Buscar

CINEMÁTICA - Cris

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

Profa. Cristiane C. Meinerz
Mecânica: Cinemática 
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
1. Cinemática: É a parte da mecânica que estuda os movimentos dos corpos ou partículas sem se levar em conta o que os causou.
2. Ponto Material (partícula):
 São corpos de dimensões desprezíveis comparadas com outras dimensões dentro do fenômeno observado. 
Um automóvel é um ponto material em relação a rodovia BR 101.
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
3. Corpo Extenso
São corpos cujas dimensões não podem ser desprezadas comparadas com outras dimensões dentro do fenômeno observado.
 Por exemplo:
um automóvel em relação a uma garagem.
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
Atenção!! Observe que ser ponto material ou corpo extenso depende do referencial de observação 
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
4. Movimento, repouso e referencial
Diremos que um móvel está em movimento em relação a certo referencial quando o móvel sofre um deslocamento em relação ao mesmo referencial, isto é, quando há uma variação da posição do móvel em função do tempo decorrido.
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
4. Movimento, repouso e referencial
É possível haver movimento em relação a certo referencial sem que o móvel se aproxime ou se afaste do mesmo. É o caso de um móvel em movimento circular, quando o referencial adotado é o centro da trajetória. Sua posição (vetor) varia com o tempo, mas a distância do móvel em relação ao centro da trajetória não varia.
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
5. Trajetória
É o conjunto dos pontos ocupados pelo móvel no correr de seu movimento.
 
Com relação à trajetória você deve saber que:
 
a) A trajetória determina uma das características do movimento. Poderemos ter movimentos retilíneos, circulares, parabólicos etc., em função da trajetória seguida pelo móvel.
 
b) A trajetória depende do referencial adotado. No caso de um corpo solto de um avião que se move horizontalmente com velocidade constante, para um observador fixo ao solo, a trajetória é parabólica, ao passo que para o piloto a trajetória é considerada uma reta.
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
Atenção!! Observe que: quem estiver dentro do avião verá o objeto cair em linha reta e, quem estiver na Terra verá um arco de parábola.
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
 Mecânica 
Em um ônibus que se desloca com velocidade constante em relação a uma rodovia reta que atravessa uma floresta, um passageiro faz a seguinte afirmação: "As árvores estão se deslocando para trás".
Essa afirmação ________ pois, considerando-se _______ como referencial, é (são) _________que se movimenta(m).
Selecione a alternativa que completa corretamente as lacunas da frase.
a) correta – a estrada – as arvores
b) correta – as arvores – a estrada
c) correta – o ônibus – as arvores
d) incorreta – a estrada – as arvores
e) incorreta – o ônibus – as arvores
Exemplo 1
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
6 - Distância percorrida
Em nosso estudo de cinemática chamaremos distância percorrida pelo móvel à medida associada à trajetória realmente descrita por ele.
O hodômetro colocado junto ao velocímetro do carro mede o caminho percorrido por ele. A indicação do hodômetro não depende do tipo de trajetória e nem de sua orientação. Por esse motivo consideramos a grandeza distância percorrida como a grandeza escalar, a qual indica uma medida associada à trajetória realmente seguida.
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
7. Deslocamento
 
Definimos deslocamento de um móvel em relação a certo referencial como sendo a variação do vetor posição em relação a esse mesmo referencial.
AO é o vetor posição inicial, OB o final de AB o vetor deslocamento desse móvel.
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
 Mecânica 
8. Velocidade vetorial média
Chamamos vetor velocidade média (Vm) à razão entre o deslocamento (x) do móvel e o temo decorrido (t) nesse deslocamento. 
9. Rapidez (Velocidade escalar média)
Chamamos rapidez (velocidade escalar média) (Vm) à razão entre o caminho percorrido (d) e o tempo gasto (t) para percorrê-lo.
I- CONCEITOS BÁSICOS DE CINEMÁTICA
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
A velocidade média no Sistema Internacional de Unidades (S.I.) é medida em: m/s
Lembre-se que:
Para transformarmos km/h em m/s basta dividirmos o número por 3.6;
Para transformarmos m/s em km/h basta multiplicarmos o número por 3.6.
 Mecânica 
Um dos fatos mais significativos nas corridas de automóveis é a tomada de tempos, isto é, a medida do intervalo de tempo gasto para dar uma volta completa no circuito. O melhor tempo obtido no circuito de Susuka, no Japão, pertenceu ao austríaco Gerard Berger, piloto da equipe Mclaren, que percorreu os 5874 m da pista em cerca de 1 min 42s. Com base nesses dados, responda:
 Quanto vale o deslocamento do automóvel de Gerard Berger no intervalo de tempo correspondente a uma volta completa no circuito?
b) Qual a velocidade média desenvolvida pelo carro do piloto austríaco, em sua melhor volta no circuito? 
c) Qual a velocidade escalar média desenvolvida pelo carro do piloto austríaco, em sua melhor volta no circuito? 
Exemplo 2
 Mecânica 
Exemplo 3
A distância entre o marco zero de Recife e o marco zero de Olinda é de 7 km. Supondo que um ciclista gaste 1h e 20 min pedalando entre as duas cidades, qual a sua velocidade escalar média neste percurso, levando em conta que ele parou 10 min para descansar?
 RECIFE 
 d=7 km 
OLINDA
 Mecânica 
Exemplo 3
Resolução:
Velocidade média é uma grandeza física, o tempo que o ciclista ficou parado faz parte do evento logo deve ser incluído 
d = 7 km
t = 1h e 20 min + 10 min = 1h e 30 min = 1,5h
 
 Vm = d Vm = 7 = 4,66 km/h
 t 1,5
 
 Mecânica 
Durante um rallye, os motoristas deverão ir de uma cidade A a outra B e retornar a A. Contará maior número de pontos aquele que o fizer no menor tempo, dentro das seguintes alternativas:
 
1º ) fizer o percurso de ida com velocidade média de 120 km/h e o percurso de volta com velocidade média de 80 km/h 
ou 
2º ) fizer o percurso de ida e volta com velocidade média de 100 km/h. 
Os motoristas
a) poderão escolher qualquer das duas alternativas, pois a velocidade média é a mesma.
b) deverão escolher a primeira alternativa.
c) deverão escolher a segunda alternativa.
d) Não é possível escolher a melhor alternativa sem conhecer a distância entre as cidades A e B.
e) Nenhuma das alternativas anteriores.
Exemplo 4
 Mecânica 
Solução
 Mecânica 
Exemplo 5
A distância do Sol até a Terra é de 150 milhões de quilômetros. Se a velocidade da luz for tida como 300 000 km/s, quanto tempo demora para a luz solar atingir a Terra?
Solução:
 Mecânica 
I- CONCEITOS BÁSICOS DE CINEMÁTICA
A velocidade de um móvel, normalmente, é variável. Esta ideia nos permite estabelecer uma nova grandeza física associada à variação da velocidade e ao tempo decorrido nessa variação. Essa grandeza é a aceleração.
Aceleração de um movimento é a razão entre a variação da velocidade e o intervalo de tempo decorrido.
10. Aceleração de um móvel
 Mecânica 
Exemplo 6
Qual a aceleração média de um movimento uniforme variado, de acordo com a tabela de valores abaixo:
m/s
24
20
16
12
s
0
2
4
6
 Mecânica 
Exemplo 7
O maquinista de um trem aciona os freios da composição reduzindo sua velocidade de 40 km/h para 30 km/h em 1 minuto. Qual a desaceleração do trem?
Solução
 Mecânica 
II- Movimento Retilíneo Uniforme
O movimento de um corpo é chamado retilíneo uniforme quando a sua trajetória for uma reta e ele efetuar deslocamentos iguais em intervalos de tempos iguais. Isso significa que a sua velocidade é
constante e diferente de zero.
 Mecânica 
II- Movimento Retilíneo Uniforme
 , e, 
 
Características:
deslocamentos iguais em tempos iguais.
v
v
v
Velocidade: 
 Função Horária: 
 Mecânica 
 Mecânica 
 Mecânica 
 Mecânica 
 Mecânica 
 Mecânica 
 Mecânica 
 Mecânica 
 Mecânica 
II- Movimento Retilíneo Uniforme
 Mecânica 
II- Movimento Retilíneo Uniforme
 Mecânica 
III- Movimento Retilíneo Uniformemente Variado
O movimento de um móvel é chamado retilíneo uniformemente variado quando a sua trajetória é uma reta e o módulo da velocidade sofre variações iguais em tempos iguais. Isso significa que a aceleração é constante e diferente de zero.
 Mecânica 
 Mecânica 
III- Movimento Retilíneo Uniformemente Variado
Atenção! Acelerado: o Módulo da velocidade aumenta no decorrer do tempo.
Retardado: o Módulo da velocidade diminui no decorrer do tempo.
 
 Mecânica 
 Mecânica 
III- Movimento Retilíneo Uniformemente Variado
Características:
O módulo da velocidade sofre variações iguais em tempos iguais.
v
Função Horária da Velocidade: 
 Função Horária do Movimento: 
 Equação de Torricelli: 
 Mecânica 
 Mecânica 
 Mecânica 
III- Movimento Retilíneo Uniformemente Variado
 Mecânica 
III- Movimento Retilíneo Uniformemente Variado
 Mecânica 
III- Movimento Retilíneo Uniformemente Variado
 Mecânica 
Uma partícula desloca-se em Movimento Retilíneo Uniformemente Variado de acordo com a seguinte equação horária das posições: X = 32 – 15.t + 4.t2, em unidades do S.I.. Determine:
A posição inicial.
A velocidade inicial. 
A aceleração.
Exemplo 8
 Mecânica 
a) 
X = X0 + V0.t + 1 .a.t2
 2
X = 32 – 15.t + 4.t2
X0 = 32m
b) 
X = X0 + V0.t + 1 .a.t2
 2
X = 32 – 15.t + 4.t2
V0 = -15m/s
Resolução
X = X0 + V0.t + 1 .a.t2
 2
a = 8 m/s2
c) 
Exemplo 8
 Mecânica 
Equação de Torricelli
Em muitos casos não teremos o tempo de movimento para calcular a velocidade, o deslocamento ou a aceleração.
O físico Evangelista Torricelli (1608-1647) relacionou as funções horárias do espaço e da velocidade e formulou a Equação de Torricelli.
A equação de Torricelli permite que seja possível determinar a velocidade do móvel ou o seu deslocamento ou a sua aceleração sem que seja conhecido o tempo de movimento.
 Mecânica 
Para isso, pode-se novamente iniciar determinando a área do gráfico v x t:
 Mecânica 
 Mecânica 
 Mecânica 
 Mecânica 
 Mecânica 
Uma motocicleta pode manter uma aceleração constante de 10 m/s2. A velocidade inicial de um motociclista que deseja percorrer uma distância de 500 m, em linha reta, chegando ao final com uma velocidade de 100 m/s, é de:
V0
100m/s
500 m
Exemplo 9
 Mecânica 
Resolução
V2 = V02 + 2.a.X
COMO V = 100 m/s , X =500 m e a = 10 m/s2
 Temos:
 
1002 = V02 + 2.10.500
10000 = V02 + 10000
 V0 = 0
Exemplo 9
 Mecânica 
Exercício resolvido
1. Um trem corre a uma velocidade de 20m/s quando o maquinista vê um obstáculo 50m à sua frente. A desaceleração mínima que deve ser dada ao trem para que não haja choque é de:
a) 4m/s2
b) 2m/s2
c) 1m/s2
d) 0,5m/s2
e) 0
 Mecânica 
Resolução:
Retirando os dados do texto, tem-se:
vo = 20 m/s
v = 0
∆x = 50 m
Como não se conhece o tempo de movimento, aplica-se a equação de Torricelli.
v2 = vo2 + 2.a. ∆x 
0 = 202 + 2 . a . 50
-100 a = 400
a = -4 m/s2
Alternativa A
 Mecânica 
2. Uma partícula inicialmente em repouso passa a ser acelerada constantemente à razão de 3,0m/s2 no sentido da trajetória. Após ter percorrido 24m, sua velocidade é:
a) 3,0m/s
b) 8,0m/s
c) 12m/s
d) 72m/s
e) 144m/s
 Mecânica 
Resolução:
Retirando os dados do texto, tem-se:
vo = 0
a = 3 m/s2
∆x = 24 m
Como não se conhece o tempo de movimento, aplica-se a equação de Torricelli.
v2 = vo2 + 2.a. ∆x 
v2 = 02 + 2 . 3 . 24
v2 = 144
v = 12 m/s
Alternativa C
 Mecânica 
Equação da velocidade média do MRUV
No movimento uniformemente variado, a velocidade média pode ser
determinada pela média das velocidades.
No movimento uniformemente variado, a velocidade média é igual à média da velocidade.
Dessa forma pode-se escrever:
 Mecânica 
Exercícios resolvidos
Um trem de 120m de comprimento se desloca com velocidade escalar de 20m/s. Esse trem, ao iniciar a travessia de uma ponte, freia uniformemente, saindo completamente dela 10s após, com velocidade escalar de 10m/s. O comprimento da ponte é de:
a) 150m
b) 120m
c) 90m
d) 60m
e) 30m
 Mecânica 
Resolução:
Retirando os dados do texto, tem-se:
vo = 20 m/s
v = 10 m/s
∆t = 10 s
Ctrem = 120 m
 Mecânica 
 Mecânica 
III- Movimento de Queda Livre
A queda livre é o movimento de um objeto que se desloca livremente, unicamente sob a influência da gravidade. 
Não depende do movimento inicial dos objetos:
Deixado cair do repouso
Atirado para baixo
Atirado para cima
 Mecânica 
III- Movimento de Queda Livre
Quem tinha razão acerca da queda dos graves? 
Galileu
Aristóteles
?
 Mecânica 
Aristóteles afirmou que, se dois corpos com diferentes massas caíssem simultaneamente da mesma altura, o mais pesado chegaria ao solo mais rápido, ou seja, em menor tempo.
Galileu constatou que a velocidade era crescente e a variação, constante em intervalos iguais de tempo. A responsável por essa variação de velocidade chama-se aceleração de gravidade.
Queda livre movimento da queda dos corpos quando se depreza a resistência do ar
 Mecânica 
III- Movimento de Queda Livre
Galileu, o primeiro físico moderno, estudou a queda dos corpos
Refutou as hipóteses de Aristóteles
 Mecânica 
III- Movimento de Queda Livre
O valor (módulo) da aceleração de um objeto em queda livre é g = 9.80 m/s2
g diminui quando aumenta a altitude
9.80 m/s2 é o valor médio à superfície da Terra.
Os movimentos de lançamento vertical e queda livre são movimentos retilíneos.
 Mecânica 
III- Movimento de Queda Livre
 Mecânica 
III- Movimento de Queda Livre
g
v
O Movimento de queda livre é um movimento uniformemente acelerado
(+)
y
g
v0
O Movimento de lançamento vertical é um movimento uniformemente retardado
(+)
y
y0
 Mecânica 
III- Movimento de Queda Livre
As equações obtidas para partículas em movimento com aceleração constante (MRUV) são aplicáveis ao corpo em queda livre. Assim 
 Mecânica 
III- Movimento de Queda Livre
Queda sem resistência do ar
 Mecânica 
III- Movimento de Queda Livre
Queda com resistência do ar
 Mecânica 
III- Movimento de Queda Livre
 Mecânica 
Exercício:
Um garoto, na sacada de seu apartamento, a 20 metros de altura, deixa cair um biscoito, quando tem então a idéia de medir o tempo de queda desse biscoito. Desprezando a resistência do ar e adotando g = 10m/s², determine o tempo gasto pelo corpo para chegar ao térreo.
 Mecânica 
Resposta Questão 1
s = so + vo.t + ½ g.t ²
20 = 0 + 0.t + ½ .10 t ²
20 = 0 + 10 ÷ 2 t ²
20 = 5  t²
20 ÷ 5 = t ²
t ² = 4
t = 2s
 Mecânica 
2) Abandonando um corpo do alto de uma montanha de altura H, este corpo levará 9 segundos para atingir o solo. Considerando g = 10 m/s², calcule a altura da montanha.
 Mecânica 
Resposta Questão 2
 Mecânica 
3) Um pequeno objeto é largado do 15° andar de um edifício e cai, com atrito do ar desprezível, sendo visto 1s após o lançamento passando em frente à janela do 14° andar. Em frente à janela de qual andar ele passará 2 s após o lançamento? Admita g = 10m/s². 
 Mecânica 
Calculando a velocidade do objeto no 14° andar:
v = vo + g.t
v = 0 + 10.1
v = 10 m/s
Calculando
agora a altura de cada andar...
v ² = vo² + 2g.Δs
10 ² = 0 + 2.10. Δs
100 = 20 Δs
100 ÷ 20 = Δs
Δs = 5m
 Mecânica 
Após dois segundos de movimento, teremos:
s = so + vot + ½ g.t ²
s = 5.0.t + ½ .10. 2 ²
s = 0 + 10/2 .2 ²
s = 10/2 .4
s = 5 .4
s = 20 m
Portanto, podemos concluir que, como o objeto percorreu 20m em 2s, ele estará passando pela janela do 11° andar.
 Mecânica 
Lançamento Vertical
Um arremesso de um corpo, com velocidade inicial na direção vertical, recebe o nome de Lançamento Vertical.
Sua trajetória é retilínea e vertical, e, devido à gravidade, o movimento classifica-se com Uniformemente Variado.
As funções que regem o lançamento vertical, portanto, são as mesmas do movimento uniformemente variado, revistas com o referencial vertical (h), onde antes era horizontal (S) e com aceleração da gravidade (g).
 Mecânica 
Sendo que g é positivo ou negativo, dependendo da direção do movimento:
 
Lançamento Vertical para Cima
g é negativo
Como a gravidade aponta sempre para baixo, quando jogamos algo para cima, o movimento será acelerado negativamente, até parar em um ponto, o qual chamamos Altura Máxima.
 Mecânica 
Lançamento Vertical para Baixo
g é positivo
No lançamento vertical para baixo, tanto a gravidade como o deslocamento apontam para baixo. Logo, o movimento é acelerado positivamente. Recebe também o nome de queda livre.
 Mecânica 
Exemplo
Uma bola de futebol é chutada para cima com velocidade igual a 20m/s. 
(a) Calcule quanto tempo a bola vai demorar para retornar ao solo. 
(b) Qual a altura máxima atingida pela bola? Dado g=10m/s².
 Mecânica 
 Mecânica 
 Mecânica 
Exercícios resolvidos
1) Um corpo é abandonado a 80m do solo. Sendo g = 10m/s² e o corpo estando livre de forças dissipativas, determine o instante e a velocidade que o móvel possui ao atingir o solo.
 Mecânica 
Utilizando a equação horária do espaço, temos:
S = So + Vo.t  + gt²/2
0 = 80 + 0 + 10.t²/2
10.t²/2 = 80
10.t² = 160
t² = 16
t = 4s
Sendo V = Vo + g.t
V = 0 + 10.4
V = 40m/s
 Mecânica 
2) Um gato consegue sair ileso de muitas quedas. Suponha que a maior velocidade com a qual ele possa atingir o solo sem se machucar seja de 8 m/s. Então, desprezando a resistência do ar, a altura máxima de queda, para que o gato nada sofra, deve ser:
 Mecânica 
S = So + Vo.t + g.t²/2
S = 5.t²  9 (equação I)
V = Vo + g.t
8 = 0 + 10.t
t = 0,8
Substituindo t na equação I temos:
S = 5.(0,8)²
S = 5.0,64
S = 3,2m
 Mecânica 
3) Um móvel é atirado verticalmente para cima a partir do solo, com velocidade de 72 km/h. Determine:
a) as funções horárias do movimento;
b) o tempo de subida;
c) a altura máxima atingida;
d) em t = 3 s, a altura e o sentido do movimento;
e) o instante e a velocidade quando o móvel atinge o solo.
Obs.: Adote g = 10m/s²
 
 Mecânica 
a) as funções horárias do movimento
S = So + Vo.t + g.t²/2
S = 20.t -10.t²/2
S = 20.t + 5.t²  - Função horária do espaço
V = Vo + g.t
V = 20 – 10.t – função horária da velocidade
b) o tempo de subida
0 = 20 – 10.t
10.t = 20
t = 20/10
t = 2s
 Mecânica 
c) a altura máxima atingida
S = 20.2 - 5.2²
S = 40 – 20
S = 20m
d) em t = 3 s, a altura e o sentido do movimento
S = 20.3 - 5.3²
S = 60 – 45
S = 15m
Até 2s o movimento é direcionado para cima (altura máxima), pra t >2s o movimento é direcionado para baixo.
e) o tempo de descida é igual ao tempo de subida, portanto t = 2s.
A velocidade com que o móvel retorna ao solo é a mesma com que ele foi lançado, assim v = 72 km/h
 
 Mecânica 
4) Um ponto material, lançado verticalmente para cima, atinge a altura de 20 m. Qual a velocidade de lançamento? Adote g = 10m/s²
 Mecânica 
V² = Vo² + 2.g.∆s
0 = Vo² + 2.(-10).(20)
Vo² = 400
Vo = (400)1/2 ou √
Vo = 20m/s
 Mecânica 
5) Um projétil de brinquedo é arremessado verticalmente para cima, da beira da sacada de um prédio, com uma velocidade inicial de 10m/s. O projétil sobe livremente e, ao cair, atinge a calçada do prédio com velocidade igual a 30m/s. Determine quanto tempo o projétil permaneceu no ar. Adote g = 10m/s² e despreze as forças dissipativas.
 Mecânica 
Da sacada à altura máxima que o projétil alcançará.
V = Vo + g.t
0 = 10 – 10.t
10.t = 10
t = 10/10
t = 1s
Da altura máxima que o projétil alcançou ao solo.
V = Vo + g.t
30 = 0 + 10.t
10.t = 30
t = 30/10
t = 3s
O tempo em que o projétil permanece no ar:
tt = 3 + 1 = 4s
 
 Mecânica 
Uma pulga pode dar saltos verticais de até 130 vezes sua própria altura. Para isto, ela imprime a seu corpo um impulso que resulta numa aceleração ascendente. Qual é a velocidade inicial necessária para a pulga alcançar uma altura de 0,2 m? adote g = 10m/s².
a) 2 m/s
b) 5 m/s
c) 7 m/s
d) 8 m/s
e) 9 m/s
 Mecânica 
V² = Vo² + 2(-10).∆s
0 = Vo² - 20.0,2
Vo² = 4
Vo = 2m/s
 Mecânica 
7) Uma esfera é lançada verticalmente para cima com uma velocidade inicial de 20 m/s. Sabendo que g = 10 m/s2, a altura máxima que a bola atinge é:
a) 80m
b) 120 m
c) 40 m
d) 20 m
e) 200 m
 Mecânica 
Dados:
v = 0 (no ponto da altura máxima, a esfera tem velocidade igual a zero)
v0 = 20 m/s
g = 10 m/s2
h = ?
Utilizamos a equação de Torricelli para efetuar os cálculos:
v2 = v02 - 2.g.h
0 = 202 - 2.10.h
20 h = 400
h = 400
      20
h = 20 m
Alternativa D
 Mecânica

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Outros materiais

Perguntas Recentes