pricípios ciências tecnologia materiais
81 pág.

pricípios ciências tecnologia materiais


DisciplinaFundamentos de Ciências dos Materiais2.780 materiais49.429 seguidores
Pré-visualização22 páginas
o material fica mais frágil e resiste menos a esforços de impacto.
	
	Em altas temperaturas, quanto maior o tamanho de grão (TG), maior a resistência.
	
	Em baixas temperaturas, quanto menor o tamanho de grão (TG), maior a resistência mecânica.
		
	
	
	 2a Questão (Ref.: 201307292821)
	
	Um diagrama de fases binário isomorfo pode ser definido como um diagrama:
		
	
	Que descreve o aumento da resistência mecânica de um material metálico via formação de uma solução sólida.
	
	Que descreve as condições de equilibrio metaestáveis entre dois materiais.
	
	Que descreve as diferenças de composição química entre dois materiais.
	
	Que descreve as fases cujos componentes mostram solubilidade sólida ilimitada.
	
	Que descreve a estabilidade termodinâmica sob diferentes condições de temperatura e pressão.
		
	
	
	 3a Questão (Ref.: 201307119484)
	
	Deseja-se produzir um bastão cilíndrico de 10,0 mm que, quando em utilização, sofrerá uma carga máxima de tração de 128.000 N. O bastão não poderá sofrer nenhuma deformação plástica. Dentre os materiais abaixo, qual (is) eu poderia utilizar para sua fabricação? Material Tensão de escoamento (MPa) Liga de alumínio 200 Liga de latão 300 Liga de aço 400 Liga de titânio 650
		
	
	Liga de titânio apenas;
	
	Liga de aço e liga de titânio apenas;
	
	Todas as ligas
	
	Nenhuma das ligas;
	
	Liga de aço, liga de titânio e liga de latão apenas;
		
	
	
	 4a Questão (Ref.: 201307118090)
	
	Entre as propriedades mecânicas dos materiais podemos citar a tenacidade, resiliência e a ductilidade. Em relação a essas propriedades podemos afirmar que:
		
	
	A tenacidade mede a capacidade de um material absorver energia até sua fratura; enquanto a ductilidade mede a capacidade de um material absorver energia antes de se deformar permanentemente; já a resiliência representa a medida da deformação total que um material pode suportar até sua ruptura.
	
	A ductilidade mede a capacidade de um material absorver energia até sua fratura; enquanto a resiliência mede a capacidade de um material absorver energia antes de se deformar permanentemente; já a tenacidade representa a medida da deformação total que um material pode suportar até sua ruptura.
	
	A ductilidade mede a capacidade de um material absorver energia até sua fratura; enquanto a tenacidade mede a capacidade de um material absorver energia antes de se deformar permanentemente; já a resiliência representa a medida da deformação total que um material pode suportar até sua ruptura.
	
	A resiliência mede a capacidade de um material absorver energia até sua fratura; enquanto a tenacidade mede a capacidade de um material absorver energia antes de se deformar permanentemente; já a ductilidade representa a medida da deformação total que um material pode suportar até sua ruptura.
	
	A tenacidade mede a capacidade de um material absorver energia até sua fratura; enquanto a resiliência mede a capacidade de um material absorver energia antes de se deformar permanentemente; já a ductilidade representa a medida da deformação total que um material pode suportar até sua ruptura.
		
	
	
	 5a Questão (Ref.: 201307214673)
	
	Em Engenharia de Materiais é muito comum a utilização de diagramas de fase, que são simplesmente representações gráficas onde estão presentes as fases em equilíbrio da substância analisada em função da temperatura, pressão, composição e até mesmo intensidades de campos elétricos/magnéticos. Para expressar esta informação como uma figura plana de fácil assimilação, mantém-se um ou mais parâmetros constante (geralmente a pressão ou a composição).
Com relação ao diagrama exposto a seguir, onde em um eixo imaginário vertical tem-se temperatura e no eixo imaginário horizontal, tem-se composição, PODEMOS AFIMAR:
 
 
 
 
		
	
	A composição B corresponde ao hiper-eutético.
	
	A composição C corresponde ao hipo-eutético.
	
	No resfriamento da composição A, há coexistência de três fases.
	
	No resfriamento da composição D, não há coexistência de duas fases.
	
	A composição C corresponde ao eutético.
		
	
	
	 6a Questão (Ref.: 201307214763)
	
	Ao sofrer deformação mecânica, o aço tem sua microstrutura alterada, podendo originar grãos alongados a partir de grãos com simetria equiaxial Isto ocorre quando um aço, por exemplo, é submetido aos processos de fabricação de laminação e forjamento a frio. Com relação aos processos de deformação mecânica dos materiais, assinale a opção INCORRETA.
		
	
	limite de resistência do metal aumenta com o grau de encruamento do material.
	
	Forjamento é o processo de deformação plástica de metais por prensagem ou martelamento.
	
	Uma vez a estrutura encruada, só podemos recuperá-la a partir da fundição do material novamente.
	
	Laminação é o processo de deformação plástica no qual o metal tem sua forma alterada ao passar entre rolos e rotação.
	
	A ductilidade diminui com o aumento do grau de encruamento do material.
		
	 1a Questão (Ref.: 201307117686)
	
	Qual a diferença entre deformação elástica e deformação plástica?
		
	
	A deformação elástica não é uma deformação permanente, enquanto a deformação plástica é uma deformação permanente. Ambas não seguem a lei de Hooke.
	
	A deformação plástica segue a lei de Hooke e não é uma deformação permanente, enquanto a deformação elástica não segue a lei de Hooke e é uma deformação permanente.
	 
	A deformação elástica segue a lei de Hooke e não é uma deformação permanente, enquanto a deformação plástica não segue a lei de Hooke e é uma deformação permanente.
	
	A deformação elástica não segue a lei de Hooke e não é uma deformação permanente, enquanto a deformação plástica segue a lei de Hooke e é uma deformação permanente.
	
	A deformação elástica não é uma deformação permanente, enquanto a deformação plástica é uma deformação permanente. Ambas seguem a lei de Hooke.
		
	
	
	 2a Questão (Ref.: 201307295221)
	
	Na frase "É um tipo de tratamento térmico indicado para aços de liga, por que reduz o risco de empenamento das peças, visando a obtenção da martensita.", identifica-se um tipo de tratamento térmico muito importante, o qual também permitirá que a peça torne-se uniforme e homogênea, diminuindo os riscos de trincas. Assinale a opção correta que descreve o nome do respectivo tratamento:
		
	
	Austenitização
	
	Têmpera
	
	Revenimento
	
	Esferoidização
	 
	Martêmpera
		
	
	
	 3a Questão (Ref.: 201307299055)
	
	Um determinado clã de samurais da alta idade média japonesa desenvolveu um tratamento térmico de suas espadas que acabava por conferir às mesmas propriedades mecânicas "incríveis" para o contexto de então, representando grande vantagem militar. A micrografia pertencente ao aço dessa espada tinha como característica a presença de uma estrutura em forma de agulhas. Identifique qual o tratamento térmico provavelmente utilizado pelos guerreiros do feudo na preparação de suas armas. (ver figura)
		
	
	Revenido.
	
	Martelação.
	 
	Têmpera
	
	Recozimento.
	
	Deformação a frio.
		
	
	
	 4a Questão (Ref.: 201307214768)
	
	A taxa de resfriamento durante um tratamento térmico em aços é fundamental para a obtenção de uma microestrutura específica, assim como a possibilidade de manter a liga a uma determinada temperatura (resfriamento com etapa isotérmica) ou mesmo resfriamento contínuo. Analisando o gráfico a seguir, PODEMOS afirmar que:
		
	
	Após o tempo relacionado ao ponto D, ainda há austenita na composição do aço.
	 
	O diagrama representa um tratamento térmico com resfriamento contínuo.
	
	Entre os pontos C e D,