Buscar

Apostila Ambiencia construcoes rurais UFG

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

�
� � �� ��� �	 
 	 ����	 ��
 ��	 ��
 � �� � �
�� �� �
 �	 ��
 
 �� � � � �
 ����� 
 �� � 
 � �
 �	 ��
 ��� �� � � � �
� �� � � �	 ���� 
 �� � 
 ��
 ��� �
 ��
�� � � � �� �� �� ������� �����
 �� � ��� �
 ��
 
 
 
 
 
 
 
 
 
 
 
 � ���� ��
 ��� �
�� � � 
 �
 �� �� ��� �
 �� �
�
������	 ������ !�"���#!$�������� �#�
 
 
 
 
 
 
 
 
 
 
Goiânia, junho de 2007 
 2 
 SUMÁRIO 
 
1. INTRODUÇÃO 
2. CONSIDERAÇÕES INICIAIS 
2.1. HOMEOTERMIA 
3. CARACTERIZAÇÃO DA ZONA DE CONFORTO TÉRMICO E DAS 
TEMPERATURAS AMBIENTAIS CRÍTICAS 
4. DISSIPAÇÃO DO CALOR CORPORAL 
5. FORMAS SENSÍVEIS DE TRANSFERÊNCIA DE CALOR ANIMAL-AMBIENTE 
5.1. CONDUÇÂO 
5.2. CONVECÇÃO 
5.3. RADIAÇÃO 
6. FORMAS LATENTES DE TRANSFERÊNCIA DE CALOR ANIMAL-AMBIENTE 
7. ÍNDICES DE CONFORTO TÉRMICO 
8. ACONDICIONAMENTO TÉRMICO DAS INSTALAÇÕES 
9. VENTILAÇÃO 
9.1. VENTILAÇÃO NATURAL 
9.1.1. Ventilação Natural Dinâmica 
9.1.2. Ventilação Natural Térmica 
9.2. CONSIDERAÇÕES A RESPEITO DAS ABERTURAS DE 
VENTILAÇÃO 
9.3. VENTILAÇÃO ARTIFICIAL 
9.3.1. Ventiladores 
10. MODIFICAÇÕES AMBIENTAIS 
10.1. MODIFICAÇÕES AMBIENTAIS PRIMÁRIAS 
10.1.1. Sombreamento 
10.1.2. Quebra-ventos 
10.2. MODIFICAÇÕES AMBIENTAIS SECUNDÁRIAS 
10.2.1. Iluminação (fotoperíodo) 
10.2.2. Resfriamento 
10.2.3. Aquecimento 
11. CONSIDERAÇÕES FINAIS 
12. BIBLIOGRAFIA 
 
05 
07 
07 
 
10 
13 
14 
14 
16 
18 
21 
24 
26 
27 
30 
31 
31 
 
31 
33 
34 
36 
37 
37 
41 
42 
42 
43 
48 
51 
52 
 
 3 
1. INTRODUÇÃO 
 
O estudo dos efeitos do ambiente físico sobre os organismos vivos é o 
objetivo da biometeorologia (ou bioclimatologia), ramo da ecologia e da 
climatologia. Em termos de fatores produtivos a biometeorologia é a ciência que 
se ocupa dos efeitos do estresse climático que limitam uma produção animal ótima 
e das estratégias de manejo ambiental visando a minimizar o estresse e melhorar 
a produção (desempenhos produtivo e reprodutivo) e a saúde (BACCARI Jr., 
1998). 
Em virtude de todo aspecto do clima e do tempo ter algum efeito sobre 
os seres vivos, o escopo da biometeorologia é quase ilimitado e seu conhecimento 
de amplo espectro (Figura 1). 
Figura 1. O amplo espectro da biometeorologia (BACCARI Jr., 1998). 
 
É sabido que, em muitos casos, a produção animal é reduzida pelo 
estresse imposto ao animal através de fatores patológicos, nutricionais, ambientais 
e outros (NÃÃS, 1993). Dentre os problemas estratégicos ligados à produção 
 4 
animal, destacam-se os que se referem às instalações. Em alguns casos, este 
item pode ser responsável pelo insucesso produtivo. As construções representam 
uma parcela significativa do investimento produtivo e, quando não são 
adequadamente planejadas, podem causar sérios prejuízos ao sistema produtivo 
(HARDOIM, 1998). 
O motivo de serem construídas edificações de abrigo para animais é a 
proteção contra as intempéries climáticas. Para que essa proteção seja efetiva e 
eficiente em termos de produtividade animal, faz-se necessária a quantificação da 
interação de clima, animal e tipo de abrigo (NÃÃS, 1989). 
Um sistema construtivo adequado proporciona condição de controlar os 
fatores climáticos que mais interferem no conforto térmico dentro da edificação, 
como a temperatura, a umidade, a radiação solar e o vento. E para se obter uma 
construção adequada é necessário ser levado em conta, em seu planejamento, os 
materiais de construção, o tipo de animal a habitá-la e o clima local (BAÊTA, 1997; 
NÃÃS, 1989). 
Ao escolher um abrigo para o confinamento animal, e tal procedimento 
tem sido intensivamente utilizado nos países desenvolvidos e em 
desenvolvimento, as necessidades que levam a esta ação não incluem 
freqüentemente o controle ambiental, mas, sim, um manejo eficiente, controle da 
alimentação, doenças e, finalmente, segurança dos animais (NÃÃS, 1993). 
Para confinar os animais, diversos aspectos devem ser levados em 
consideração a fim de proporcionar condições mínimas adequadas à finalidade 
desejada. Tais aspectos são: localização, orientação da instalação e sua forma 
geométrica; as necessidades do animal quanto a espaço, aspectos nutricionais, 
fisiológicos e sociais; suas exigências quanto ao microclima e aos parâmetros 
associados a ele; manejo e tratamento dos dejetos devem ser estudados e 
analisados, visando minimizar um impacto ao meio ambiente e por último, porém 
tão importante quanto os anteriores, que a produção proporcione lucro compatível 
com o investimento realizado (NÃÃS, 1993). 
O presente texto aborda as diversas nuanças da interação animal-
ambiente-instalação, incluindo desde a caracterização das temperaturas 
 5 
ambientais críticas que influem na ambiência animal e as formas de dissipação 
(sensíveis e latentes) do calor corporal, até as formas de avaliação do conforto, 
através dos índices de conforto térmico. Num segundo momento são tratados os 
assuntos referentes ao acondicionamento ambiental das instalações e as formas 
de manejo do ambiente, através dos diversos métodos de modificações 
ambientais. 
 
 
2. CONSIDERAÇÕES INICIAIS 
 
Antes de se proceder a uma abordagem em ambiência e conforto 
térmico, torna-se necessário alguns comentários sobre algumas características 
animais frente às modificações do ambiente térmico. 
 
2.1. HOMEOTERMIA 
 
Para que a atividade celular seja normal, o animal precisa ter seu 
ambiente interno estável com relação às flutuações externas, processo definido 
como HOMOTERMIA, HOMEOSTASE ou HOMEOCINESE (BAÊTA, 1997). 
É considerado homeotermo o animal que mantém a temperatura do 
núcleo corporal dentro de limites estreitos, mesmo que a temperatura ambiental 
flutue e que a sua atividade varie intensamente. É um processo mais comum em 
mamíferos e aves (BAÊTA, 1997). 
Portanto, a HOMEOTERMIA refere-se ao processo por meio do qual o 
animal mantém a temperatura do núcleo corporal aproximadamente constante, por 
meio de processos de aumento e dissipação de taxas de calor, mediante as 
flutuações ocorridas no meio ambiente externo (BAÊTA, 1997). 
De acordo com INGRAM e MOUNT (1975), nesse tipo de animal a 
temperatura do núcleo corporal mantém-se bastante estável, ou seja, não flutua 
rapidamente quando ocorrem variações de temperatura nas diferentes partes do 
organismo do animal, as quais são associadas a variações na quantidade de calor 
 6 
armazenado. A temperatura do núcleo corporal do homem pode ser calculada pela 
equação: 
 
Tc = 0,65Tr + 0,35Ts 
 
Onde: 
 
Tc = temperatura do núcleo corporal 
Tr = temperatura retal, e 
Ts = temperatura da pele 
 
Os homeotermos têm temperaturas corporais que variam em diferentes 
partes do corpo e em diferentes tempos, mas a temperatura do núcleo corporal é 
mantida em nível que independe da flutuação ambiental (MOUNT, 1975). ESMAY 
(1969) cita temperaturas do núcleo corporal de diversas espécies (Tabela 1). 
 
Tabela 1. Temperatura do núcleo corporal de algumas espécies animais. 
Espécie Temperatura (°C) Espécie Temperatura (°C) 
Homem 37 Gatos e cachorros 38,6 
Bovinos 38,5 Caprinos 40 
Eqüinos 38 Suínos 39 
Galinhas 41,7 Ovinos 39 
Fonte: ESMAY (1969) 
 
A manutenção da temperatura do núcleo corporal depende do balanço 
de produção e perda de calor (NÃÃS, 1993). 
 7 
 
Figura 2. Balanço de produção e perda de calor (NÃÃS, 1993). 
 
O animal é, portanto, um sistema termodinâmico aberto. Essa forma de 
interação com o meio externo, chamada de homocinética, é definida como a 
dinâmica dos sistemas homotérmicos em que os mecanismos termodinâmicos 
internos são acionados para se manterem em equilíbrio com o meio ambiente 
externo (NÃÃS, 1993). 
 
 
3. CARACTERIZAÇÃO DA ZONA DE CONFORTO TÉRMICO E DASTEMPERATURAS AMBIENTAIS CRÍTICAS 
 
A caracterização do ambiente térmico animal envolve os efeitos da 
temperatura, da umidade, da radiação e do vento, e pode ser feita por meio de 
uma única variável, chamada de temperatura efetiva (BAÊTA, 1997). 
Para determinada faixa de temperatura efetiva ambiental, o animal 
mantém constante a temperatura corporal, com mínimo esforço dos mecanismos 
termorregulatórios. É a chamada zona de conforto térmico (ZCT) ou de 
termoneutralidade, em que não há sensação de frio ou calor e o desempenho do 
animal em qualquer atividade é otimizado. 
Os limites para a ZCT são a temperatura crítica inferior (TCI) e a 
temperatura crítica superior (TCS). Abaixo da TCI o animal entra em estresse pelo 
frio e acima da TCS sofre estresse pelo calor (BACCARI Jr., 1998). Na Figura 2, 
observa-se que a ZCT é limitada pelas temperaturas efetivas ambientais dos 
pontos A e A’; a zona de moderado conforto ou de variação nula na produção de 
calor corporal, pelas temperaturas efetivas ambientais dos pontos B (TCI) e B’ 
(TCS); a zona de homeotermia, pelas temperaturas efetivas ambientais dos 
pontos C e C’; e a zona de sobrevivência, pelas temperaturas efetivas ambientais 
dos pontos D e D’ (BAÊTA, 1997). 
 9 
 
Figura 3. Representação esquemática simplificada das temperaturas efetivas 
ambientais críticas (BAÊTA, 1997). 
 
Abaixo da TCI (Tabela 2), o animal aciona seus mecanismos 
termorregulatórios para incrementar a produção e a retenção de calor corporal, 
compensando a perda de calor para o ambiente, que se encontra frio. Nesta faixa, 
a capacidade do animal de aumentar a taxa metabólica torna-se relevante para a 
manutenção do equilíbrio homeotérmico. Já abaixo da TCS, o animal aciona seus 
mecanismos termorregulatórios para auxiliar a dissipação do calor corporal para o 
ambiente, uma vez que, nessa faixa, a taxa de produção de calor metabólico 
normalmente aumenta, podendo ocorrer, também, aumento da temperatura 
corporal (BAÊTA, 1997). 
 10
Tabela 2. Valores comuns de TCI (B), de TCS (B’) e de temperaturas na ZCT para 
alguns animais 
Fonte: CURTIS, 1983; HAFEZ, 1968; MOUNT, 1979, citados por Baêta 
(1997). 
 
Na maioria dos animais domésticos, a temperatura corporal aumenta 
significativamente em resposta à temperaturas efetivas ambientais em torno de 
28°C. A hipertermia ocorre para temperaturas efetivas ambientais na faixa de 30 a 
50°C ou quando a temperatura do corporal aumenta cerca de 3 a 6°C acima do 
nível normal, dependendo do tempo de exposição, da adaptação ao calor e do 
nível de produção do animal (MÜLLER, 1989). 
 
 11
4. DISSIPAÇÃO DO CALOR CORPORAL 
 
A taxa de dissipação de calor de um animal é determinada pela sua 
taxa de produção, de armazenamento de calor corporal e, ainda, pelas condições 
dos ambientes vizinhos ao seu. O animal pode trocar energia em forma de calor 
com o ambiente em que vive por meio de formas sensíveis e latentes (BAÊTA, 
1997). 
Fluxos de calor causados por gradientes de temperatura, detectados 
por simples termômetros, são chamados sensíveis. As forma sensíveis de 
transferência de calor são condução, convecção e radiação. Já os fluxos de calor 
causados por gradientes de pressão de vapor d’água são chamados de latentes. 
As duas formas de troca de calor conhecidas são a evaporação e a condensação. 
Nestas formas, o calor envolvido na transformação líquido-vapor não causa 
mudança na temperatura da água, apesar de ocorrer variação na temperatura da 
superfície onde o animal está (BAÊTA, 1997). A Figura 3 representa, de forma 
esquemática, as formas por meio das quais o animal perde calor para o ambiente. 
De acordo com INGRAM e MOUNT (1975) e CURTIS (1983), a 
equação do balanço de calor de um animal homeotérmico pode ser expressa da 
seguinte forma: 
M + ∆∆∆∆C = + Qrd + Qcc + Qcd + Qe/c + Qf/c 
Onde: 
 
M = calor resultante do metabolismo animal; 
∆C = variação no conteúdo do calor corporal do animal; 
Qrd, Qcc, Qcd, Qe/c = taxa da troca de calor entre o animal e o ambiente por meio 
das formas latentes e sensíveis, e 
Qf/c = calor carreado nos alimentos e na água. 
 12
Figura 4. Representação esquemática da perda de calor do animal para o 
ambiente (BAÊTA, 1997). 
 
5. FORMAS SENSÍVEIS DE TRANSFERÊNCIA DE CALOR ANIMAL-AMBIENTE 
 
5.1. CONDUÇÂO 
 
Condução é a troca de calor entre dois corpos que se tocam ou mesmo 
partes do corpo que estejam a temperaturas diferentes. No fluxo de calor 
condutivo, uma molécula quente do corpo considerado choca-se com uma 
 13
molécula vizinha, fria, e transfere parte de sua energia cinética a esta molécula e 
assim por diante, tendendo ao equilíbrio (NÃÃS, 1989; BAÊTA, 1997). 
A condutividade térmica é o fator físico do fluxo de calor por condução, 
o qual caracteriza a quantidade de calor transmitida através de um corpo 
considerado homogêneo, num regime estacionário, por unidade de espessura, de 
área e de tempo, quando o gradiente térmico é igual à unidade. A condutividade 
térmica é expressa em W.m/(m2.°C) ou cal.cm/(cm2.°C.s) ou outras unidades 
equivalentes (BAÊTA, 1997). 
Na Tabela 3, HOLMAN (1983) apresenta alguns valores de 
condutividade térmica. Observa-se que a água tem maior condutividade térmica 
que o ar, o que significa que os materiais que contêm ar em seus intertíscios 
funcionam como isolantes térmicos, isto é, são menos capazes de conduzir calor. 
Se a água ocupa os poros do material, o ar é deslocado e é reduzido o isolamento 
 
Tabela 3. Alguns valores de condutividade térmica em cal.cm/(cm2.°C.s). 
Material ou substância Condutividade térmica 
Ar parado (1000 mbars, 15°C) 0,000059 
Plástico esponjoso 0,0001 
Madeira 0,0003 
Água parada 0,0014 
Terra arenosa (15% de água) 0,0022 
Concreto 0,0058 
Aço 0,1100 
Alumínio 0,4900 
Fonte: HOLMAN (1983). 
 
O fluxo interno de calor condutivo é influenciado também pelo 
isolamento térmico das várias camadas que se interpõem entre o núcleo e a pele. 
O isolamento térmico é um fator recíproco da condutividade e indica a resistência 
à passagem de calor, expressa em (cm2.s)/(°C.cm.cal). A resistência térmica 
interna à transferência de calor por condução compreende diferentes combinações 
 14
de isolamento: a do tecido do núcleo, a da pele, a da cobertura e a da camada-
limite, as quais ocorrem em série (BAÊTA, 1997). 
De acordo com CURTIS (1983) e MOUNT (1979), alguns tipos de 
cobertura animal (pêlos e penas) favorecem a retenção de ar e atuam na definição 
de sua capacidade isolante e, conseqüentemente, na grandeza do fluxo de calor 
por condução (Tabela 4). 
 
Tabela 4. Valor do isolamento térmico do ar parado e da pelagem de alguns 
animais (CURTIS, 1983; MOUNT, 1979). 
Animal Isolamento térmico 
(°C.m2)/(kcal.h)* 
Bezerro 0,01 
Leitão 0,02 
Vaca 0,11 
Carneiro 0,25 
Ar parado 0,36** 
* por mg de peso de pelagem por cm2 da área da superfície 
**(°C.m2)/W 
 
 
5.2. CONVECÇÃO 
 
A convecção é uma troca de calor entre dois corpos, sendo um sólido e 
outro fluido (gás ou líquido). É um processo no qual o ar em contato com uma 
superfície aquecida é também aquecido, ocorrendo redução de sua densidade, o 
que causa pequenas correntes próximo da superfície. Nesse processo, em razão 
da movimentação do ar, há remoção de calor do corpo aquecido (NÃÃS, 1989; 
BAÊTA, 1997). 
Para se ter uma idéia da grandeza desse processo, um homem, cuja 
temperatura da pele está 10°C acima da temperatura do ar, dissipa calor por 
 15
convecção na ordem de 30 a 40 W/m2, dos 50,5 W/m2 resultantes de seu 
metabolismo basal (MOUNT, 1979). 
A remoção de calor por movimento próprio do fluido (gás ou líquido), 
próximo da superfície aquecida, caracteriza o processo de convecção livre. 
Quando há uma força externa atuando para aumentar a corrente fluida, como um 
ventilador,ocorre remoção de calor por convecção forçada (BAÊTA, 1997). 
A troca de energia por convecção é proporcional à área da superfície do 
animal, à diferença de temperatura entre a superfície animal e o ar sobre a 
camada-limite e ao coeficiente de convecção (INGRAM e MOUNT, 1975). 
 
Qcc = Acc.h.(Ts – Ta) 
 
Onde, 
 
Qcc = fluxo convectivo (cal/min); 
Acc = área efetiva da superfície do animal (m2) 
h = coeficiente de convecção (W/m2.°C); 
Ts = temperatura da superfície animal (°C); e 
Ta = temperatura do ar (°C). 
 
O coeficiente de convecção é o fator físico do processo e pode ser 
usado para expressar o calor transferido por convecção. A sua determinação é 
complexa, uma vez que depende da condutividade térmica e da espessura da 
camada superficial (limite), bem como do tamanho e da forma do corpo do animal, 
da sua orientação e, ainda, do perfil aerodinâmico (tipo de corrente de ar), 
(MOUNT, 1979; GATES, 1968). Entretanto, alguns valores de coeficiente de 
convecção são citados na literatura (Tabela 5). 
 16
Tabela 5. Valores do coeficiente de convecção para um homem nu e temperaturas 
ambientais de 20 a 30°C. 
Velocidade do vento 
m/s 
coeficiente de convecção 
W/(m2.°C) 
<0,2 3 a 4 
1 8 
2 12 
3 15 
Fonte: INGRAM e MOUNT (1975); MOUNT (1979). 
 
 
5.3. RADIAÇÃO 
 
A radiação consiste no mecanismo de troca de calor entre dois corpos 
através da natureza eletromagnética que caracteriza a onda de calor. Não há 
necessidade de meio para propagação, acontecendo mesmo na ausência de meio 
ou vácuo (NÃÃS, 1989). 
Segundo ESMAY (1969), quando passa através do vácuo, a energia 
radiante emitida por determinada superfície atinge a velocidade da luz, isto é, 
300.000 km/s. 
De acordo com RIVERO (1986), o comprimento de onda (λ) é a 
característica da energia radiante usada para classificá-la; é definida como sendo 
a distância entre dois máximos sucessivos de onda. É dado em µm (10-6m), 
distinguindo-se as diferentes formas de energia radiante (Tabela 6). 
 17
Tabela 6. Classificação da energia radiante em função do comprimento de onda. 
Comprimento - µµµµm Classificação 
10-8 – 10-7 Raios cósmicos 
10-7 – 10-5 Raios gama 
10-5 – 0,04 Raios X 
0,04 – 0,28 Longínquos ultravioletas 
0,28 – 0,32 Biológicos 
0,32 – 0,40 Próximos 
0,40 – 0,78 Visível 
0,78 – 1,50 Próximos 
1,50 – 10 Médios 
10 - 103 Longínquos Infravermelhos 
103 - 106 Microondas 
106 - 108 Radar 
108 – 3.1010 TV, rádio 
Fonte: RIVERO (1986) 
 
De acordo com a Lei de Kirchhoff, quando a radiação térmica incide 
sobre uma superfície, parte dessa radiação incidente (I) pode ser refletida (Ir), 
absorvida (Ia) e transmitida (It). Um corpo ideal ou uma superfície que tem a 
capacidade de absorver toda a radiação incidente (α = 1) é chamado de corpo 
negro, porém, se é capaz de absorver somente parte da radiação incidente, é 
chamado de corpo cinza ou opaco. Daí surgem os conceitos de refletividade, 
absortividade, transmissividade, e emissividade (BAÊTA, 1997): 
 
Refletividade (ρ): é a fração da radiação incidente refletida (Ir/I); 
 
Absortividade (α): corresponde à fração da radiação incidente absorvida 
pela superfície atingida (Ia/I); e 
 
 18
Transmissividade (τ): corresponde à fração da energia incidente que 
passa através da superfície (It/I). 
 
Emissividade (ε): é a razão entre a densidade de radiação de um corpo 
cinza e a de um corpo negro, para as mesmas condições determinantes do fluxo. 
 
A Figura 5 mostra as formas de comportamento da radiação solar 
considerando o animal e seu ambiente natural. 
 19
Figura 5. Fluxos de energia entre o animal e seu ambiente natural (BAÊTA, 1997). 
 
6. FORMAS LATENTES DE TRANSFERÊNCIA DE CALOR ANIMAL-AMBIENTE 
 
ROSENBERG et al. (1983) afirmam que as formas latentes de troca de 
calor constituem o principal mecanismo de dissipação de calor (energia), sendo 
um processo muito importante para os homeotermos na prevenção do 
superaquecimento (hipertemia) em ambientes quentes. 
As formas conhecidas de trocas de calor latente são a condensação e a 
evaporação, nas quais os fluxos são causados por gradientes de pressão de 
 20
vapor. A pressão de vapor indica a quantidade de vapor d’água contido em dado 
volume de ar (BAÊTA, 1997). 
De acordo com CURTIS (1983), a perda de calor pelo processo latente 
se dá na conversão para vapor, tanto do suor secretado pelas glândulas da pele 
quanto da umidade proveniente do trato respiratório. 
A capacidade termorregulatória pelo suor é bastante diferenciada entre 
as espécies animais (Tabela 7). E quando menor a idade, maior a densidade das 
glândulas sudoríparas (BAÊTA, 1997). 
 
Tabela 7. Densidade de glândulas sudoríparas em algumas espécies animais 
(adaptada de BAÊTA, 1997). 
 
Espécie Glândulas/cm2* 
Homem 80 a 200 
Bovinos + 1800 
Bubalinos + 180 
Ovinos 240 a 300 
Suínos 25** 
* Valor médio para várias partes do corpo. 
** Distribuídas no focinho e umas poucas espalhadas pelo corpo (a maioria com função 
termorregulatória desprezível). 
 
INGRAM e MOUNT (1975) afirmam que camelos e burros suam pouco 
e associam esse fato à sua capacidade de armazenar calor. Bois europeus 
dissipam cerca de 75% do calor corporal por evaporação do suor a altas 
temperaturas. Em vários animais, as taxas de perda de água pela pele são 
indicadas pelos mesmos autores na Figura 6. 
 21
Figura 6. Perda de água, em g.m-2.h-1, por meio da pele de diferentes espécies, no 
frio e no calor (INGRAM e MOUNT, 1975). 
 
Além da troca evaporativa de calor através da pele, ocorre também 
evaporação a partir do trato respiratório do animal, constituindo um importante 
meio de controle homeotérmico. Nesse processo, os mecanismos geralmente 
aumentam a quantidade de ar puxado pelas vias respiratórias. Há 
condicionamento do ar inspirado, isto é, ele é aquecido até a temperatura corporal 
e torna-se saturado com vapor d’água durante o trajeto para alcançar os alvéolos. 
Na expiração, o ar passa pela mucosa já resfriada pela inspiração, quando, então, 
ocorre condensação com liberação de calor lantente. A diferença entre o calor 
carreado na inspiração e na expiração constitui a perda respiratória (BAÊTA, 
1997). 
De acordo com ROSENBERG et al. (1983), a perda de calor latente 
pela respiração é função da taxa metabólica, uma vez que aumento na produção 
de calor metabólico conduz a aumento na freqüência respiratória. 
 22
7. ÍNDICES DE CONFORTO TÉRMICO 
 
Vários índices têm sido obtidos de testes com o objetivo de expressar o 
conforto do animal com relação a dado ambiente. Em geral, são considerados dois 
ou mais fatores climáticos, todavia, para alguns, são consideradas outras 
variáveis, como a taxa metabólica, o tipo de isolamento, etc (BAÊTA, 1997). 
NÃÃS (1989) cita o Índice de Temperatura e Umidade Relativa (THI) 
como o mais usado para avaliação de animais. Este índice foi obtido por THOM 
(1959) e pode ser calculado pela seguinte equação: 
THI = Ta + 0,36To + 41,2 
 
Onde, 
 
Ta = temperatura do ambiente 
To = temperatura de orvalho 
 
Outros índices obtidos por diversos pesquisadores foram citados por 
BAÊTA (1997) e reunidos na Tabela 8. 
 23
Tabela 8. Outros índices de conforto térmico. 
ÍNDICES PESQUISADORES 
Índice de Temperatura Efetiva 
É descrito como uma função da temperatura, da umidade e do movimento 
do ar, usando humanos para comparar sensações térmicas instantâneas, 
experimentadas em diferentes ambientes. 
 
(HOUGHTEN e 
YAGLOU, 1923) 
Índice de Umidade 
Foi obtido a partir de umidade e de temperatura. O primeiro índice de 
umidade foi baseado em temperaturas (°F) somadas à umidade relativa 
(5), e o total dividido por dois. Mais tarde o índice foi melhorado, 
considerando a temperatura de bulbo úmido em vez da umidaderelativa 
do ar. 
 
 
 
(HEVENER, 1959) 
P4SR (Predicted Four Hour Sweat Rate) 
Estima a taxa de suor por quatro horas. A estimativa da quantidade de 
suor em litros foi baseada na comparação de fatores climáticos, níveis 
metabólicos e taxa de suor de um humano vestido por um período de 
exposição de quatro horas. 
 
 
(McARDLE et al., 
1947) 
Índice de Temperatura Resultante 
Foi desenvolvido considerando o equilíbrio térmico entre o corpo humano 
e o ambiente. Nesse índice, os efeitos da umidade e velocidade do vento 
são expressos em temperatura resultante em graus Celsius. 
 
 
(MISSENARD, 1948) 
Índice de Estresse Calórico 
É baseado no calor metabólico produzido por vários tipos de atividade, 
nos fatores climáticos e na capacidade evaporativa do ambiente. 
 
(BELDING e HATCH, 
1955) 
Índice de Estresse Térmico 
É fundamentado num modelo que descreve a taxa de troca de calor entre 
o corpo humano e o ambiente. O modelo é baseado na hipótese de que o 
suor aumenta sob condições de estresse calórico. Para manter o 
equilíbrio térmico, esse aumento no resfriamento evaporativo é 
necessário para fechar o balanço de energia. É descrito em kcal por hora 
equivalente à taxa de suor requerida. 
 
 
 
 
GIVONI (1969) 
Índice de Temperatura Aparente 
Considera os efeitos da temperatura, umidade, velocidade do ar e 
radiação. A derivação do índice tem base no total de roupa necessário 
para atingir o conforto térmico e na redução da resistência da pele 
necessária para alcançar o equilíbrio térmico. 
 
 
(STEADMAN, 1979) 
 Continua... 
 24
 ...Continuação 
Índice de Temperatura de Globo e Umidade – ITGU 
Foi desenvolvido com base no Índice de Temperatura e Umidade, mas 
usando a temperatura de globo negro no lugar da temperatura de bulbo 
seco. O fundamento da utilização desse índice está na consideração que 
o estresse devido ao calor por irradiação solar é uma parcela significativa 
da troca térmica seca. 
 
 
 
(BUFFINGTON et al., 
1981) 
Índice de Temperatura Baixa e Vento – ITBV 
Descreve o efeito do vento combinado com baixas temperaturas. 
(ROSENBERG et al., 
1983) 
Índice de Temperatura Equivalente – ITE 
Foi desenvolvido para condições de temperatura do ar (T) entre 16 e 
41°C, umidade do ar (UR) entre 40 e 90% e velocidade do ar (V) entre 0,5 
e 6,5 m/s, resultando na seguinte equação: ITE = 27,88 – 0,456.T + 
0,0100754.T2 – 0,4905.UR + 0,00088.UR2 + 1,1507.V – 0,126447.V2 + 
0,019876.T.UR – 0,046313. 
 
 
 
(BAÊTA, 1985) 
Adaptada de BAÊTA (1997). 
 
 
8. ACONDICIONAMENTO TÉRMICO DAS INSTALAÇÕES 
 
Acondicionamento térmico é o processo pelo qual são controlados, de 
forma individual ou conjunta, por meios naturais ou artificiais, os níveis das 
variáveis do ambiente, como temperatura, umidade, movimento e pureza do ar, e 
da radiação solar no interior de uma construção, com o objetivo de se obterem 
melhores condições de conforto (BAÊTA, 1997). 
COSTA (1982) afirma que as principais técnicas de condicionamento 
envolvem reduções na amplitude da temperatura, na umidade e no movimento do 
ar. 
O conforto térmico ambiental pode ser atingido por meio do 
condicionamento térmico natural ou artificial. O natural consiste, em primeiro lugar, 
na escolha e na utilização racional de técnicas e materiais de construção. Dentre 
outros meios naturais considerados eficientes para a obtenção de condições 
confortáveis em dado ambiente, pode-se citar a colocação de vegetação em seu 
redor e a correta locação das entradas e saídas de ar na construção, a fim de 
 25
facilitar a ventilação. Entre os meios artificiais de condicionamento térmico do 
ambiente pode-se citar as diversas operações de tratamento do ar: purificação, 
aquecimento, umidificação, refrigeração, desumidificação, etc. (BAÊTA, 1997). 
 
9. VENTILAÇÃO 
 
O aquecimento do ar de um ambiente construído normalmente ocorre 
por causa da incidência de raios solares. Um dos meios de amenizar o 
desconforto causado aos habitantes desse ambiente é provocar o deslocamento 
das massas de ar quente (BAÊTA, 1997). A renovação do ar dos ambientes pode 
ocasionar ganho ou perda de calor, segundo a temperatura externa seja maior que 
a interna ou a temperatura interna seja maior que a externa (NÃÃS. 1989). 
De acordo com BAÊTA (1997), a excelência da ventilação está no fato 
de que, se aplicada de forma correta, permite abaixar a temperatura de interiores 
em épocas quentes do ano, quando o desconforto térmico é bem acentuado. 
Outros efeitos benéficos atribuídos à ventilação são também citados pelo autor: 
redução de gases tóxicos, remoção de odores e do excesso de vapor d’água 
(condensação). 
Para fins higiênicos, a ventilação mínima necessária em interiores deve 
estar dentro das faixas indicadas na Tabela 9. 
 26
Tabela 9. Quantidades de ar necessárias à ventilação em metros cúbicos por 
indivíduos, por hora 
 m3/indivíduo/hora 
Local Preferível Mínima 
Apartamentos 35 25 
Bancos 25 17 
Barbearias 25 17 
Escritórios 25 17 
Quartos (hotéis) 25 17 
Residências 35 25 
Salas de aula 50 40 
Salas de reuniões 35 25 
Estábulos 25 15 
Aplicações gerais: 
Por pessoa (não-fumante) 13 8 
Por pessoa (fumante) 50 40 
Fonte: COSTA, 1982; RIVERO, 1986. 
 
Segundo NÃÃS (1989), a carga térmica transferida pela ventilação será: 
 
Qvent = 0,26.N.V.∆∆∆∆t 
 
Onde, 
 
Qvent = carga térmica da ventilação, em W 
0,26 = calor específico do ar, em W/m3°C 
N = número de renovações/hora 
∆t = diferença de temperatura interna e externa, em °C 
 27
 
De acordo com HELLICKSON et al. (1983), a taxa de ventilação no 
interior de uma construção pode ser determinada por: 
 
Qv = EAV 
 
Onde, 
 
Qv = fluxo de ar causado pelas forças do vento, m3/s 
E = efetividade da abertura (E= 0,50 a 0,60 para ventos 
perpendiculares; E = 0,25 a 0,35 para ventos diagonais; E = 0,35 
para construções agrícolas). 
A = área livre da entrada de ar, m2, e 
V = velocidade do ar (pode ser a média para a localidade em questão), 
m/s. 
 
Na Tabela 10 têm-se valores de fluxos de ar para ventilação de 
cobertura para diversas espécies animais. 
 28
 Tabela 10. Taxas de Ventilação padronizadas para instalações animais. 
Fonte: HINKLE et al. (1983) 
 
Existem duas formas para se obter maior movimentação do ar interior 
de uma construção: ventilação natural e ventilação artificial. 
 
9.1. VENTILAÇÃO NATURAL 
 
O movimento normal do ar ocorre em razão das diferenças de pressão 
causadas pela ação dinâmica do vento (ventilação dinâmica), ou das diferenças 
de temperatura entre dois meios considerados (ventilação térmica). Isto significa 
que as forças naturais disponíveis para mover o ar fora, através e dentro das 
construções são as forças do vento e as diferenças de temperatura. Às vezes, os 
dois fatores podem agir em conjunto (BAÊTA, 1997). 
 29
9.1.1. Ventilação Natural Dinâmica 
 
Segundo NÃÃS (1993), a diferença de pressão exercida sobre a 
edificação pode ser causada pela ação dos ventos, que provoca a formação de 
zonas expostas a pressões positivas, e outras expostas a pressões negativas. 
Essa situação proporciona condições de ventilações do ambiente pela abertura de 
vãos em paredes sujeitas a pressões positivas (sobrepressões) para entrada de ar 
e em paredes sujeitas a pressões negativas (subpressões), para saída de ar. 
 
9.1.2. Ventilação Natural Térmica 
 
Na ventilação natural térmica, as diferenças de temperatura produzem 
variações de densidade do ar no interior dos ambientes, as quais provocam 
diferenças de pressão e resultam no efeito de tiragem ou termossifão (BAÊTA, 
1997). 
HELLICKSON et al. (1983) denominaram esse fenômeno de efeito 
“chaminé” e afirmam que, considerando uma cobertura para animal,naturalmente 
ventilada, ele existe independentemente da velocidade do ar externo. Se uma 
edificação dispuser de aberturas próximo do piso e do teto e se o ar do interior 
estiver a uma temperatura mais elevada que o ar do exterior, o ar mais quente, 
menos denso, tenderá a escapar pelas aberturas superiores. 
 
9.2. CONSIDERAÇÕES A RESPEITO DAS ABERTURAS DE 
VENTILAÇÃO 
 
As dimensões e a localização das aberturas, bem como a correta 
orientação das construções, são fatores importantes observados no controle da 
corrente de ar. Por exemplo, é importante frisar que as aberturas de entrada de ar 
devem, sempre que possível, facear diretamente a direção predominante dos 
ventos (BAÊTA, 1997). 
 30
NÃÃS (1989) sugere que haja diferença de nível entre as aberturas de 
entrada e de saída do ar, sendo que elas devem estar localizadas em paredes 
opostas, para que a ventilação seja eficiente. Obstáculos no interior da construção 
ou qualquer saliência na fachada alteram a direção do filete de ar. A Figura 7 
apresenta a corrente de ar direcionada em função da localização das aberturas 
em espaços vazios. 
 
Figura 7. Trajetórias da corrente de ar no interior de espaços vazios com 
aberturas em planos opostos (NÃÃS, 1989). 
 
Uma outra forma de direcionar o fluxo de ar é locar a abertura de saída 
na cumeeira do telhado. Uma abertura com essas características é denominada 
lanternim, muito utilizada em construções rurais, como currais, pocilgas, galpões 
de avicultura e galpões de máquinas (Figura 8). 
 31
Figura 8. Tipos de Aberturas na cumeeira do telhado de construções ventiladas 
naturalmente (BAÊTA, 1997). 
 
9.3. VENTILAÇÃO ARTIFICIAL 
 
A ventilação artificial (mecânica) é produzida por dispositivos especiais 
que requerem energia, especialmente elétrica, para o seu funcionamento, como 
exaustores, ventiladores, etc. 
Segundo BAÊTA (1997), a principal vantagem da ventilação artificial é a 
possibilidade do tratamento do ar (filtragem, secagem, umidificação), Outras 
vantagens também podem ser citadas, tais como: melhor distribuição no ambiente 
e o controle da taxa de ventilação. 
A ventilação artificial pode ser local exaustora ou geral diluidora. No 
primeiro caso, o ar contaminado é capturado antes de se espalhar pelo recinto e, 
no segundo, o ar da ventilação é misturado com o ar viciado do ambiente até 
limites admissíveis de diluição do contaminante. O sistema de ventilação geral 
diluidora é o mais utilizado em residências, em instalações para animais e em 
casas de vegetação. Nesse sistema, os principais componentes são os 
ventiladores de insuflamento, com motor de acionamento, os dutos e as bocas de 
insuflamento, as bocas de saída e descarga do ar (BAÊTA, 1997). 
 32
9.3.1. Ventiladores 
 
Os tipos mais comuns de ventiladores são o centrífugo e o axial (tipo 
hélice). Os ventiladores centrífugos (Figura 9) são compostos de carcaça, rotor de 
réguas curvas, mancais, eixos, entradas e saídas, e já os axiais, basicamente de 
hélices e, em alguns casos, de carcaças (Figura 10). Os centrífugos são utilizados 
em sistemas cuja pressão de resistência varia de 12 a 76 mmc.a. e os axiais em 
sistemas com pressão de resistência até 6,4 mmc.a. 
Figura 9. Ventiladores centrífugos com esquema anexo do rotor (BAÊTA, 1997). 
Figura 10. Ventilador axial com esquema anexo da configuração das hélices 
(BAÊTA, 1997). 
 
A diferença entre os dois tipos de ventiladores citados é que, nos 
axiais, o fluxo de ar ocorre paralelo ao eixo em que as hélices são montadas. Nos 
 33
centrífugos, há corrente de ar em uma entrada central; essa corrente é forçada por 
ação centrífuga e se move lateralmente pelos dutos. 
Em instalações para animais, o fluxo de ar deve ser manejado para 
fornecer adequada velocidade do ar ao nível do corpo. Para que haja correta 
distribuição, as experiências indicam que a velocidade do ar que entra deve estar 
entre 2 e 10 m/s. Ventiladores mais simples operam somente em uma velocidade, 
mas alguns têm mais faixas, sendo os mais indicados principalmente para 
situações em que a temperatura externa varia muito durante o dia (BAÊTA, 1997). 
Nas instalações animais com armazenamento de dejetos abaixo do 
piso (típica para suínos) recomenda-se a ventilação do espaço entre o líquido e o 
piso para controle do odor (Figura 11). 
Outras formas de controle empregadas nos sistema de ventilação são 
os registros e as válvulas, que controlam o fluxo de ar, e os tubos perfurados que 
controlam a sua distribuição, muito utilizada em instalações para aves (Figura 12). 
 
Figura 11. Sistema de ventilação para instalações de animais (BAÊTA, 1997). 
 34
Figura 12. Utilização de tubos perfurados na distribuição do ar de ventilação 
(BAÊTA, 1997). 
 
 
10. MODIFICAÇÕES AMBIENTAIS 
 
As modificações ambientais constituem no manejo do ambiente em 
função dos vários parâmetros ambientais que podem favorecer ou prejudicar o 
desempenho do animal, facilitando ou inibindo os processos produtivos e 
reprodutivos (LEVA, 1998). 
Há duas classes de modificações ambientais: as primárias e as 
secundárias. As primárias são aquelas de simples execução e que permitem 
proteger o animal durante períodos de clima extremamente quente ou 
extremamente frio, ajudando-o a aumentar ou reduzir sua perda de calor corporal. 
As secundárias correspondem ao manejo do microambiente interno das 
instalações do sistema de confinamento parcial ou total. Geralmente envolvem alto 
nível de sofisticação. 
 35
10.1. MODIFICAÇÕES AMBIENTAIS PRIMÁRIAS 
 
10.1.1. Sombreamento 
 
Estruturas para sombreamento visam atenuar o efeito da radiação solar 
sobre os animais, sendo que seu grau de importância varia com o microclima e a 
sua eficiência, em função do projeto. O sombreamento pode reduzir cerca de 30% 
ou mais da carga térmica da radiação solar (CTR), quando comparada à carga 
recebida pelo animal ao ar livre (BAÊTA, 1997). 
Estando ou não o animal sob uma cobertura, há fluxos de energia entre 
o animal e o ambiente (Figura 13). BAÊTA (1997) afirma que as principais 
superfícies radiantes que interagem com o animal sombreado são a cobertura, o 
solo aquecido, a área sombreada, o céu, o horizonte, as nuvens e outros animais. 
De acordo como o autor, não há melhor sombra do que a de uma árvore, pois a 
vegetação transforma a energia solar, pela fotossíntese, em energia química 
latente, reduzindo a incidência de insolação durante o dia, ao mesmo tempo em 
que, pelo metabolismo, o animal libera calor durante a noite. 
 
 
 36
 
Figura 13. Fluxos de energia entre o animal e o ambiente, sem sombreamento (a) 
e com sombreamento (b) (BAÊTA, 1997). 
 
ROMAN-POUNCE et al. (1977) afirmam que, das modificações 
ambientais, as estruturas para sombreamento são as mais comuns, 
principalmente para bovinos. 
Na ausência de árvores nos pastos ou piquetes, BACCARI Jr. (1998), 
cita o emprego de sombreamento artificial para rebanhos leiteiros através de 
sombras portáteis. Segundo o autor, uma unidade de sombra portátil é constituída 
por uma tela de fibra sintética (polipropileno) erguida sobre uma estrutura simples 
de metal cujo tamanho deve ser dimensionado de acordo com o número de 
animais que se deseja abrigar. Uma vantagem é poder ser removida de um lugar 
 37
para outro o que permite limpar e secar os diferentes locais na medida das 
necessidades. A tela é resistente aos raios ultravioleta podendo prover de 30 a 
90% de sombra (de acordo com o espaçamento da rede) e tem boa durabilidade 
se mantida propriamente estendida. Em geral, recomenda-se a tela para provisão 
de 80% de sombra. 
SILVA e NÃÃS (1998), estudando a influência da arborização no 
desempenho térmico de aviários, concluíram que a arborização reduziu a 
temperatura interna dos aviários em aproximadamente10,3%. A produção unitária 
de ovos foi 23,1% superior na região arborizada em relação a não arborizada. 
O material de cobertura também exerce grande influência na qualidade 
da sombra. BAÊTA (1997) afirma que um bom material de cobertura apresenta 
temperaturas superficiais amenas, devendo possuir alta refletividade solar 
conjugada à alta emissividade térmica na parte superior da superfície e baixa 
absortividade conjugada à baixa emissividade térmica na parte inferior. 
KRAVCHENKO e GONÇALVES (1980) conduziram esperimento para 
verificar a eficiência de materiais de cobertura para instalações animais, em 
Goiânia-GO. Utilizaram cinco abrigos cobertos com diferentes tipos de materiais: 
1) fibrocimento vermelho; 2) fibrocimento cinza; 3) alumínio ondulado; 4) telha de 
argila, tipo francesa; e 5) capim-jaraguá (Hyparrhenia rufa). As condições mais 
favoráveis foram observadas nos ambientes cobertos com capim, telha francesa e 
alumínio, respectivamente. As telhas de fibrocimento vermelho e cinza foram as 
menos eficientes. 
Segundo pesquisadores da ETERNIT (1981), do IPT - Instituto de 
Pesquisas Tecnológicas de São Paulo (1978) e BAÊTA (1997), outra alternativa 
para melhor desempenho da cobertura, além da escolha do material, é a utilização 
do forro e da pintura. Na maioria dos casos, pelo caráter temporário de sua ação, 
a pintura na cobertura é empregada em conjunto com a utilização do forro como 
evidencia a Figura 14 
 38
Figura 14. Efeito da utilização do forro em coberturas de barro e de fibrocimento 
na definição da temperatura efetiva (BAÊTA, 1997). 
 
MORAES et al. (1999), estudando o conforto térmico, através do Índice 
de Temperatura e Umidade (ITGU) e da Carga Térmica de Radiação (CTR), em 
galpões para aves sob diferentes tipos de cobertura, realizaram experimento com 
modelos reduzidos de galpões avícolas, usando telhas de cimento-amianto como 
testemunha (CT) e associações de forros de polietileno (CF), aspersão de água 
sobre a cobertura (CA), dupla lâmina reflexiva de alumínio sob a cobertura (CL), 
pintura branca na face superior da telha (CB), poliuretano na face superior da 
cobertura (CPs) e poliuretano na face inferior (CPi). Segundo os autores (Figuras 
15 e 16), todos os tratamentos possibilitam redução nos valores de ITGU, sendo o 
mais eficiente a aspersão, seguido do forro de polietileno. Para a CTR, o mais 
eficiente foi o tratamento com forro de polietileno, seguido por aspersão. A 
eficiência mínima foi observada no tratamento de poliuretano na face inferior da 
cobertura. 
 
 39
Figura 15. Valores de ITGU, correspondentes aos horários de observação, para as 
diferentes associações de telhas de cimento-amianto 
 
Figura 16. Valores de CTR (W.m-2) correspondentes aos horários de observação, 
para as diferentes associações de telhas de cimento-amianto 
(MORAES et al., 1999). 
 
10.1.2. Quebra-ventos 
 
São dispositivos naturais ou artificiais, destinados a deter ou, pelo 
menos, diminuir a ação dos ventos fortes sobre as culturas e as construções. Em 
sua maioria são naturais, constituídos de renques de vegetação. No Brasil, o uso 
de quebra-ventos tem-se restringido quase exclusivamente à lavoura cafeeira de 
São Paulo (BAÊTA, 1997). 
 40
CAMARGO (1960), no Brasil, foi o primeiro a sugerir a utilização de 
quebra-ventos ou barreiras vegetais nos espigões planos, acima dos cafezais, 
mas, somente a partir de 1975, foram usados pelos agricultores. 
 
10.2. MODIFICAÇÕES AMBIENTAIS SECUNDÁRIAS 
 
10.2.1. Iluminação (fotoperíodo) 
 
O manejo da iluminação pode influênciar no desempenho produtivo e 
reprodutivo de certas espécies animais. Segundo BAÊTA (1997), aves e cavalos 
são reprodutores de dias longos, ao passo que carneiros e cabras, são 
reprodutores de dias curtos. Já para os bovinos e suínos, não há influência do 
fotoperíodo nos processos de reprodução. 
Na indústria avícola, o manejo de luz tem sido aplicado com sucesso 
para aumentar a quantidade de ovos produzidos e a produção de aves pesadas 
(BAÊTA, 1997). 
CURTIS (1983) faz referência ao aspecto da cor e intensidade de luz no 
desempenho de postura e crescimento de frangas, respectivamente. Tais 
influências são evidenciadas pelas Tabelas 11 e 12. 
 
Tabela 11. Efeito da cor da luz no desempenho da postura. 
% de ovos produzidos 
Vermelha azul branca Verde 
78 75 69 68 
Fonte: CURTIS (1983) 
 
Tabela 12. Efeito da intensidade de luz no crescimento de frangas para postura 
Peso corporal (kg) na 10ª semana de vida 
0,1 lux 1,1 lux 10,8 lux 107,6 lux 
1,83 1,79 1,77 1,74 
Fonte: CURTIS (1983) 
 41
10.2.2. Resfriamento 
 
A manutenção ou mesmo o aumento da produção pode ser evidente se 
técnicas de manejo, relacionadas com o condicionamento do ambiente animal, 
forem adotadas. Com o objetivo de interferir no ambiente natural e impedir o 
estresse calórico dos animais, vários artifícios podem ser utilizados, como o de 
resfriamento do próprio ar ambiental e diretamente do animal, por meio de 
ventiladores, e indiretamente pelo resfriamento dos elementos construtivos, como 
as coberturas (BAÊTA, 1997). 
O resfriamento pode ser realizado utilizando processos sensíveis e 
latentes. Os sensíveis envolvem transferência de calor que provocando variação 
na temperatura de bulbo seco através da utilização de ventiladores, e segundo 
vários autores são de menor eficiência quando comparados aos processos 
latentes. Esses últimos, baseado em BAÊTA (1997), são aqueles que resultam em 
variação da umidade relativa do ar e apresentam grande eficiência no 
condicionamento do ambiente em regiões de clima quente e seco. Nesta classe, 
segundo o autor, o dispositivo de resfriamento que obteve maior significado foi o 
resfriador adiabático evaporativo, com pesquisas envolvendo, na maioria das 
vezes, o conforto de humanos, bovinos e aves. 
O resfriamento evaporativo é essencialmente um processo de 
saturação adiabática (não perde nem ganha calor), que tem seqüência (Figura 17) 
ao longo de uma linha de temperatura de bulbo úmido constante. O ar a ser 
resfriado é posto em contato com água em temperatura igual à temperatura de 
bulbo úmido do ar. O valor sensível do ar inicial evapora a água, abaixando a 
temperatura de bulbo seco do ar e sendo convertido em calor latente no vapor 
adicionado. Essa série de eventos é denominada de processo adiabático e 
(BAÊTA, 1997). 
 42
Figura 17. Resfriamento Adiabático Evaporativo, representado na carta 
psicrométrica (BAÊTA, 1997). 
 
De acordo com BAÊTA (19997), utilizar o princípio do resfriamento 
evaporativo em uma construção pode ser um processo lento se o ar que será 
posto em contato com a superfície de água livre estiver parado, resultando em 
eficiência e desempenho baixos. Dessa forma, maior movimento do ar é 
normalmente atingido pela utilização de sopradores ou ventiladores, sendo que 
para permitir grandes áreas de superfície d’água em contato com o ar, 
normalmente são utilizadas esponjas. Essas podem ser de fibras de madeira, de 
argila expandida e carvão. 
Para aplicações agrícolas, as esponjas são colocadas ao longo do 
comprimento da construção ou em sua extremidade, sempre do lado oposto dos 
ventiladores, dispostas vertical ou horizontalmente, com na Figura 18 (WIERSMA 
e SHORT, 1983). 
 43
Figura 18. A) Sistema de esponja horizontal (bovinos). B) Sistema de esponja 
vertical (casas de vegetação e aves) (WIERSMA e SHORT, 1983). 
 
O resfriamento evaporativo é muito utilizado em instalações avícolas, 
sendo de forma convencional, instalado na cumeeira do telhado, com saída de ar 
em ambos os lados da construção (Figura 19). Já no sistema de esponja e 
ventilador, os ventiladores são montados em um lado ou na extremidade para 
puxar o ar através da esponja ou das esponjas locadas na divisória oposta (Figura 
20) (BAÊTA, 1997).44
Figura 19. Resfriador instalado na cumeeira do telhado (BAÊTA, 1997). 
 
Figura 20. Representação das disposições vertical (a) e horizontal (b) das 
esponjas utilizadas no sistema de resfriamento adiabático evaporativo 
(BAÊTA, 1997). 
 45
BAÊTA (1997) cita outros empregos do sistema de resfriamento 
adiabático evaporativo (SRAE), tais como o resfriamento e a saturação do ar em 
casas de vegetação, e o resfriamento de instalações de suínos, principalmente as 
maternidades, através da instalação do sistema nas paredes ou no telhado, com 
aberturas de exaustão do ar. O autor afirma que o resfriamento pode também ser 
usado como um econômico meio de modificação climática para gado de leite, mas 
já para gado de corte, afirma que este tipo de animal responde ao estresse 
calórico com redução dos ganhos diários de peso e, da mesma forma, o 
resfriamento evaporativo não é considerado prático. 
TINÔCO (1988) estudando o SRAE em frangos de corte, utilizou um 
equipamento construído de forma simples (Figura 21) e constituído de uma caixa 
de 0,5 x 0,8 x 0,5m, com estrutura em metalon, e cujas três faces verticais 
(correspondentes á entrada de ar) foram compostas de uma camada de 0,05m de 
tiras de madeira entre duas telas de arame de 1,27x10-2m de malha, constituindo 
uma camada de material poroso. As faces foram abundante e constantemente 
irrigadas quando o sistema esteve em funcionamento. Na extremidade posterior 
(saída), foi acoplado um ventilador axial de 1725 rpm, interligado a um tubo de 
polietileno de 0,62m de diâmetro e comprimento igual ao vão do galpão, provido 
de furos uniformemente espaçados. Este equipamento entrou em funcionamento 
sempre que a temperatura do ar ultrapassou 25°C e permaneceu funcionando até 
o momento em que a umidade relativa doa ar alcançou 75%. TINÔCO (1988) 
conclui que os melhores valores de ganho de peso, conversão alimentar e peso 
vivo das aves foram obtidos nos galpões dotados do resfriamento evaporativo. 
Também foram observadas as melhores condições de conforto, avaliadas com 
base em índices do ambiente térmico medidos no interior dos galpões. 
 46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 21. Esquema do SRAE, mostrando a posição do ventilador e do tubo de 
distribuição de vazão. Dimensões em metros (TINÔCO, 1988). 
 
10.2.3. Aquecimento 
 
Em muitas empresas agropecuárias, como unidades de produção de 
leite, unidades de crescimento inicial de suínos, instalações para aves (incubação 
e crescimento inicial), casas de vegetação, sistemas de secagem de grãos, 
armazenamento de frutas e vegetais e outros, são necessários, de forma contínua, 
ou intermitente, alguns equipamentos destinados ao aquecimento do ar. Estes 
visão adequar a temperatura do ar para maior conforto e produção de animais e 
plantas e, em alguns casos, como nos sistemas de secagem de grãos, retirar a 
umidade do ar. (BAÊTA, 1997). 
Há dois tipos principais de sistemas de aquecimento: global e 
localizado. No primeiro, o espaço total destinado ao animal é mantido a uma 
temperatura uniforme, por ventiladores ou dutos pressurizados, que distribuem o 
ar aquecido. No aquecimento localizado, o calor é liberado no microambiente do 
 47
animal por meio de aquecedores radiantes, instalados sobre a cabeça do animal 
(por exemplo, lâmpadas incandescentes), ou por meio de sistemas que aquecem 
o piso (por exemplo, resistências elétricas embutidas no piso). Em relação às 
lâmpadas sua eficiência depende da altura (BAÊTA, 1997). 
Lâmpadas infravermelhas comuns, de 125 ou 250W, são muito 
utilizadas no aquecimento localizado de ambientes para vários animais (leitões, 
bezerros, pintinhos e cordeiros), com eficiência variando em função da altura de 
instalação do sistema, sendo comum 60 cm acima do piso para leitões, 45 cm 
para pintinhos e sempre 15 cm mais alto do que os bezerros, cordeiros e potros 
puderem alcançar (BAÊTA, 1997). 
BAÊTA (1997) cita outras formas usadas em instalações para 
animais com vistas ao aquecimento, tais como: sistemas de tubulação com água 
quente; aquecedores à gás natural ou propano; aquecedores catalíticos; gás 
liquefeito de petróleo (GLP) e bomba de calor (máquina frigorífica funcionando em 
ciclo reverso). 
ABREU et al. (1985) estudando a utilização de piso aquecido 
eletricamente na criação de aves, comparou alguns métodos convencionais de 
aquecimento (campânula elétrica, campânula a gás e lâmpadas infravermelhas) 
com o sistema de placas aquecidas eletricamente. As dimensões da placa foram 
determinadas considerando-se que, na primeira semana de idade das aves, o 
círculo de proteção para 500 pintos tem 3 m de diâmetro como mostra a Figura 22. 
Assim, quatro conjuntos de placas medindo 0,90 m por 0,90 m, espaçadas a cada 
0,15 m e com 0,015 m de espessura permitiram acomodar os bebedouros. A 
resistência elétrica foi colocada entre duas placas de argamassa armada visando 
liberar, ao nível dos pintos, o calor suficiente para manter a temperatura ambiente 
a 36°C na primeira semana e 33°C na segunda semana. Para isto, foi utilizada 
uma resistência de níquel-cromo fio n° 25, 6,9 Ω, 1,3 g/m, com 0,45mm de 
diâmetro de 0,16 mm2 de área. Como se pode ver na Figura 23, o fio de 
resistência elétrica foi fixado no interior de cada conjunto de placas e suas 
extremidades foram conectadas a um condutor elétrico com bitola 4 mm2. Os 
círculos de proteção das placas aquecidas eletricamente receberam uma 
 48
cobertura de lona plástica, o que criou um efeito casulo, dificultando assim a 
dissipação do calor ambiente. Esta lona era provida de quatro aberturas laterais 
para renovação do ar (Figura 24). Os autores concluíram que os pintos que foram 
aquecidos pelas placas, tiveram maior peso vivo, maior ganho de peso, melhor 
conversão alimentar, menor índice de mortalidade. Os autores também afirmam 
que a melhor observação comportamental foi verificada no tratamento com placas 
aquecidas eletricamente, caso em que o animais ficaram tranqüilos e 
uniformemente distribuídos nos círculos de proteção. 
Figura 22 Distribuição das placas no círculo de proteção. Dimensões em cm 
(ABRÊU et al., 1995). 
Figura 23. Distribuição da resistência elétrica no conjunto de placas. Dimensões 
em cm. (ABRÊU et al., 1995). 
Figura 24. Vista frontal do círculo de proteção das placas aquecidas eletricamente 
(ABRÊU et al., 1995). 
 49
11. CONSIDERAÇÕES FINAIS 
 
Segundo NÃÃS (1998), as construções rurais em clima tropical têm um 
desafio maior do que as de clima temperado, por ter que lidar com as altas 
temperaturas e umidades relativas que freqüentemente ocorrem. Entretanto, há o 
benefício de alojamentos mais abertos e mais baratos, ou ainda de investimentos 
mínimos na construção. 
Sejam os fatores ambientais, os fisiológicos, ou os comportamentais, 
todos têm sua parte na compreensão do conforto animal. Tudo isso sugere 
estudos multidisciplinares para o entendimento, cada vez melhor, do bem-estar 
animal, seja para a obtenção de melhores desempenhos ou seja para adaptar 
animais a regiões com clima diferente do de origem (NÃÃS, 1998). 
De acordo com o autor supracitado, o efeito de um ambiente climático 
adequado ao animal, por si só, talvez reflita de imediato numa melhora 
significativa na produção, pois há fatores como a genética, a nutrição e a sanidade 
do rebanho a serem considerados. A sinergia desses fatores, permite e permitirá 
por muito tempo, soluções interessantes e efetivas, pois não se pode isolar 
facilmente os fatores que atuam nesse dinamismo todo. Derrubando-se os limites 
que possam existir entre as área envolvidas, certamente as respostas serão mais 
completas e possibilitarão novas tecnologias que tornem mais competitiva e 
empreendedora a produção zootécnica em países de clima tropical. 
 50
12. BIBLIOGRAFIA 
 
ABREU, P.G., BAÊTA,F.C., SOARES, P.R. ABREU, V.M.N., MACIEL, N.F. 
Utilização de piso aquecido eletricamente na criação de aves. Engenharia na 
Agricultura: Série Construções Rurais e Ambiência, Viçosa: 
AEAMG/DEA/UFV, 1995, v.4, n.12, 19p. 
 
BACCARI Jr., F. Manejo ambiental para produção de leite em climas quentes. In: 
CONGRESSO BRASILEIRO DE BIOMETEOROLOGIA, 2., 1998, Goiânia. 
Anais. Goiânia: Sociedade Brasileira de Biometereologia, 1998. p. 136-161. 
 
BAÊTA, F.C. & SOUZA, C.F. Ambiência em Edificações Rurais – Conforto Animal. 
Viçosa, Ed. UFV, 1997. 246p. 
 
CAMARGO, A.P. Instruções para combate à geada em cafezais. O Agronômico, 
Campinas, v. 12, p. 21-35, 1960. 
 
COSTA, E.C. Arquitetura ecológica: condicionamento térmico natural. São Paulo, 
Edgard Blücher, 1982. 
 
CURTIS, S.E. Environmental management in animal agriculture. AMES. The Iwoa 
State University, 1983. 409 p. 
 
ESMAY, M.L. Principles of animal environment. Environmental engineering in 
Agriculture and Food Series. The AVI Publishing Company, Inc. 1969. 325 p. 
 
ETERNIT. O vento nas construções. São Paulo, Eternit, out. 1981. (Boletim n° 66). 
 
GATES, D.M. Physical environment. In: Adaptation of domestic animals. Lea & 
Febiger. Philadelphia, 1968. p. 46-60. 
 
 51
HARDOIM, P.C. Instalações para bovinos de leite. In: TEIXEIRA, V.H. (ed.) - 
CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 26. Encontro 
Nacional de Técnicos, Pesquisadores e Educadores de Construções Rurais, 3. 
Poços de Caldas: SBEA/UFLA, 1998. cap. 3, p. 149-208. 
 
HINKLE, C.N. & STOMBAUGH, D.P. Quantity of air flow for livestock ventilation. 
In: Ventilation of Agriculture Structures. HELLICKSON, M.A. & WALKER, J.N. 
ASAE, 1983. p. 169-191. 
 
HOLMAN, J.P. Transferência de calor. Trad. por Luiz Fernando Milanez. São 
Paulo, MacGraw-Hill do Brasil, 1983. 639 p. 
 
INGRAM, D.L. & MOUNT , L.E. Man and animals in hot environments. New york, 
Springer-Verlag, 1975. 185 p. 
 
KRAVCHENKO, A. & GONÇALVES, V.A. Influência dos materiais de cobertura na 
temperatura interna das construções. Anais Esc. Agron. Veter., UFG, v. 10, 
n.1, p.27-38, 1980. 
 
LEVA, P. Impacto ambiental en la producción lechera en la cuenca central 
argentina. In: CONGRESSO BRASILEIRO DE BIOMETEOROLOGIA, 2., 
1998, Goiânia. Anais. Goiânia: Sociedade Brasileira de Biometereologia, 1998. 
p. 129-135. 
 
MORAES, S.R.P., TINÔCO, I.F.F., BAÊTA, F.C., CECON, P.R. Conforto térmico 
em galpões avícolas, sob coberturas de cimento-amianto e suas diferentes 
associações. Revista Brasileira de Engenharia Agrícola e Ambiental, 
Campina Grande, v.3, n.1, p.89-92, 1999. 
 
MOUNT, L.E. Adaptation of swine. In: Adaptation of domestic animals. Lea & 
Febiger. Philadelphia, 1968. p. 277-291. 
 52
 
NÃÃS, I.A. Ambiência animal. In: CORTEZ, L.A. & MAGALHÃES, P.S.B (coords.) 
– Introdução à Engenharia Agrícola. Campinas: Ed. Unicamp, 1993. Parte 2, 
cap. 2, p.121-135. 
 
NÃÃS, I.A. Biometereologia e construções rurais em ambiente tropical. In: 
CONGRESSO BRASILEIRO DE BIOMETEOROLOGIA, 2., 1998, Goiânia. 
Anais. Goiânia: Sociedade Brasileira de Biometereologia, 1998. p. 63-73. 
 
NÃÃS, I.A. Princípios do conforto térmico na produção animal. São Paulo, Ícone 
Editora, 1989. 183 p. 
 
RIVERO, R. Arquitetura e clima: acondicionamento térmico natural. 2. Ed. Ver. E 
ampl. Porto Alegre, D.C. Luzzatto Editores, 1986. 204 p. 
 
ROMAN-POUNCE, H, THATCHER, W.W., BUFFINGTON, D.E., WILCOX, C.J. 
Physiological and production responses of dairy cattle to a shade structure in a 
subtropical environment. Journal Dairy Science, v.60, n.3, p. 424-429, 1977. 
 
ROSENBERG, N.J, BLAD, B.L, BERMA, S.B. Microclimate: the biological 
environment. New York, Wiley-Interscience Publication, 1983. 495 p. 
 
SILVA, I.J.O & NÃÃS, I.A. Influência da arborização no desempenho térmico de 
aviários através dos índices de conforto térmico e produção de ovos. In: 
CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 27., 1998, Poços 
de Caldas. Resumos... Lavras: Sociedade Brasileira de Engenharia 
Agrícola/UFLA, 1998. p.231-233. 
 
TINÔCO, I.F.F. Resfriamento adiabático (evaporativo) na produção de frangos de 
corte. Viçosa, UFV. Imp. Univ., 1988. 92 p. (Tese de M.S.).

Outros materiais