Mecânica dos Fluídos - Problemas Resolvidos e Propostos
96 pág.

Mecânica dos Fluídos - Problemas Resolvidos e Propostos


DisciplinaFísica37.057 materiais802.489 seguidores
Pré-visualização21 páginas
para que a velocidade média seja 1,25 m/s. R: 36 cm. 
[3.2] Em um tubo de 150 mm escoa ar com velocidade de 3 m/s sob uma pressão manométrica de 203 kPa e uma temperatura de 27 oC. A pressão atmosférica é 101,32 kPa. Determine o fluxo de massa. R: 0,181 kg/s. 
 
[3.3] Determine a vazão da água (em litros/s) circulando através de um tubo de 32 mm de diâmetro, considerando a velocidade do fluido igual a 4 m/s? R: 3,21 litros/s. 
[3.4] Qual a velocidade da água que escoa em um duto de 25 mm se a vazão é de 2 litros/s? R: 0,1 m/s 
 
[3.5] Uma tubulação cilíndrica tem um trecho com uma seção de 300 mm de diâmetro e outro com 200 mm de diâmetro. A redução de seção é feita através de um elemento cônico colocado entre os dois trechos. Na parte maior da seção escoa ar com peso específico 9,8 N/m3 a uma vazão de 3,06 m3/s. Ao fluir para o trecho de menor seção o ar sofre uma redução de pressão e aumento de velocidade, provocando uma expansão no mesmo e reduzindo o peso específico 
para 7,85 N/m3. Determine: a) A vazão volumétrica no trecho de menor seção. R: 3,82 m3/s. b) A velocidade do ar no trecho de menor seção. R: 43,31 m/s. c) A vazão mássica do ar no escoamento. R: 3,06 kg/s. 
[3.6] Uma tubulação cilíndrica tem um trecho com uma seção de 300 mm de diâmetro e outro com 200 mm de diâmetro. A redução de seção é feita através de um elemento cônico colocado entre os dois trechos. Na tubulação escoa água líquida com massa específica de 1000 kg/m3 a uma vazão de 3,06 litros/s. Ao fluir para o trecho de menor seção a água sofre uma redução de pressão e 
aumento de velocidade. Viscosidade 10-6m2/s. Determine: a) A vazão volumétrica no trecho de menor seção. R: 3,06 litros/s b) A velocidade do ar no trecho de menor seção. R: 0,097 m/sc) A vazão mássica do ar no escoamento. Re= 19490 (turbulento) 
[3.7] Uma canalização lisa que conduz água a 15oC com diâmetro de 150 mm apresenta num determinado trecho uma seção contraída de 75mm de diâmetro onde a pressão interna é de uma 
atmosfera (ao nível do mar). 3m acima do ponto (B) a pressão se eleva para 144.207Pa. Determinar a vazão e a velocidade nos pontos (A) e (B). 
R: 3,1 m/s; 12,42 m/s; 55 litros 
[3.8] Qual a velocidade da água através de um furo na lateral de um tanque, se o desnível entre o furo e a superfície livre é de 2 m? 
 [3.9] Um conduto que escoa água é constituído por 2 trechos, com diâmetros de 0,25m e 0,20m. A pressão no ponto (A) é de 1,5 atmosferas e que a velocidade no trecho de maior diâmetro é de 0,6 m/s, calcule a vazão no duto e a pressão no ponto (B. (Supor movimento sem atrito). 
 
Mecânica dos Fluidos 
 
PUCRS C-90 
4. Problemas de Equação de Bernoulli e Equação da Energia 
 
[4.1] Uma turbina gera 600 Hp quando o fluxo de água através dela é de 0,6 m3/s. Considerando um rendimento global de 87%, qual será a altura de carga que atua na turbina? R: 87,4 m. 
[4.2] A bomba mostrada na figura recebe água, com vazão Q = 0,2 m³/s, através do duto com diâmetro de 20 cm e descarrega através do duto de descarga de diâmetro 
15 cm que está instalado com uma elevação 0,5 m em relação a tubulação de sucção. O manômetro colocado no duto de sucção indica uma pressão p1 = -30 kPa, enquanto o manômetro instalado no tubo de descarga mede uma pressão p2 = 300.kPa. Considerando que não há trocas de calor e desprezando o atrito, determine a potência fornecida pela bomba. R: 73,8 kW 
 
 
[4.3] A água escoa através de uma turbina, a razão de 0,21 m³/s. A pressões em A e 
B são respectivamente 150 kPa e -35 kPa. Determinar a potência extraída pela turbina. R: 41,6 kW 
 
 
 
 
 
 
[4.4] A figura mostra um esquema de escoamento de água, em regime permanente, com vazão Q = 0,5 m³/s, através de uma turbina. As pressões 
estáticas nas seções (1) e (2) são, respectivamente, P1 = 180 kPa e P2 = -20 kPa. Desprezando a dissipação de energia mecânica por atrito viscoso e considerando que não há troca de calor, determine a potência fornecida pelo escoamento á turbina. R: 131,7 kW. 
 
[4.5] O reservatório de grandes dimensões da figura descarrega água pelo tubo a uma vazão de 10 l/s. Considerando o 
fluido ideal, determinar se a máquina instalada é bomba ou turbina e determinar sua potência se o rendimento for de 75%. A área da seção do tubo é 10 cm2. 
 
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-91 
 
[4.6] A água flui numa tubulação, conforme figura. No ponto (1) da tubulação o diâmetro é de 175 mm, a velocidade é de 0,6 m/s e a pressão é igual a 345 kPa. No ponto (2) o diâmetro se reduz a 43 mm e a pressão é de 300 kPa. Calcule a perda de carga entre os pontos sabendo que o desnível entre eles 
é de 5 m. R: 4,5 m 
 
 
 
 
 
 
 
[4.7] A figura mostra um sistema no qual a bomba retira água, através de um duto com diâmetro D=10 cm, de um reservatório de grandes dimensões com a superfície livre mantida em nível constante. A água é descarregada, com vazão constante Q = 0,02 m³/s, a uma altura 38 m acima da bomba, através de um duto de diâmetro interno d = 8 cm, 
num reservatório aberto para atmosfera. A perda de carga entra as seções (1) e (2) é igual a ph = 2m. Determine a 
potência que a bomba fornece ao escoamento. R: 7,4 kW. 
 
[4.8] Na instalação da figura uma bomba opera com água. A bomba tem potência de 3600 W e seu rendimento é de 80%. A água é descarregada na atmosfera a uma velocidade de 5 m/s pelo tubo, cuja área da seção é 10 cm2. Determinar a perda de carga entre as seções (1) e (2). R: 62,4 m. 
 
 
Mecânica dos Fluidos 
 
PUCRS C-92 
5. Problemas de Escoamentos Viscosos Internos 
 
[5.1] Um fluido escoa por um tubo de 10 mm de diâmetro com um Reynolds de 1800. A perda de carga é de 30 m em 100 m de tubulação. Calcular a vazão em litros/min. R: 6,06 litros/min. 
[5.2] Seja 100 m de tubo liso horizontal de PVC de 32 mm de diâmetro por onde escoa água a uma velocidade de 2 m/s. Determinar (a) a perda de carga (energia): R: 12,65 m. (b) a variação de pressão R: 124.172 Pa. 
 
[5.3] Um óleo lubrificante médio de densidade 0,86 é bombeado através de 500 m de um tubo horizontal de 50 mm de diâmetro a razão de 0,00125 m3/s. Se a queda de pressão é 2,1 kgf/cm2, qual a viscosidade do óleo? 
R: 0,051 Pa.s. 
 
[5.4] Calcular a perda de carga para o escoamento de 140 litros/s de um óleo de viscosidade cinemática 10-5 m2/s num tubo horizontal de ferro fundido de 40 m de comprimento e 200 mm de diâmetro. R: 4,66 m 
[5.5] A água circula a 15 oC num tubo de aço rebitado de 300 mm de diâmetro e \u3b5 = 3 mm com ma perda de carga de 6 m.c.a num comprimento de 300 m de comprimento. Calcular a vazão. R: 0,12 m3/s. 
 
[5.6] Determinar o diâmetro do tubo de aço estruturado necessário para transportar 252 litros/s de óleo, 
smv /10 25\u2212= a distância de 3.048 m com uma perda de carga de 22,86 m. R: 424 mm. 
 
[5.7] Seja um escoamento de um fluido através de uma válvula globo totalmente aberta conectada em uma tubulação de ferro galvanizado de 2,5 cm de diâmetro. Sabe-se que a velocidade do escoamento é 3,0 m/s provocando um Reynolds de 1000. Determine em relação a válvula: (a) O comprimento equivalente; R: 3,9 m (b) A perda de carga provocada. R: 4,6 m 
 
[5.8] Calcular a vazão pela tubulação de ferro fundido, de 150 mm de diâmetro, da figura. Viscosidade cinemática = 10-
6m2/s. R: 46 litros/s. 
 
[5.9] Seja uma tubulação cilíndrica de 4 cm2 de seção transversal por onde circula um escoamento de água a 15 oC e velocidade de 2 m/s. A seção sofre uma redução brusca para a metade da área. Supondo uma tubulação lisa, determine em relação ao escoamento: 
a) A perda de carga provocada pela contração em altura de coluna de mercúrio. R: 0,045 mH2O. 
b) A variação de pressão provocada pela redução. R: 441,5 Pa. c) A perda de carga correspondente em altura de coluna de mercúrio. R: 3,3 mmHg. 
 
Anexo C: Problemas Resolvidos e Propostos