuízo de uma série de mecanismos de 
defesa a saber: 
• pêlos; 
• tortuosidade das Vias Aéreas: aumento da área de contato, umidificação e aquecimento 
do ar; 
• reflexos (tosse/espirro); 
• esteira mucociliar. 
 
Esses mecanismos precisarão ser substituídos no processo de ventilação artificial, com 
a utilização de filtros e aquecedores/umidificadores do ar. A tosse poderá ser otimizada 
mesmo em pacientes intubados ou traqueostomizados, com o treino e auxílio da fisioterapia 
respiratória. 
A esteira mucociliar fica muito prejudicada pela presença da prótese em si e pelas 
aspirações de secreção (processo feito às “cegas”). É muito importante o cuidado com o processo 
aspirativo para não ferir ainda mais o epitélio e piorar a situação. 
Importante revisar o conceito de Volume Corrente (VC), em inglês chamado de Tidal 
Volume (Vt). Pode-se definir de forma simples como o ar que entra e sai das vias aéreas num 
ciclo respiratório habitual. Em pacientes extubados, sob ventilação espontânea e 
fisiologicamente, estima-se que o VC varie de 10-15 ml/kg de peso predito. No entanto, hoje se 
sabe que esse volume deve ser menor em pacientes sob Ventilação com Pressão Positiva 
Invasiva (VPPI). 
O Volume de Reserva Expiratório (VRE) é todo ar que se consegue expirar forçadamente 
após uma expiração normal. O ar que não se consegue expirar é denominado de Volume 
Residual (VR). A soma de VR+VRE é a Capacidade Residual Funcional e representa na 
prática clínica o ponto de repouso da caixa torácica. 
 
 
Esquema representado Volumes e Capacidades Pulmonares 
 
Quando se intuba um paciente, modifica-se o equilíbrio de pressões e permite-se que 
parte do VRE seja expirado com facilidade, passivamente. Isso possibilita a formação de 
microatelectasias. Disso advém a idéia de se manter um volume extra ao final da expiração, 
fisiologicamente visando à manutenção da CRF e a diminuir as chances de atelectasias. Esse 
“volume”, individualmente difícil de ser determinado no paciente grave à beira do leito, pode ser 
 
 
medido mais facilmente pela pressão decorrente de sua presença. Então hoje ele é medido pela 
pressão positiva que se mantém ao final da expiração, a PEEP. Assim, recomenda-se que sempre 
mantenha o paciente sob VPPI utilizando-se de uma mínima PEEP, por muitos chamada de 
“PEEP fisiológica”. Este valor na prática varia de 3-5 cm H²O (alguns autores já recomendam de 
5-8 cm H²O). 
Um conceito muito importante que precisa ser relembrado é o de Ventilação. Ventilar é o 
deslocar o ar. No caso do sistema respiratório, quer-se deslocar o ar do ambiente para intimidade 
alveolar e de lá de volta ao ar ambiente. Isso é diferente de troca gasosa, hematose em si. 
Ambas estão intimamente dependentes e ligadas, mas são processos diferentes, muito 
confundidos entre sino dia a dia. Assim, o aparelho que muitos chamam de RESPIRADOR, na 
verdade é um VENTILADOR artificial. O aparelho propicia a ventilação alveolar. A Troca dos 
gases quem continua a fazer é o paciente! Com certeza estratégias de ventilação inadequadas 
irão prejudicar a troca, assim como se podem aplicar estratégias ventilatórias que otimizem a 
troca. 
Na beira do leito, do ponto de vista prático, a ventilação pulmonar pode ser medida pela 
mecânica global do sistema respiratório e pela consequência que exerce no organismo, 
através da obtenção do nível da pressão parcial do gás carbônico (PaCO²). O CO² é um gás 
com excelente coeficiente de difusibilidade, melhor que o do O². Assim, aumentos na PaCO² na 
quase totalidade dos casos podem ser atribuídos a uma síndrome de hipoventilação, seja ela 
crônica ou aguda. Já o oposto mostra uma síndrome de hiperventilação. 
 
 
 
Esquema da retenção de CO² por síndrome de hipoventilação 
 
A PaO² é a pressão parcial do gás oxigênio. Ou seja, representa o gás oxigênio 
dissolvido no plasma. Do ponto de vista de transporte de O², a PaO² representa uma ínfima 
parcela do mesmo. No entanto, por ter coeficiente de difusibilidade menor que o do CO². 
Diminuições na PaO² podem ser atribuídas a problemas de troca, quando mantida ou 
aumentada a Fração Inspirada de O² (FIO²). Assim, na beira do leito pode-se avaliar a troca 
gasosa de forma muito prática usando-se a relação PaO²/FiO². Desta maneira, situações de 
espessamento do interstício alvéolo-capilar, de edema alveolar e outras podem contribuir na 
queda da PaO². 
Importante ressaltar que o transporte de O² é feito essencialmente ligado à molécula 
da oxihemoglobina. Assim sendo, nos pulmões se oferta O² que será ligado à hemoglobina 
 
 
para o transporte e pequena parte dele, quase desprezível do ponto de vista clínico de 
transporte, será diluído no plasma na forma de gás (PaO²). 
 
 
Esquema representando troca gasosa entre alvéolo e capilar pulmonar 
 
 
 
Esquema representando o transporte do O² no sangue 
 
Oxihemoglobina é a molécula responsável pela quase totalidade do transporte do O² 
para as células. Devido às suas características, ela pode estar totalmente ligada às moléculas de 
O² ou parcialmente, ou seja, no conjunto, a oxihemoglobina pode ou não estar totalmente saturada 
de O². A quantidade de PaO² presente no sangue influencia na saturação da oxihemoglobina 
(Oxi-Hb), mas não somente ela. A Saturação da Oxi-Hb não aumenta de forma linear, à medida 
que se aumenta a PaO², mas sim obedece a uma curva de saturação. Nessa curva, perceba que 
quando se fixa a SaO² em 50% (P50), aumentos ou diminuições na afinidade da oxihemoglobina 
pelo O² implicarão em maior ou menor necessidade de PaO². Isso levará necessariamente a 
desvios na curva, para “direita” ou “esquerda”. A oxihemoglobina terá maior ou menor 
afinidade pelo O² de acordo com algumas situações, a saber: 
 
Fatores que diminuem a afinidade da oxi-hb por O² (desviam a curva para a direita): 
 
 
 
- Hipertermia, corticóides, acidoses, fosfatos orgânicos, aumento da hemoglobina 
(Hb); aumento de 2,3 DPG; 
 
Fatores que aumentam a afinidade da oxi-hb por o2 (desviam a curva para a 
esquerda): 
 
- Hipotermia, alcaloses, hipocapnia, diminuição da Hb, diminuição fosfatos, presença 
Hb anormais. 
 
 
Curva de Saturação da Oxi-Hb 
 
É importante relembrar que os pulmões são órgãos cônicos, cuja distribuição do ar e 
sangue se faz de forma heterogênea. Pesquisadores demonstraram que os alvéolos do ápice 
pulmonar são de maior tamanho, mas com menor capacidade de expansão que os alvéolos da 
base pulmonar. Também já foi demonstrado que há um maior direcionamento de volume total 
de sangue para a base pulmonar do que para os ápices. Isso se deve muito à força da 
gravidade e à anatomia dos pulmões. 
Os pulmões são órgãos de interface ar-sangue. O organismo visa o acoplamento dessa 
interface! Ou seja, o acoplamento ventilação/perfusão (V/P). As áreas de tecido submetidas 
somente a ventilação - sem perfusão - são denominadas áreas de espaço morto. As áreas 
submetidas a predomínio de ventilação sobre perfusão estão sob Efeito Espaço Morto. Já áreas 
que apresentem somente perfusão, sem ventilação estão sob o denominado “Shunt” (desvio) e 
aquelas áreas sob predomínio de perfusão sobre a ventilação estão sob Efeito “Shunt”. Assim 
sendo, já está provado que a base pulmonar recebe maior volume de ar e sangue que os 
ápices pulmonares. No entanto, importante ressaltar que a base tem predomínio de perfusão 
sobre ventilação (efeito shunt) e o ápice predomínio de ventilação sobre perfusão (efeito 
espaço morto). 
 
 
 
 
 
 
 
 
 
Esquema mostrando situações de Espaço Morto e Shunt 
 
 
Esquema da Distribuição da Ventilação e Perfusão no pulmão 
 
O pesquisador e fisiologista John West analisou a histologia e a função alveolar e 
circulatória no pulmão humano e frente aos seus achados propôs uma classificação, anátomo-
funcional muito usada ainda hoje, onde se percebe bem a distribuição de ar e sangue pelos 
pulmões, de acordo com o momento do ciclo ventilatório. 
 
 
 
 
As três zonas do Modelo de West 
 
 
Esquema representativo da hematose pulmonar e tecidual, com relação ao oxigênio. 
 
Assim sendo, resumimos esses conceitos entendendo os pulmões como nossa “estação 
de trem”, onde recarregaremos os nossos “vagões” (hemoglobina) com O². O coração será a 
“Locomotiva” e os vasos sanguíneos os ”trilhos”. Eles irão carregar (e ofertar) essa preciosa 
carga aos nossos tecidos (as “cidades” mais distantes). Dependendo de cada “cidade” (tecido), a 
necessidade da “carga” e da “entrega” de O² será maior ou menor. Fato é que o “trem” (sangue 
venoso) volta para a “estação” (pulmões) parcialmente cheio, nunca vazio. A quantidade de 
“carga” que volta para “estação” nos indica indiretamente quanto dela foi entregue para os 
tecidos e pode nos permitir entender as necessidades dos mesmos, frente à quantidade da 
“carga” utilizada. (pode-se assim depreender extração e consumo de O²). Desta maneira, a 
quantidade de O² que retorna pelo sangue venoso, medida na prática clínica pela Saturação 
Venosa da Oxihemoglobina (SvO²) é um importante indicador da nossa reserva de O² e das 
necessidades teciduais médias do organismo naquele momento. 
 
 
 
 
 
 
 
 
Referencias bibliográficas 
 
Carvalho, CRR; Ventilação Mecânica – Volume I – Básico – 2000 – Clínicas Brasileiras de 
Medicina Intensiva. 
 
Criner GJ, et al. Chest 1994; 106: 1109–1115 
 
Frerichs, I; Hahn, G; Hellige, G.; Gravity-dependent Phenomena in Lung Ventilation Determinde by 
Funcional EIT. Physiol Meas. 17(Suppl. 4A): 149-57, 1996. 
 
Hu VK, Goodman LR. Radiographic detection of monitoring devices. In: Tobin MJ, ed. Principles 
and practice of Intensive Care Monitoring. New York: Mc Graw-Hill, 1998. p. 1211-22. 
 
NETTER, Frank H.. Atlas de Anatomia Humana. 2ed. Porto Alegre: Artmed, 2000. 
 
Tratado de Fisiologia Médica ARTHUR C. GUYTON & JOHN E. HALL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Intubação traqueal 
 
Intubação traqueal consiste na introdução de um tubo na luz da traquéia. Ela pode ser 
realizada através das narinas (via nasotraqueal), boca (via orotraqueal) ou abertura na parede 
da traquéia (transtraqueal). 
 
Indicações 
 
As indicações mais comuns de intubação traqueal na sala de operação ou na unidade de 
cuidados intensivos são: 
 
Assegurar o acesso traqueal nas situações em que exista potencial prejuízo dos 
mecanismos fisiológicos de controle da permeabilidade das vias aéreas (como afecções das 
V.A.S., intervenções próximasas vias aéreas ou em posição desfavorável); 
Atenuar o risco de aspiração do conteúdo gástrico; 
Facilitar a aspiração traqueal; 
Facilitar ventilação sobe pressão positiva; 
Manutenção da oxigenação adequada; 
Anestesia via inalatória. 
 
Equipamentos e materiais necessários 
Laringoscópio 
O laringoscópio rígido padrão consiste em uma lâmina destacável com uma lâmpada 
removível que se liga a um cabo que contém uma bateria. Cada lâmina padrão tem uma guia para 
deslocamento da língua e uma abertura lateral para visualização da laringe. Os tamanhos 
variam de zero (Miller) a um (Macintosh), que são as menores lâminas, a quatro (Miller ou 
Macintosh) que são as maiores. As lâminas são escolhidas em função das dimensões das vias 
aéreas. As lâminas de Macintosh curva número três são recomendadas para adultos de médio 
porte; em lactentes dá - se preferência para lâmina de Miller (reta com a extremidade recurvada). 
 
 
 
Tubos Endotraqueais 
 
Os tubos traqueais são curvados conforme a anatomia da nasofaringe ou orofaringe; 
fabricados com material atóxico, moldável às características individuais de cada paciente. A 
inclusão de marcadores radiopacos permite delinear o tubo traqueal à radiografia simples. 
Dotados ou não de balonetes (cuff), que tem como função a proteção da via aérea de 
aspiração, por exemplo, de vômito ou sangue e também de formar um selo entre o tubo e a 
mucosa traqueal permitindo ventilação positiva. Os tubos pediátricos não possuem balonete 
dados as particularidades da traquéia da criança. 
 
 
 
 
Os tubos traqueais produzem compressão na arcada dentária superior, base da 
língua, parede posterior da laringe e parede anterior da traquéia. 
Os balonetes dos tubos plásticos atuais são chamados de alto volume e baixa pressão. 
Estes balonetes complacentes são desenhados para acomodar um grande volume de inflação 
antes de aumentar a pressão. A alta pressão no balonetes do lúmem é transmitida à mucosa 
traqueal, onde pode causar lesão isquêmica. Balonetes com pressão menor que 20 mm Hg 
permitem vedação da via aérea sem isquemia ou lesão da parede traqueal. Durante a anestesia, o 
óxido nitroso pode se difundir para o balonete e aumentar sua pressão, exigindo retirada do 
volume excedente. A monitorização constante das pressões no balonete previne contra lesões 
isquêmicas. Antes da intubação, o balonete do tubo deve ser examinado em busca de 
vazamentos ou deformidades. 
Em lactentes e pré - escolares, a curta distância entre a fenda glótica e a carina e o 
reduzido diâmetro da traquéia dificultam a utilização de balonetes. Nestes casos, permite-se 
discreto vazamento em torno da cânula. Os inconvenientes do vazamento podem ser 
atenuados pelo tamponamento da faringe com gaze úmida. 
Os tubos são identificados conforme suas dimensões, através do diâmetro interno (mm) e do 
comprimento (14 a 36 cm). A espessura dos tubos traqueais varia de 0,16 a 2,4 mm. Em 
adultos, o diâmetro externo é limitado ao nível da abertura glótica; em crianças o nível de 
maior estreitamento é a cricóide, medindo aproximadamente 0,5 cm. A tabela a seguir relaciona 
ao diâmetro interno do tubo apropriado para cada idade. 
 
 
 
 
Outros equipamentos e materiais utilizados na intubação traqueal: 
 
Sistema de ventilação balão - válvula - máscara (AMBÚ - “Airway Maintenance Breathing 
Unit”), com máscaras de dimensões adequadas a cada paciente, cânula de traqueostomia ou 
cricotireoidotomia para emergência; 
Sondas para troca de cânula, sonda gástrica e de aspiração; 
Guia flexível longo com extremidade em “J” para intubação retrógada; 
Seringa de 10 mL; 
Pinça de Magill; 
Aspirador; 
Fonte de oxigênio; 
Oxímetro de pulso; 
Capnógrafo; 
Cardioscópio e estetoscópio. 
 
 
 
 
 
 
 
 
AMBU - Airway Maintenance Breathing Unit 
 
Avaliação clínica para intubação 
 
A avaliação clínica do candidato à intubação é imprescindível. É necessário conhecer suas 
reservas respiratórias e circulatórias, visto que a laringoscopia e a intubação são acompanhadas 
de profundas repercussões nestes sistemas. No sistema nervoso, as manobras de intubação 
poderão elevar a hipertensão intracraniana pré-existente ou agravar lesão raquimedular. 
Através da extensão cervical é possível comprometer o fluxo sangüíneo pelo sistema 
vertebrobasilar. 
É fundamental conhecer o nível de consciência e estabelecer relacionamento médico-
paciente que permita obter a necessária colaboração para intubação acordado, quando este for o 
caso. 
O resíduo gástrico oferece problema, visto que a lesão pulmonar por aspiração de suco 
gástrico (Síndrome de Mendelson) é das complicações mais graves associadas à intubação. 
 
 
Deve-se tomar conhecimento de desvios da traquéia através de radiografia simples 
(anteroposterior e perfil) ou tomografia computadorizada da região cervical e tórax. A 
eletrocardiografia pode evidenciar alterações isquêmicas que exigem medidas específicas de 
proteção ao stress da instrumentação das vias aéreas. 
É possível antecipar a dificuldade à intubação através dos índices de Wilson, 
Mallampati e de Cormack, da distância tireomentoniana (26,5 cm) ou mentoesternal (menor 
12,5 cm) distância interdentária (menor que 35 mm), bem como da avaliação do grau de 
mobilidade atlantoccipital (ângulo de Belhouse e Doré) menor que 35 graus. 
Índice de Wilson salienta a importância de alguns fatores que, frequentemente, associam-
se à dificuldade em realizar a intubação traqueal. Setenta e cinco por cento dos casos de 
intubação difícil estão associados a dois ou mais pontos; por outro lado, é raro encontrar 
intubação fácil a partir dos quatro pontos. 
Segundo Mallampati, quando a protrusão da língua permite visualização do palato mole, 
úvula e pilares (grau I), a intubação é presumivelmente fácil. O mesmo não se pode antecipar nas 
situações em que se vê o palato mole e não a úvula (grau II) ou palato mole e apenas a base da 
úvula (grau III); a dificuldade é esperada no grau IV, quando nem o palato mole é identificado. 
 
Classificação de Mallampati 
 
 
 
Cormack e Lehan graduam as dificuldades conforme a visão da laringe com o 
laringoscópio: a vista da epiglote e das cordas vocais caracteriza o grau I; quando são visíveis 
toda a epiglote e a comissura posterior, grau II; e quando somente a epiglote, grau III. Na 
situação de maior dificuldade expressa pelo grau IV, tem-se visão apenas do palato mole. 
 
 
 
 
 
 
Preparo para intubação 
 
Ao lado da avaliação clínica, o preparo tem grande importância no êxito da intubação 
traqueal. A pré-oxigenação prolonga a tolerância à apnéia, porém diversas situações como na 
obesidade, na criança e no adulto doente, a dessaturação poderá ocorrer muito precocemente. 
A monitorização respiratória confere precisão e segurança indispensáveis em todas as 
técnicas de acesso às vias aéreas. 
A intubação requer jejum prévio, aspiração e/ou retirada de sonda gástrica (em pacientes 
previamente sondados – não é comum). Na impossibilidade de aguardar o necessário tempo de 
jejum torna-se possível acelerar o esvaziamento gástrico com metoclopramida, diminuir a 
secreção gástrica com cimetidina ou ranitidina, ou neutralizar a acidez pré-existente com citrato de 
sódio. 
Na ausência de limitações de ordem clínica, a intubação faz-se sob anestesia geral e 
bloqueio neuromuscular. A intubação com o paciente acordado é realizada com sedação e 
anestesia das vias aéreas superiores (V.A.S), para atenuar as repostas autonômicas à 
laringoscopia e à intubação, como taquicardia e hipertensão arterial. Indicações incluem a 
difícil história de intubação, achados na história ou exames físicos que pode ser uma intubação 
difícil e risco grave de aspiração ou instabilidade hemodinâmica. 
Em adultos, um anestésico de ação rápida égeralmente dado via venosa, ventilação sob 
máscara está assegurada, e um relaxante muscular é administrado para facilitar a laringoscopia. 
 
 
Intubação traqueal por laringoscopia direta 
 
(1) Certifique-se que todos os equipamentos necessários estejam disponíveis. 
 
 
 
(2) A cabeça do paciente é adequadamente posicionada, para um melhor alinhamento 
dos eixos de visão. 
 
 
(3) A lâmina do laringoscópio desliza cuidadosamente sobre a língua, progredindo para 
frente até atingir a valécula. 
 
(4) A ponta da lâmina, ao atingir a valécula, pressiona o ligamento glosso-epiglótico 
que irá fletir anteriormente à epiglote. 
Uma tração anterior firme da língua, no sentido do "cabo do laringoscópio" irá 
possibilitar a visualização da laringe. 
 
 
 
(5) Uma vez exposta à glote, se introduz o tubo endotraqueal, com o balonete 
desinsuflado e a curvatura para frente. 
 
 
Este tubo deve penetrar através da glote, com o balonete ultrapassando, de 1 a 3 cm as 
cordas vocais. 
Este processo deve ser acompanhado visualmente a fim de se garantir o correto 
posicionamento do tubo. 
 
Visão ideal durante a intubação 
 
 
 
 Confirmar intubação traqueal com CO2 expirado. 
 
Complicações durante o ato de intubação 
 
Podem ser divididas em traumáticas, por erro técnico, reflexos e de outras causas. 
 
Traumáticas 
 
São mais comuns devido à inexperiência do médico, fatores anatômicos e 
patológicos, relaxamento muscular ou preparo do paciente inadequado. 
 
Fraturas ou luxações da coluna cervical 
 
São causadas durante o posicionamento da cabeça em pacientes com rigidez de 
mandíbula e pescoço que acompanham o trismo, artrite, espondilite anquilosante, 
radioterapia, queimaduras ou outras alterações ósseas da coluna cervical. Para evitá-Ias 
 
 
devemos manter a cabeça em posição neutra e considerar técnicas alternativas como a intubação 
nasal às cegas ou com auxílio de broncofibroscópio. 
 
Deslocamento de mandíbula 
 
Decorre do emprego de força excessiva para a abertura da boca, principalmente em 
pacientes com diminuição da mobilidade mandibular. A correção, na maioria das vezes, é 
simples com a ajuda do relaxamento muscular. 
 
Traumas dentários 
 
A incidência varia de 0,1 a 2,0% e pode levar a complicações pulmonares graves por 
aspiração traqueal de fragmento. O risco de lesão dentária está aumentado em pacientes com: 
a) doença dentária concomitante; b) pontes e coroas; c) extremos de idade. A avaliação dentária 
pré-intubação é importante e alguns autores sugerem a utilização de protetores dentários que 
comprovadamente diminuem a incidência de traumas, porém aumentam a dificuldade para a 
intubação. 
 
Lesões de lábios, língua e mucosa oral 
 
Ocorrem por compressão entre os dentes e o laringoscópio, tubo traqueal ou cânula 
orofaríngea. Lesões do nervo inguinal ou hipoglosso também podem aparecer pela 
compressão durante a laringoscopia. 
 
Lesões nasais 
 
Aparecem durante a intubação nasal e inclui Iaceração de mucosa, sangramentos, 
deslocamento ou perfuração de septo, lesão de mucosa nasofaríngea que pode ocasionar 
abscesso retrofaríngeo ou mediastinite. A profilaxia deve ser baseada na avaliação nasal, no 
uso de vasoconstritores e até na dilatação das fossas nasais antes da intubação. 
 
Lesões ou perfurações das vias aéreas e esôfago 
 
São mais comuns durante intubações difíceis e de emergência em que várias tentativas são 
necessárias. Podem atingir nasofaringe, hipofaringe, fossa piriforme, aritenóide, cordas 
vocais, traquéia e esôfago. Felizmente são raros, mas quando associados à ventilação com 
pressão positiva causam enfisema subcutâneo no pescoço e mediastino, pneumotórax e até 
pneumoescroto. Abscessos e mediastinites são complicações mais tardias que podem aparecer, 
principalmente em lesões esofágicas. A introdução forçada do tubo traqueal deve ser sempre 
 
 
evitada. Os sinais clínicos sugestivos destas lesões são cianose, enfisema subcutâneo, 
pneumotórax, disfagia, dor cervical e febre e devem ser valorizados para diagnóstico e 
tratamento precoces, que são fundamentais para a resolução favorável do quadro. 
 
Erro de técnica levando à hipoxemia 
 
Podem ser decorrente de apnéia prolongada, intubação esofágica ou brônquica e 
dificuldades para intubação. Crianças, gestantes e pacientes obesos, com reserva pulmonar 
diminuída, são os mais susceptíveis à hipoxemia. 
A pré-oxigenação antes da intubação, apesar de retardar o diagnóstico de erros de 
intubação, pode proporcionar apnéia de até cinco minutos sem levar à hipoxemia e deve ser 
utilizada de rotina, apesar de criticada por alguns autores. A oxigenação contínua durante a 
Iaringoscopia é outra medida eficiente. 
 
Intubação esofágica 
 
Ocorre principalmente quando há dificuldades para a visualização das cordas vocais 
Ievando à hipoxemia grave, regurgitação e aspiração pulmonar e até mesmo rotura gástrica. 
É complicação rara (1 a 2%), mas sua ocorrência é uma das maiores causas de parada 
cardíaca e lesão cerebral associados à intubação. Vários métodos podem ser empregados para 
a confirmação da posição do tubo sendo todos sujeitos a críticas: 
a) visualização direta da passagem do tubo através das cordas vocais, que é difícil em 
alguns pacientes; 
b) ausculta de ápices e bases pulmonares, que é o método mais utilizado, mas não 
eficiente, principalmente em pacientes obesos, enfisematosos, com pescoço curto, tórax em 
barril ou estômago intratorácico; 
c) ausculta e observação epigástrica concomitante; 
d) visualização ou palpação dos movimentos torácicos ou a presença de volume expiratório 
quando o paciente assume ventilação espontânea; 
e) complacência do balão reservatório durante a inspiração e momento expiratório que esta 
diminuída na intubação esofágica; 
f) condensação do vapor d’água no tubo ou saída à compressão esternal que podem 
ocorrer durante a intubação esofágica; 
g) presença de conteúdo gástrico no tubo que pode ser confundida com secreções das vias 
aéreas ou Iíquidos de aspiração; 
h) alterações na pressão arterial ou frequência cardíaca; 
i) cianose que pode ser tardia em pacientes pré-oxigenados; 
j) confirmação radiológica da posição do tubo que é cara e demorada e pode não ser eficaz; 
 
 
l) palpação do tubo ou do balonete na região supraesternal que é difícil em pacientes 
obesos ou naqueles em que a traquéia não é facilmente palpável; 
m) broncofibroscopia que é um método seguro, mas que requer instrumento relativamente 
caro não disponível para uso de rotina; 
n) oximetria de pulso que é um método seguro, mas pode ser indicador tardio após pré-
oxigenação. 
A ventilação esofágica em pacientes com as cordas vocais abertas pode proporcionar 
trocas gasosas a nível pulmonar e impedir dessaturação precoce; 
o) capnografia do gás expirado é o método mais aceito. 
Para a utilização nestes Iocais e em situações nas quais equipamentos não são 
disponíveis, alguns métodos alternativos têm sido sugeridos: 
p) utilização de um introdutor de tubo traqueal fino, construído com fibra de vidro. A 
resistência oferecida pela carina ou cartilagem de brônquio fonte à sua introdução descarta a 
possibilidade da intubação esofágica, que não oferece resistência; 
q) utilização de fio guia iluminado que mostrou ser eficaz na redução da intubação 
esofágica não detectada; 
r) Iaringoscopia direta após a intubação, com o deslocamento do tubo em direção ao palato 
e visualização do tubo através das cordas vocais; 
s) intubação brônquica proposital, que ocasiona o desaparecimento dos ruídos respiratórios 
em um dos hemitórax. Se o tubo estiver no esôfago, a introdução do tubo não mudará o padrão 
dos ruídos, podendo estar presente ou não em ambos os hemotórax; 
t) a ultra-sonografiapara a confirmação da posição do tubo pode ser empregada em recém-
nascido; 
u) utilização de dispositivos de detecção esofágica (seringa de 60 ml, intermediário e 
conector). A intubação traqueal não oferecerá resistência à aspiração de ar do tubo pelo 
dispositivo, o que acontece com a intubação esofágica. É um método simples, rápido, barato e 
interessante; 
v) utilização de dispositivos que detectam a presença de CO² no ar expirado. 
A combinação de alguns métodos é recomendada, mas devemos ter domínio das técnicas 
para realizá-Ios. Quando houver dúvida quanto à posição do tubo de intubação, esta deve ser 
retirada e reintroduzida. A manobra de Selick também pode ser utilizada para a prevenção da 
intubação esofágica. 
 
Intubação brônquica 
 
É mais comum, com incidência muito variável de 0,6 a 90%. Pode ocorrer no ato de 
intubação ou durante a manutenção do tubo. O brônquio fonte direito é mais comumente 
intubado, pois forma um ângulo mais obtuso com a traquéia. 
 
 
O tubo traqueal move-se em direção à carina com a flexão do pescoço e em direção às 
cordas vocais, com sua extensão ou rotação lateral da cabeça. As posições de Trendelenburg e 
de litotomia, a colocação de compressas no abdômen superior e a compressão abdominal 
podem deslocar a carina para cima e determinar intubação brônquica. A fixação inadequada do 
tubo pode contribuir principalmente em crianças que possuem traquéia mais curta. 
A intubação brônquica pode resultar em obstrução pulmonar bilateral com hipóxia e 
colapso pulmonar. O aparecimento de vários graus de obstrução no brônquio contralateral é 
mais comum; o aumento da ventilação do pulmão cujo brônquio está intubado pode ocasionar 
rotura alveolar, enfisema e pneumotórax. Os sinais clínicos podem incluir assimetria da 
expansão torácica e ruídos ventilatórios, taquipnéia, hipotensão e cianose, sendo de fácil 
diagnóstico. A atelectasia das porções não ventiladas é comum e algumas medidas têm sido 
sugeridas para a prevenção da intubação brônquica: 
a) localização do tubo no terço médio da traquéia com o pescoço em posição 
neutra, obtida com a introdução do tubo 3 a 4 cm após as cordas vocais e fixação 
adequada. As fórmulas criadas para o estabelecimento da distância segura de introdução 
em crianças não são totalmente confiáveis; 
b) posicionamento da extremidade do tubo a 23 e 21 cm da arcada dentária 
superior em homens e mulheres, respectivamente, desde que estejam dentro dos Iimites da 
estatura; 
c) intubação brônquica proposital e retirada do tubo 2 cm após o reaparecimento 
dos ruídos pulmonares bilaterais. 
A detecção precoce é fundamental e os vários métodos a serem utilizados são idênticos 
aqueles empregados no diagnóstico de intubação esofágica. Uma vez detectada a intubação 
brônquica o balonete deve ser desinsuflado, o tubo puxado alguns centímetros, o balonete 
reinsuflado e a posição correta confirmada. 
 
Reflexos provocados pela Iaringoscopia e intubação 
 
A estimulação Iaringotraqueal pode originar reflexos Iaringovagais, simpáticos ou 
espinais. Os reflexos Iaringovagais são mais comuns em crianças e pacientes vagotônicos 
e causam espasmo de glote, broncoespasmo, apnéia, bradicardia, bradiarritmias e 
hipotensão arterial, mas são mais raros que os laringossimpáticos que ocasionam 
taquicardia, taquiarritmias (em até 57,9% das intubações nasais e 32,4% das orais) e 
hipertensão arterial. Em pacientes com doença vascular cerebral, cardiopatia e idosos estas 
alterações podem causar Iesões graves e até fatais. Os reflexos Iaringoespinais incluem tosse, 
vômitos e espasmos. O broncoespasmo é o mais importante, principalmente nos pacientes 
com antecedentes. 
Os reflexos durante a intubação traqueal podem ser prevenidos por interrupções das 
vias aferentes (bloqueio com anestésicos Iocais) e eferentes (bloqueio simpático alfa e 
 
 
beta) ou a nível central (por anestesia profunda). Várias outras técnicas vêm sendo estudadas 
com essa finalidade e merecem uma revisão específica por sua importância. 
 
Outras complicações 
 
Bacteremia 
 
Ocorre principalmente com a via nasotraqueal (5,5%), sendo indicado o uso profilático 
de antibiótico em pacientes com valvulopatias e cardiopatias congênitas. Alguns autores 
sugerem a proteção da extremidade do tubo ao passar pela nasofaringe. 
 
Edema agudo pulmonar não cardiogênico 
 
Pode ocorrer em pacientes com queimaduras de vias aéreas e seria devido à diminuição 
da pressão alveolar pela perda do mecanismo de manutenção do volume pulmonar realizada 
pela aproximação das cordas vocais durante a expiração. A ventilação controlada com 
pressão positiva contínua das vias aéreas é recomendada para a sua prevenção, mas alguns 
autores afirmam que o edema pulmonar seria causado por esforços inspiratórios durante o ato de 
intubação. 
 
Introdução de corpos estranhos nas vias aéreas 
 
Podem ser fragmentos de tecido de adenóide, mucosa nasal, de tubo de intubação, 
coágulos, comprimido de medicação pré-anestésica e até separação do tubo de seu conector e 
sua introdução na árvore brônquica. É de importância fundamental a inspeção do tubo e da 
cavidade nasal antes da intubação e da extremidade do tubo após a passagem pela cavidade 
nasal bem como a sua fixação adequada. Caso haja suspeita da introdução, está indicada a 
broncoscopia para diagnóstico e tratamento precoces. 
 
Aspiração pulmonar do conteúdo gástrico 
 
É um tema muito estudado e merece revisão específica pela sua gravidade (30 a 70% de 
mortalidade). A sua incidência variável, que pode chegar a 18,5%, é uma das maiores causas de 
morbimortalidade na anestesia, podendo ser responsável por até 10% das mortes cirúrgicas. 
Pacientes com estômago cheio ou retardo do esvaziamento gástrico (gestantes, obesos, 
traumatizados, pacientes com hemorragia digestiva alta ou distúrbios metabólicos) têm um risco 
maior, sendo que a gravidade do quadro depende do volume e pH do Iíquido aspirado. 
A perda dos reflexos, a paralisia muscular e as manobras para a intubação favorecem 
a regurgitação e aspiração. 
 
 
As medidas preventivas iniciam-se com drogas que aumentam o pH e o esvaziamento 
gástrico (antiácidos particulados, metoclopramida e antistamínicos), incluem a aspiração 
gástrica pré-indução e fundamenta na técnica de indução. Esta pode ser a intubação sob 
anestesia tópica da orofaringe e com o paciente acordado ou a sequência de indução rápida com 
proclive e manobra de Selick. Ambas têm-se tirado eficaz quando indicadas e realizadas 
corretamente. 
O tratamento depende da gravidade do quadro e inclui manutenção de oxigenação e 
ventilação adequadas, broncoscopia e broncoaspiração e controle clínico-laboratorial seriado para 
a avaliação da evolução. Os antibióticos devem ser utilizados somente após o aparecimento 
clínico de infecção e os corticosteróides não modificam a evolução do quadro. 
 
Complicações após a extubação 
 
Após a retirada do tubo endotraqueal o paciente poderá apresentar dor de garganta, 
edema de glote e lesões na laringe ou cordas vocais. O edema de glote pode ocorrer na 
região supraglótica, retroaritenóide ou subglótica. É uma complicação frequente, às vezes 
associada a outras lesões, como úlcera, granuloma e estenose. A causa mais comum de 
reintubação é o edema subglótico, que leva à obstrução das vias aéreas. Clinicamente, 
observa-se estridor e dificuldade inspiratória que geralmente se manifestam nas primeiras 
horas após a extubação. 
A intubação está sempre associada à lesão da mucosa, independentemente da 
experiência de quem realiza o procedimento. Nas primeiras horas se observa irritação e 
congestão da mucosa da laringe, seguida de erosão após seis horas. Em alguns casos a 
degeneração epitelial pode evoluir para úlcera pseudomembranosa ou lesões mais graves após 
a extubação, como granuloma, sinéquias e estenose.O granuloma laríngeo é mais frequente 
nos casos de intubação prolongada e seu diagnóstico deve ser considerado no paciente com 
grande dificuldade de permanecer extubado, frequentemente com várias tentativas de 
extubação sem sucesso. 
A sequela mais grave pós-extubação é a estenose laríngea secundária à fibrose. 
Observa-se estreitamento do lúmen na região subglótica ou anquilose da articulação crico-
aritenóide, com imobilização das cordas vocais. O exame da laringe mostrará uma cicatriz em 
toda a circunferência da região subglótica. Em alguns casos a obstrução pode ser grave, com 
necessidade de traqueostomia permanente. 
 
Infecção 
 
A via artificial permite o acesso de patógenos à traquéia e vias respiratórias inferiores, com 
maior risco de pneumonia. Além disso, as bactérias gram-negativas que colonizam o trato 
 
 
gastrointestinal podem alcançar o trato respiratório através de refluxo e aspiração do conteúdo 
gástrico. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Referências bibliográficas 
 
Barreto C - lntubação traqueal. Uma revisão histórica. Rev Bras Anest 1982; 32:421-426. 
 
Adriani J, Naraghi M, Ward M - Complications of endotracheal intubation. South Med J 1988; 
81:739-744. 
 
Flemming D C - Hazards of tracheal intubation, em complication in anesthesiology - Orkyn F K, 
Cooperman L H, Philadelphia: J.B. Lippincott Company 1983:165-172. 
 
Imbeloni L E - Complicações da intubação traqueal. Rev Bras Anest 1986; 36:501-508. 
 
Keane W N, Rowe L D, Denneny J C et al - Complications of intubation. Ann Otol Rhinol Laryngol 
1982; 91:584-587. 
 
Rashkin M C, Davis T - Acute complications of endotracheal intubation. Relationship to 
reintubation, route, urgency, and duration. Chest 1986; 
89:165-167. 
 
MAGALHÃES, H. P. Técnica cirúrgica e cirurgia experimental. Sarvier,1989. p. 233-234. 
 
http://www.viaaereadificil.com.br/ 
 
http://www.manualmerck.net/ 
 
Cormack RS, Lehane J: Difficult tracheal intubation in obstetrics.Anaesthesia 39:1105, 1984. 
 
www.airwaycam.com 
 
Cordeiro AMG. Acessos para as vias aéreas. In: Carvalho WB, Hirschheimer MR, Matsumoto T, 
editores. Terapia intensiva pediátrica. 3ª ed. São Paulo: Atheneu; 2006. p. 1589-605. 
 
Lee A, Fan LTY, Gin T, Karmakar MK, Ngan Kee WD. A systematic review (meta-analysis) of the 
accuracy of the Mallampati Tests to predict the difficult airway. Anesth Analg. 2006;102:1867-78. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Técnica de ventilação com máscara facial 
 
A habilidade em usar o sistema máscara-balão de forma eficiente é muito importante, 
uma vez que este é geralmente o primeiro recurso disponível para manter a via aérea e a 
ventilação, apesar de toda a evolução dos equipamentos atuais. 
É fundamental que a máscara empregada seja de conformação e tamanho compatíveis 
com a anatomia do paciente, para que se tenha uma ventilação controlada ou assistida 
satisfatórias. 
 
 
Ventilação com máscara 
 
Técnica 
 
1- Para uma correta ventilação sob máscara facial, é indicado que o paciente seja 
colocado em posição olfativa. 
Provavelmente haverá uma maior dificuldade em ventilar nas situações em que esta 
posição esteja contra-indicada, como nos traumas de coluna. 
 
 
 
Posição normal Posição olfativa 
 
 
2- Inserir cânula de “guedell” nasofaríngea ou orofaríngea. Em certas situações as duas são 
necessárias para uma boa ventilação. 
 
 
 
 
 
Inserção de cânula orofaríngea Inserção de cânula nasofaríngea 
 
Tamanhos e tipos de cânulas A- nasofaríngeas e B- orofaríngeas 
 
 
 
3- Selecionar a máscara facial de tamanho indicado para o paciente e de preferência 
transparente, para que melhor se visualize qualquer regurgitação. Um aspirador para secreções 
deve estar sempre à mão e preparado para pronto uso. 
 
 
 
Máscaras faciais de vários tamanhos 
 
A ventilação deverá ser suficiente para manter SpO2 acima de 90%, usando FiO2 de 1.0 
(100%), em pacientes cuja saturação era normal do episódio que levou a insuficiência respiratória, 
atentando para pacientes hiperinsuflados, dando tempo suficiente para a expiração. 
 
 
 
Ventilação com máscara facial não eficaz 
 
Previsão da dificuldade de ventilação sob máscara facial, a soma de 2 ou mais fatores: 
 
Presença de barba 
Índice de massa corporal > 26 kg/m² 
Falta de dentes 
Idade > 55 anos 
História de ronco 
 
Comprovação de ineficiência de um socorrista para ventilação com máscara 
 
Persistência da cianose, 
Ausência de CO² exalado, 
Ausência de expansibilidade torácica, 
Distensão gástrica durante ventilação com pressão positiva. 
 
Ventilação com máscara correta 
 
 
 
A - o segundo operador auxilia no selo da máscara e na protusão da mandíbula. 
 
B - o primeiro operador usa as duas mãos para promover o selo da máscara facial e a protusão 
da mandíbula enquanto o auxiliar comprime o balão/ambu. 
 
 
 
 
 
 
 
 
 
Referências bibliográficas 
 
www.viaaereadificil.com.br/ 
 
Melhado VB, Fortuna AO. Via Aérea Difícil, em: Vários editores - Curso de educação à distância 
em anestesiologia. v. IV, Comissão de Ensino e Treinamento – SBA, São Paulo, Office Editora 
2004. 
 
Roizen MF, Fleisher LA. Essence of anesthesia practice. 1st ed. Philadelphia: WB Saunders; 
1997.p.144. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Objetivos, indicações e contra-indicações da ventilação pulmonar mecânica 
 
O principal propósito de um ventilador para cuidados críticos é o de fornecer um 
suporte de ventilação aos pacientes que não conseguem respirar por si próprios ou que não 
mantêm uma ventilação adequada. A ventilação mecânica é uma parte essencial do cuidado de 
muitos pacientes criticamente enfermos. 
O ventilador fornece ar e oxigênio com pressão positiva com o intuito de manter os 
alvéolos abertos e facilitar a troca gasosa e ainda permite que os músculos respiratórios 
fiquem em repouso até que o paciente volte a respirar independentemente. 
Os ventiladores que existem no mercado variam a forma de como detectam as alterações 
no estado do paciente e como controlam a ventilação. Em geral todos os ventiladores podem 
realizar as mesmas funções básicas, mas diferem muito quanto às características e 
capacidades. 
 
Objetivos 
 
A. Objetivos fisiológicos 
 
1. Manter ou permitir a manipulação da troca gasosa pulmonar: 
 
 - Ventilação alveolar (avaliação através da PaCO² e pH); 
 - Oxigenação arterial (avaliação através da PaO², SataO² e CaO²). 
 
2. Aumentar o volume pulmonar: 
 
 - Insuflação pulmonar no final da inspiração; 
 - Capacidade residual funcional (CRF). 
 
3. Reduzir ou permitir a manipulação do trabalho respiratório: 
 
 - Diminuindo a sobrecarga dos músculos respiratórios. 
 
B. Objetivos clínicos 
 
 - Reverter a hipoxemia 
 - Reverter a acidose respiratória aguda 
 - Diminuir o desconforto respiratório 
 - Prevenir ou reverter a atelectasia 
 - Reverter a fadiga dos músculos respiratórios 
 - Permitir a sedação e/ou o bloqueio neuromuscular 
 - Diminuir o consumo sistêmico ou miocárdico de oxigênio 
 - Diminuir a pressão intracraniana 
 - Estabilizar a parede torácica 
 
Indicações 
 
A aplicação de ventilação mecânica não deve ser protelada em situações de risco de morte. 
Frequentemente a presença de sinais e sintomas clínicos de insuficiência respiratória severa 
é a principal indicaçãopara a prótese ventilatória. 
 
 
 
As principais indicações de ventilação mecânica incluem anormalidades ventilatórias, 
anormalidades de oxigenação ou a associação de ambas. 
 
1- Anormalidades ventilatórias - Insuficiência respiratória hipercápnica. 
 
A insuficiência respiratória hipercápnica é causada por alteração em um ou mais fatores 
da equação descrita para ventilação minuto alveolar, definida como: 
 
VA= (VT- VD)x FR 
Sendo: 
VA=ventilação minuto alveolar 
VT=Volume corrente 
VD=Volume do espaço morto 
FR=frequência respiratória. 
 
Neste grupo quando a ventilação alveolar cai a níveis críticos, ocorrerá retenção aguda de 
gás carbônico e consequente acidose respiratória e hipoxemia. As causas são variadas e 
frequentemente associadas a três mecanismos básicos: 
 
� Diminuição no drive respiratório (intoxicações exógenas, drogas, coma, alterações 
metabólicas, etc.); 
� Disfunção dos músculos respiratórios (fadiga, anormalidades da parede torácica, doenças 
neuromusculares, drogas, distúrbios metabólicos); 
� Aumento de resistência de vias aéreas e/ou obstrução (aumento do espaço morto). 
 
2- Anormalidades da Oxigenação - Insuficiência respiratória Aguda 
 
A hipoxemia decorre geralmente de alterações de relação ventilação/perfusão (V/Q). Na 
presença de alvéolos parcialmente ventilados e perfundidos ou alvéolos totalmente não ventilados 
e perfundidos, o sangue venoso que passa pelos capilares pulmonares sofre um desvio dentro do 
pulmão (shunt) e retorna mal oxigenado ao átrio esquerdo. Nesta situação a administração de 
altas frações inspiradas de oxigênio pode não ser efetiva em reverter a hipoxemia instalada. 
As causas incluem neoplasia, infecções, trauma, insuficiência cardíaca congestiva, 
síndrome do desconforto respiratório agudo, atelectasia, etc. 
A diminuição da difusão, através da instalação de edema intersticial, inflamação ou 
fibrose também estão associadas à insuficiência respiratória hipoxêmica. 
A presença de hipoventilação alveolar pode secundariamente ocasionar hipoxemia. 
Nesta situação o cálculo do gradiente alvéolo-arterial de oxigênio, embora com limitações, 
pode esclarecer a origem da hipoxemia. Um gradiente normal (<20 mmHg), obtido com FIO² 
conhecida (usualmente=1), sugere que a hipoxemia resultante seja derivada de hipercapnia. 
O trabalho respiratório excessivo, frequentemente associado a estados 
hipermetabólicos, comumente origina fadiga muscular e insuficiência respiratória 
hipoxêmica. A hipoxemia também pode derivar da exposição a altas atitudes. 
 
 
 
 
 
 
Indicações profiláticas 
 
1- Choque prolongado de qualquer etiologia. 
 
2- Pós-operatório: 
 
-Cirurgias abdominais em pacientes extremamente obesos ou com DPBOC; 
-Pacientes em risco de sepse maciça (ex.: contaminação fecal da cavidade 
peritoneal); 
 
3- Situações em que a redução do esforço respiratório obtida pela ventilação artificial 
possa contribuir para limitar o nível de demanda ao aparelho cardiovascular, sobretudo após 
cirurgias cardíacas de maior risco (ex.: estenose mitral com hipertensão pulmonar). 
4- Broncoaspiração maciça de ácido gástrico. 
5- Grandes agressões orgânicas em pacientes caquéticos (ex.: infecções, traumatismos, 
cirurgias, etc) 
A indicação de ventilação mecânica em doentes pulmonares crônicos com agudização 
do quadro de insuficiência respiratória merece especial atenção, pela dificuldade de retirada 
posterior da prótese, quando a ventilação artificial prolonga-se por alguns dias. Estes pacientes, 
por apresentarem níveis cronicamente reduzidos de PaO² e elevados de PaCO², não devem 
ser incluídos nos critérios gasométricos destes gases. 
 
Contra-indicações 
 
Com a evolução da tecnologia e diversas modalidades ventilatórias, hoje, não existem 
contra-indicações absolutas. 
Se não há possibilidades concretas de recuperação da falência orgânica, não há sentido 
real na indicação de ventilação pulmonar artificial. 
 
 
 
 
 
Referências bibliográficas 
 
III Consenso Brasileiro de ventilação Mecânica . princípios, análise gráfica, e modalidades 
ventilatórias. J Bras Pneumol. 2007;33(Supl 2):S 54-S 70. 
 
Bonner JT, Hall JR. Respiratory Intensive Care of the Adult Patient. St. Louis: CV Mosby, 1985:90. 
 
Carvalho, Carlos R. - Ventilação Mecânica Vol. I Báscio-, 2000 
 
Maia J.A., Emmerich J.C. – Ventilação Pulmonar Artificial – Atheneu 1992 
 
www.pneumoatual.com.br 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Princípios da ventilação com pressão positiva 
 
Os ventiladores de pressão positiva criam periodicamente um gradiente de pressão 
entre o circuito da máquina e os alvéolos que resulta em fluxo gasoso inspiratório. A exalação 
ocorre passivamente. Os ventiladores e seus mecanismos de controle podem ser impulsionados 
pneumaticamente (por uma fonte de gás pressurizado), eletricamente ou por ambos os 
mecanismos. O fluxo de gás é derivado diretamente da fonte de gás pressurizado ou produzido 
pela ação de um pistão rotatório ou linear. Este fluxo a seguir vai diretamente para o paciente 
(sistema de circuito simples) ou, como ocorre comumente nos ventiladores de sala de operações, 
comprime uma bolsa-reservatório ou fole que faz parte do circuito do paciente (sistema de duplo 
circuito). 
 
 
 
Em ventilação espontânea, durante a inspiração, o gradiente de pressão entre o ar 
ambiente e a intimidade dos pulmões é gerado pela contratura diafragmática que ao negativar 
a pressão pleural possibilita a entrada de gás. Na fase expiratória, após a entrada do volume 
corrente (VT) e o relaxamento do diafragma, o gradiente se inverte e a expiração ocorre 
passivamente. 
Contrariamente em ventilação mecânica com pressão positiva, a administração do VT 
ocorre pela pressurização da via aérea proximal. 
Controla-se a mistura do gás ofertado (FIO²) necessária para a adequada oxigenação, a 
velocidade do gás administrado (fluxo) assim como o tipo de onda. 
A frequência respiratória (FR) será consequência do ajuste do tempo inspiratório (TI) e 
do tempo expiratório (TE). A ventilação adequada dependerá do ajuste do volume minuto 
(VM=VTxFR) a ser administrado. A aplicação de pressão positiva ao final da expiração (PEEP) 
permite o aumento da pressão média das vias áreas e melhora na oxigenação. Os ajustes 
diretos ou indiretos de VT, fluxo, pressão, e tempo irão definir os modos ventilatórios. 
 
 
Existem diferenças consideráveis nas características funcionais dos equipamentos 
disponíveis usados para administrar ventilação com pressão positiva. Os pacientes conectados a 
alguns sistemas experimentam um aumento no trabalho respiratório total. 
 
Trabalho respiratório 
 
Ocorrerá fluxo gasoso inspiratório sempre que existir uma diferença de pressão 
criada entre as vias aéreas superiores e os alvéolos. Durante a inspiração espontânea, a 
contração do diafragma diminui a pressão intrapleural, criando uma diferença de pressão em 
relação às vias aéreas superiores. Durante a ventilação mecânica, ocorre inspiração quando a 
pressão positiva é aplicada às vias aéreas, o que produz uma diferença de pressão. Em qualquer 
dos casos, a pressão de distensão (ou transpulmonar) (pressão das vias aéreas menos a 
pressão intrapleural) está aumentada, expandindo o pulmão. O aumento final na pressão 
transpulmonar irá determinar a variação do volume pulmonar, volume corrente (VT), dependendo 
da elasticidade do pulmão. 
Para os pacientes com lesão pulmonar aguda terem respiração espontânea efetiva, o 
esforço respiratório deverá ter o máximo de eficiência. Qualquer alteração na relação 
volume/pressão (V/P) do pulmão pode alterar o trabalho respiratório.Durante a respiração normal, a pressão das vias aéreas é quase constante. Quando se 
interpõe uma via aérea artificial, a resistência ao fluxo gasoso e o trabalho respiratório 
aumentam. Se o fluxo de gás disponível proveniente do circuito for menor do que o fluxo 
inspiratório do paciente, mesmo transitoriamente, a pressão nas vias aéreas irá diminuir e o 
trabalho respiratório aumentará. Esse aumento na carga inspiratória frequentemente não é 
reconhecido pelos clínicos que indicam a forma de tratamento do paciente, porém ele é 
significativo e pode representar a diferença entre o sucesso e o fracasso terapêutico. Equipamento 
e ambiente apropriado são essenciais para terapia respiratória com pressão positiva, eficiente e 
bem sucedida. 
 
 
Esquerda, pressão da via aérea (Paw) (__) e intrapleural (Ppl) (----) durante ventilação 
espontânea sem pressão positiva. A, pressão no final da exalação; B, pressão no final da 
inspiração; I, alça inspiratória; E, alça expiratória. Direita, pressão gerada pelos músculos 
respiratórios, volume pulmão-tórax e curva de complacência do sistema respiratório (PLT) durante 
a ventilação espontânea sem pressão positiva, A, volume pulmão-tórax no final da expiração; C, 
volume pulmão-tórax no final da inspiração; B, final da inspiração; I, alça inspiratória; E, alça 
expiratória. O trabalho inspiratório da respiração e representado pela área AIBCA. 
 
 
 
Ciclo respiratório e mecânica pulmonar 
 
Normalmente o ciclo ventilatório com pressão positiva pode ser dividido em quatro fases: 
 
Inspiratória; 
Mudança da fase inspiratória para expiratória; 
Fase expiratória e; 
Mudança da fase expiratória para inspiratória. 
 
Inspiração 
 
A fase inspiratória corresponde à fase em que o ventilador realiza a insuflação pulmonar, 
neste momento a válvula inspiratória se encontra aberta e a válvula expiratória fechada. O 
gás é deslocado pelo ramo inspiratório até os pulmões, vencendo antes a resistência da cânula 
traqueal e das vias áreas, assim como a elastância da caixa torácica e dos pulmões. 
Durante os modos com controle de pressão como ventilação por pressão controlada 
(PCV) e ventilação por pressão de suporte (PSV) (e suas combinações), a inspiração é 
limitada por pressão. No modo Volume Minuto Mandatório (VMM), a pressão é variável de 
acordo com as particularidades próprias do funcionamento deste modo. O fluxo inspiratório nos 
modos por pressão é ajustado automaticamente em relação ao tempo inspiratório e ao nível 
de pressão regulada, mas pode ser modificado com o controle do tempo de subida (Rise 
Time), proporcionando um fluxo inicial mais elevado quando o Rise Time for mais curto e vice-
versa, com o objetivo de atender a demanda do paciente em cada período da terapia. 
A inspiração no modo CPAP convencional, onde o fluxo inspiratório é gerado mediante um 
sistema de demanda que mantém o nível de PEEP/CPAP ofertando fluxo conforme a demanda do 
paciente, porém não assistindo a incursão respiratória (espontânea sem pressão de suporte). 
Na modalidade de controle por volume, o fluxo é controlado pelo tempo inspiratório, o 
volume é regulado e a onda de fluxo selecionada. O volume corrente (VT) pode ser regulado 
limitando-se o fluxo de pico inspiratório. 
 
Mudança de inspiração para expiração - ciclagem 
 
A inspiração termina uma vez que uma das quatro variáveis (pressão, fluxo, tempo ou 
volume) alcança o valor selecionado ou calculado. A inspiração é ciclada por pressão quando o 
limite máximo de pressão (limite de alarme) tenha sido alcançado. Em pressão de suporte 
também é ciclada por pressão quando a pressão sobe bruscamente acima da regulada (tosse, 
esforço expiratório súbito). 
Usando pressão de suporte (PSV), a inspiração será ciclada por fluxo quando o fluxo 
inspiratório de pico (PIF), que é variável conforme a demanda do paciente no início do ciclo, cair 
alcançando 25% do pico de fluxo (valor padrão). 
Em pressão de suporte com volume corrente assegurado (VAPSV), o fluxo 
desacelerado pode mudar para fluxo constante quando o volume objetivo não é alcançado no 
transcurso da inspiração; isto faz com que a pressão aumente até que o volume objetivo se 
complete e, por tanto, a inspiração será ciclada por um critério secundário, sendo ciclagem a 
volume. 
A pressão máxima das vias aéreas alcançada é chamada de pressão de pico das vias 
aéreas (PPI). 
 
 
 
 
Curvas de fluxo, volume e pressão em relação ao tempo obtidas em ventilação controlada a 
volume com fluxo constante sem ajuste de tempo de pausa inspiratória. È possível 
observar que o volume corrente permanece constante. A partir da abertura da válvula 
exalatória a pressão decairá rapidamente até o valor da PEEP aplicada. A pausa expiratória 
não está presente. No segundo ciclo respiratório é possível perceber que o volume corrente 
exalado é menor que o inalado, denotando possível vazamento. 
 
A PPI representa a soma das pressões requeridas para vencer a resistência do tubo 
traqueal e das vias aéreas bem como as pressões elásticas do pulmão e da caixa torácica. 
Antes do inicio da expiração é possível acrescentar tempo de pausa inspiratória, principalmente 
em ventilação controlada a volume. Neste momento com o fechamento da válvula inspiratória e da 
válvula exalatória desaparece o componente resistivo da pressão (fluxo zero). Neste ponto a 
pressão da via aérea decaíra até atingir a pressão de platô (Pplatô). A Pplatô reflete a pressão 
necessária para vencer apenas o componente elástico, e se traduz na melhor estimativa da 
pressão alveolar. 
 
 
 
Curvas de fluxo, volume e pressão em relação ao tempo obtidas em ventilação controlada a 
volume com fluxo constante com ajuste de tempo de pausa inspiratória. É possível 
observar que o volume corrente permanece constante durante o tempo de pausa, sendo 
que a pressão máxima (Ppico) decaiu até a pressão de platô (Pplatô). A partir da abertura da 
válvula exala tória a pressão se reduz até o valor da pressão ajustada ao final de expiração 
(PEEP). O segundo ciclo representa um paciente com aumento da resistência de vias 
aéreas. O conhecimento de fluxo e volume aplicados, assim como das pressões geradas 
durante o ciclo respiratório permite o cálculo da resistência e complacência respiratória. 
 
Fase expiratória 
 
A fase expiratória inicia no momento da abertura da válvula expiratória, permitindo que a 
pressão do sistema respiratório se equilibre com a pressão expiratória final determinada no 
ventilador. 
Passivamente, o ar é deslocado dos alvéolos em direção a válvula exalatória. No inicio da 
exalação o delta de pressão é máximo, e deste modo o fluxo inicial é elevado, permitindo que 
grande parte do volume corrente seja esvaziado. Se adequadamente ajustada, a ventilação 
mecânica deve permitir após o esvaziamento pulmonar a presença de pausa expiratória. A 
pressão decai a partir da PPI ou da Pplatô para o nível de pressão expiratória ajustada ao final da 
 
 
expiração, seja zero (ZEEP) ou para o nível da pressão positiva ao final da expiração (PEEP) 
aplicada. 
O ajuste adequado dos parâmetros ventilatórios deve levar em consideração a relação I:E. 
Em ventilação espontânea esta relação se encontra próxima de 1:2, ou seja, o tempo destinado à 
exalação é o dobro da inalação. Na presença de aumento da resistência das vias aéreas e 
consequente limitação ao fluxo exalatório (DPOC, Asma) é fundamental assegurar que uma 
relação I:E seja mais prolongada de modo a permitir o esvaziamento pulmonar adequado. 
Um tempo expiratório curto promove um aumento progressivo do volume residual e 
posterior aumento da pressão intratorácica. Nesta eventualidade a pressão alveolar medida ao 
final da expiração será maior que a pressão expiratória aplicada. Este fenômeno é conhecido 
como PEEP intrínseco, PEEP oculto ou auto-PEEP. As manobras

Outros materiais