Buscar

relatorio fisica experimental III

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

RESUMO
Este relatório trata de um experimento realizado em um laboratório de física experimental com objetivo principal observar, algumas das aplicações do Gerador de Van de Graaff Robert (1901-1967), físico Americano. 
INTRODUÇÃO
Fizemos uma análise baseada sobre a lei de Coulomb a qual mostraremos o objetivo e como foi criado esta gerador.
 OBJETIVO 
 Ele construiu o primeiro destes geradores que levou seu nome em 1931, com o propósito de produzir uma diferença de potencial muito alta (da ordem de 20 milhões de volts) para acelerar partículas carregadas que se chocavam contra blocos fixos. Os resultados das colisões nos informam das características dos núcleos do material que constituem o bloco.
Figura 1: Robert J. Van de Graaff e uma das primeiras versões do Gerador Van de Graaff
O gerador de Van de Graaff é um gerador de corrente constante, enquanto que a bateria é um gerador de voltagem constante, o que varia é a intensidade dependendo de quais os aparelhos que são conectados. O Gerador Van de Graaff é uma máquina que utiliza uma Correia Móvel para acumular Tensão Eletrostática muito alta na cavidade de uma Esfera de Metal. O gerador eletrostático tipo Van de Graaff, tem capacidade para 200 kV, sua esfera tem 18 cm de diâmetro, é removível e dispõe de conexões para aterramento. A sustentação é construída em acrílico e possui articulação na ligação com a base, mede 45 cm de altura. A correia de borracha tem 6 cm de largura e se movimenta sobre 04 polias (19 m de diâmetro), acionada por um motor elétrico de 1/8 de HP funcionando em 110 ou 220 V, conforme a sua rede local de energia e é munido de controle eletrônico da velocidade de rotação do motor. O conjunto está fixado em uma base metálica cujas dimensões são (40x30x2)cm. O conjunto é integrado por uma cuba de vidro, 7 eletrodos, 2 fixadores de eletrodos, 2 cabos de ligações e torniquete eletrostático.
Partes do Gerador:
a) Esfera de alumínio polido b) Polias c) Conexão na esfera d) Escova superior e) Correia de borracha f) Escova metálica intermediária g) Polia de acrílico
h) Conexão de fio terra (inferior) i) Escova metálica inferior
Figura 2: Gerador de Van de Graaff No gerador eletrostático, uma correia isolante recebe cargas superficiais que passam a ser transportadas a outro eletrodo, onde são removidas (como uma escada rolante transporta pessoas). Caracterizando-se assim uma corrente elétrica suficiente para gerar uma voltagem elevada por um curto período de tempo. O gerador eletrostático (Van de Graaff) pode ser entendido como uma esfera metálica isolada da terra que é permanentemente carregada
(positiva ou negativamente) através desta correia., Por sua vez, esta correia, é carregada pelo atrito entre a polia e a correia (como se alguém continuamente esfregasse um bastão de plástico em um pedaço de feltro e encostasse o bastão na correia). Em pequenos geradores como este, a diferença de potencial é da ordem de KV (Quilovolt), enquanto que nos grandes aceleradores ela pode ultrapassar 10 MV.
Potencial elétrico – superfície equipotencial - é a propriedade com que um corpo energizado tem de conseguir realizar trabalho, ou seja, atrair ou repelir outras cargas elétricas. Com relação a um campo elétrico interessa-nos a capacidade de realizar trabalho, associada ao campo em si, independentemente do valor da carga q colocada num ponto desse campo. Para medir essa capacidade, utiliza-se a grandeza potencial elétrico. Para obter o potencial elétrico de um ponto, coloca-se nele uma carga de prova q e mede-se a energia potencial adquirida por ela. Essa energia potencial é proporcional ao valor de q. Portanto, o quociente entre a energia potencial e a carga é constante. Esse quociente chama-se potencial elétrico do ponto.
Campo elétrico - linha de força - Um campo eléctrico é o campo de força provocada por cargas eléctricas (eletrons, protons ou ions) ou por um sistema de cargas. Cargas eléctricas num campo eléctrico estão sujeitas a uma força eléctrica. A fórmula do campo eléctrico é dada pela relação entre a força eléctrica F e a carga de prova q
O conceito de Campo Elétrico pode ser obtido a partir da Lei de Coulomb:
Onde K é a constante de Coulomb. No referencial da carga q1 temos:
No vácuo e no SI, K0 =
7 Ou seja, para uma carga puntiforme, a expressão para o campo elétrico obtém a forma:
Também é possível calcular o campo elétrico a partir da diferença de potencial:
A expressão acima diz que o campo elétrico tem sentido da direção de maior potencial para menor potencial.
A figura abaixo representa a expressão acima para uma carga positiva e uma carga negativa.
Figura 3: Representação vetorial do campo de uma carga puntiforme positiva e negativa
Características das Linhas de Campo Elétrico. Define-se campo elétrico como uma alteração colocado no espaço pela presença de um corpo com carga elétrica, de modo que qualquer outra carga de prova localizada ao redor indicará sua presença. Através de curvas imaginárias, conhecidas comumente pelo nome de linhas de campo, visualiza-se a direção da força gerada pelo corpo carregado. As características do campo elétrico são determinadas pela distribuição de energias ao longo de todo o espaço afetado. Se a carga de origem do campo for positiva, uma carga negativa introduzida nele se moverá, espontaneamente, pela aparição de uma atração eletrostática. Pode-se imaginar o campo como um armazém de energia causadora de possíveis movimentos. É usual medir essa energia por referência à unidade de carga, com o que se chega à definição de potencial elétrico, cuja magnitude aumenta em relação direta com a quantidade da carga geradora e inversa com a distância dessa mesma carga. A unidade de potencial elétrico é o volt, equivalente a um Coulomb por metro. A diferença de potenciais elétricos entre pontos situados a diferentes distâncias da fonte do campo origina forças de atração ou repulsão orientadas em direções radiais dessa mesma fonte.
A intensidade do campo elétrico se define como a força que esse campo exerce sobre uma carga contida nele. Dessa forma, se a carga de origem for positiva, as linhas de força vão repelir a carga de prova, e ocorrerá o contrário se a carga de origem for negativa.
Algumas características do Campo Elétrico são: 1. Tem natureza vetorial.
2. Tem em um dado ponto do espaço, direção da linha que une a carga ao ponto, e sentido divergente (para cargas positivas) e convergente (para cargas negativas). 3. Tem módulo proporcional ao valor da carga e, inversamente proporcional ao quadrado da distância do ponto à carga (para cargas pontuais). 4. É medido, no SI, em Newton por Coulomb.
Processos de Eletrização Existem três tipos de Eletrização de corpos: 1- Eletrização por Atrito Tem-se a eletrização por atrito quando atrita-se dois corpos . Ex.: pegando-se um canudinho de refrigerante e atritando-o com um pedaço de papel (pode ser higiênico); observa-se através de experimentos que ambos ficam carregados com a mesma quantidade de cargas , porem de sinais contrários.
Figura 4: Eletrização por atrito
2- Eletrização por Contato Quando dois corpos condutores entram em contato, sendo um neutro e outro carregado, observa-se que ambos ficam carregados com cargas de mesmo sinal. Ex.: tendo-se um bastão carregado e uma esfera neutra inicialmente, ao tocar-se as esfera com este bastão verifica-se que a esfera adquire a carga de mesmo sinal daquela presente no bastão.
Figura 5: Eletrização por contato
3 - Eletrização por Indução A indução ocorre quando se tem um corpo que esta inicialmente eletrizado e é colocado próximo a um corpo neutro. Com isso, a configuração das cargas do corpo neutro se modifica de forma que as cargas de sinal contrário a do bastão tendem a se aproximar do mesmo. Porém, as de sinais contrários tendem a ficar o mais afastadas possível. Ou seja, na indução ocorre a separação entre algumas cargas positivas e negativas do corpo neutro ou corpo induzido.
Figura 6: Eletrização por indução
 
Material UtilizadoGerador eletrostático
 Controlador de velocidade
 Tiras de papel 
 2 cabos de ligação
 Torniquete eletrostático
RESULTADOS

Outros materiais