Buscar

APOL Algebra Linear nota 100

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 4 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Questão 1/5 - Álgebra Linear
Considere os vetores u=(−4,10,5), v1=(1,1,−2), v2=(2,0,3) e v3=(−1,2,3).u=(−4,10,5), v1=(1,1,−2), v2=(2,0,3) e v3=(−1,2,3). Assinale a alternativa que descreve o vetor uu como combinação linear dos vetores v1, v2 e v3:v1, v2 e v3:
Nota: 20.0
	
	A
	u=v1−2v2+3v3u=v1−2v2+3v3.
	
	B
	u=2v1−v2+4v3.u=2v1−v2+4v3.
Você acertou!
Queremos encontrar α,β,γ∈Rα,β,γ∈R tais que u=αv1+βv2+γv3u=αv1+βv2+γv3, isto é, (−4,10,5)=(α+2β−γ,α+2γ,−2α+3β+3γ)⟹⎧⎨⎩α+2β−γ=−4,α+2γ=10,−2α+3β+3γ=5.(−4,10,5)=(α+2β−γ,α+2γ,−2α+3β+3γ)⟹{α+2β−γ=−4,α+2γ=10,−2α+3β+3γ=5.Resolvendo o sistema linear anterior, obtemos α=2, β=−1 e γ=4.α=2, β=−1 e γ=4. Portanto, u=2v1−v2+4v3u=2v1−v2+4v3 (livro-base p. 89-93).
	
	C
	u=−2v1+v2+4v3.u=−2v1+v2+4v3.
	
	D
	u=10v1−7v2+4v3.u=10v1−7v2+4v3.
	
	E
	u=2v1−v2−4v3.u=2v1−v2−4v3.
Questão 2/5 - Álgebra Linear
Seja T:R2→R2T:R2→R2 a transformação linear dada por T(x,y)=(x+2y,y).T(x,y)=(x+2y,y). Assinale a alternativa que contém a matriz de TT com relação à base canônica do R2R2:
Nota: 20.0
	
	A
	[1201].[1201].
Você acertou!
Observamos que
T(1,0)=(1,0)=1(1,0)+0(0,1) e T(0,1)=(2,1)=2(1,0)+1(0,1).T(1,0)=(1,0)=1(1,0)+0(0,1) e T(0,1)=(2,1)=2(1,0)+1(0,1).
Logo, a matriz de TT com relação à base canônica é [1201][1201](livro-base p. 130-137)
	
	B
	[1021].[1021].
	
	C
	[1210].[1210].
	
	D
	[2110].[2110].
	
	E
	[1012].[1012].
Questão 3/5 - Álgebra Linear
Considere a transformação T:R3→R3T:R3→R3 definida por T(x,y,z)=(x,y,0).T(x,y,z)=(x,y,0). Com base nessa transformação, coloque V quando a afirmativa for verdadeira e F quando falsa:
I. (   )  TT é uma transformação linear.
II. (   ) O núcleo de TT é N(T)={(0,0,z); z∈R}N(T)={(0,0,z); z∈R}.
III. (   ) O conjunto imagem de TT satisfaz dim(Im(T))=2.dim(Im(T))=2.
Agora, marque a sequência correta:
Nota: 20.0
	
	A
	V, V, V.
Você acertou!
Dados u,v∈R3 e λ∈Ru,v∈R3 e λ∈R, observamos que TT satisfaz
T(u+v)=T(u)+T(v) e T(λu)=λT(u).T(u+v)=T(u)+T(v) e T(λu)=λT(u).
Assim, TT é uma transformação linear e afirmativa I é verdadeira. Além disso, T(x,y,z)=(0,0,0)⟺(x,y,0)=(0,0,0)⟺x=0 e y=0,T(x,y,z)=(0,0,0)⟺(x,y,0)=(0,0,0)⟺x=0 e y=0,
o que mostra que zz pode ser tomado qualquer. Desse modo, N(T)={(0,0,z), z∈R}N(T)={(0,0,z), z∈R} e a afirmativa II é verdadeira. Segue do Teorema do Núcleo e da Imagem que 
dim(N(T))+dim(Im(T))=dim(R3)⇒1+dim(Im(T))=3⇒dim(Im(T))=2.dim(N(T))+dim(Im(T))=dim(R3)⇒1+dim(Im(T))=3⇒dim(Im(T))=2.
Portanto, a afirmativa III também é verdadeira (livro-base p. 124-130).
	
	B
	V, F, V.
	
	C
	V, V, F.
	
	D
	V, F, F.
	
	E
	F, V, V.
Questão 4/5 - Álgebra Linear
A inversa da matriz A=[3142]A=[3142] é
Nota: 20.0
	
	A
	A−1=[1−1/2−23/2].A−1=[1−1/2−23/2].
Você acertou!
Como A−1=1detAAdjA,A−1=1detAAdjA, temos A−1=12[2−1−43]=[1−1/2−23/2].A−1=12[2−1−43]=[1−1/2−23/2]. (livro-base p. 53-54)
	
	B
	A−1=[−11/2−2−3/2].A−1=[−11/2−2−3/2].
	
	C
	A−1=[12−23/2].A−1=[12−23/2].
	
	D
	A−1=[11/22−3/2].A−1=[11/22−3/2].
	
	E
	A−1=[−1−1/223/2].A−1=[−1−1/223/2].
Questão 5/5 - Álgebra Linear
Considere o espaço vetorial R2R2. O produto interno canônico do R2R2 é definido por
(x1,x2)⋅(y1,y2)=x1y1+x2y2 para todos (x1,x2),(y1,y2)∈R2.(x1,x2)⋅(y1,y2)=x1y1+x2y2 para todos (x1,x2),(y1,y2)∈R2.
Com base nisso, analise as afirmativas:
I. Os vetores (1,3)(1,3) e (3,−1)(3,−1) são ortogonais.
II. O vetor (−1√10,3√10)(−110,310) é unitário.
III. O conjunto {(−1,3),(2,1)}{(−1,3),(2,1)} forma uma base ortogonal para o R2.R2.
São corretas as afirmativas:
Nota: 20.0
	
	A
	I, apenas.
	
	B
	I e II, apenas.
Você acertou!
Como (1,3)⋅(3,−1)=0(1,3)⋅(3,−1)=0, os vetores (1,3) e (3,−1)(1,3) e (3,−1) são ortogonais. Desse modo, a afirmativa I é verdadeira. O vetor (−1√10,3√10)(−110,310)satisfaz ∣∣∣∣(−1√10,3√10)∣∣∣∣=1||(−110,310)||=1, o que mostra que este vetor é unitário e a afirmativa II é verdadeira. Os vetores (−1,3) e (2,1)(−1,3) e (2,1) formam uma base, pois são LI, porem não são ortogonais. Item III é Falso. (livro-base p. 146-152).
	
	C
	I e III, apenas.
	
	D
	II, apenas.
	
	E
	II e III, apenas.

Outros materiais