Buscar

FISICA_III_AV1_AV2_AV3_GABARITO

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 9 páginas

Prévia do material em texto

Um corpo apresenta-se eletrizado com carga Q = 48 μC. Determine o número de elétrons retirados do corpo para que ficasse com esta carga, DADO: módulo da carga do elétron: 1,6.10-19 C: 3.1014 elétrons.
A figura a seguir representa a ligação de quatro dispositivos D1, D2, D3 e D4 de mesma resistência e que suportam, sem se danificarem, correntes elétricas máximas de 2A, 3A, 5A e 8A, respectivamente. Se chegar ao ponto P do circuito uma corrente de 25A, será(ão) danificado(s): apenas D1, D2 e D3.
Durante um experimento, um estudante realizou medidas em um determinado resistor, a uma temperatura constante. Essas medidas originaram um gráfico de diferença de potencial (V) versus corrente ( i ) ,que está mostrado abaixo. Com base nesses dados, podemos afirmar que para uma corrente de 0,3A, a resistência elétrica do resistor será igual a: 100Ω.
Na figura abaixo, mantendo os corpos A e C fixos, o sentido de deslocamento do corpo B com carga positiva, quando solto da posição mostrada, é: Para a esquerda se A negativo e C positivo.
Se um corpo encontra-se eletrizado positivamente, pode-se afirmar que ele possui: falta de elétrons;
O fenômeno da indução eletromagnética é usado para gerar praticamente toda a energia elétrica que consumimos. Esse fenômeno consiste no aparecimento de uma força eletromotriz entre os extremos de um fio condutor submetido a um: fluxo magnético variável;
Uma espira condutora e circular, de raio 3π cm, é percorrida por uma corrente elétrica de intensidade 6,0 A. Determine o valor do vetor indução magnética no centro da espira: 4,0. 10-5 T.
Num meio de constante eletrostática igual a 9,0.109 Nm2C-2, encontra-se uma partícula solitária eletrizada com carga +5,0 mC. O potencial elétrico num ponto P situado a 3,0 m dessa partícula tem valor igual a: 1,5 . 104V.
Dois resistores, A e B, estão ligados em paralelo e sua resistência equivalente é 8 ohms. Sendo a resistência de A quatro vezes maior que a de B, podemos afirmar que a resistência de A, em ohms, é: 40.
Em uma certa localidade o campo magnético da Terra tem módulo B 0,590 gauss e uma inclinação para baixo de 70º em relação à horizontal. Uma bobina plana horizontal tem 10,0 cm de raio, 1000 espiras e uma resistência total de 85,0 Ω e está ligada em série com um medidor com 140 Ω de resistência. A bobina descreve meia revolução em torno de um diâmetro. Qual é a carga que atravessa o medidor durante o movimento? (π = 3,14; cos 20º = 0,94, 1 gauss = 10^-4 T): 1,55 x 10^-5 C.
Nas proximidades da superfície terrestre, o campo elétrico aponta para o centro da Terra e possui módulo igual a 150N/C. Determine o valor da variação da energia potencial elétrica de um elétron livre na atmosfera, quando percorre uma distância de 450m na direção vertical, para cima. O trabalho é igual a 1,08.10-14 J.
Um campo elétrico é gerado e nele temos uma carga q = 2.10-8C, que é deslocada de um ponto A, onde UA = 240V, para um ponto B, onde UB= 60V. W = q.ΔV = 2.10-8C .(60-240)V = 3,60.10-6J
São dadas duas cargas puntiformes q1 e q2, conforme mostra a figura, que criam um campo elétrico. Determine o trabalho realizado pela resultante das forças elétricas, no deslocamento de uma carga Q = 2,0.10-10C, entre os pontos A e B. O trabalho realizado pela resultante das forças elétricas foi de w=2,4 x 10^-5 J.
Uma esfera metálica, sustentada por uma haste isolante, encontra-se em equilíbrio eletrostático com uma pequena carga elétrica Q. Uma segunda esfera idêntica e inicialmente descarregada aproxima-se dela, até tocá-la, como indica a figura a seguir: Q/2
A distribuição de cargas elétricas ao longo de uma superfície, relacionada ao campo elétrico produzido em determinado ponto onde estão distribuídas essas cargas, é explicada pela lei de Gauss. Sobre esta teoria, é INCORRETO afirmar que: Para cargas negativas distribuídas em um determinado ponto, o vetor campo elétrico é orientado para fora da superfície.
Quantidade de carga elétrica que passa por um condutor em 1 segundo é conhecida como: corrente elétrica.
Seja E o vetor campo elétrico num ponto de A de um campo elétrico. Colocando-se uma carga elétrica puntiforme q em A, a força elétrica F a que a carga fica submetida: tem o mesmo sentido de E se q > 0 e sentido oposto se q < 0;
Na figura a seguir, um bastão carregado positivamente é aproximado de uma pequena esfera metálica (M) que pende na extremidade de um fio de seda. Observa-se que a esfera se afasta do bastão. Nesta situação, pode-se afirmar que a esfera possui uma carga elétrica total: positiva.
Calcule a carga QB, no diagrama a seguir, de modo que o campo elétrico resultante em P seja nulo: 45 X 10-6C .
Um fio condutor é percorrido por uma corrente de intensidade 200mA durante 1 hora. Nesta situação, podemos afirmar que a quantidade de carga que passa por uma secção reta do condutor vale: 720 C.
No circuito esquematizado a seguir, a diferença de potencial entre os terminais da bateria é de 12 V. Qual a corrente elétrica que flui no resistor de resistência igual a 60 ohms ? 0,2 A.
A figura abaixo mostra o movimento de elétrons livres ao longo de um fio de cobre. Desejando-se obter um tipo de movimento exatamente igual ao mostrado na figura, é necessário adotar o seguinte procedimento: conectar as extremidades do fio em uma bateria que gere uma diferença de potencial, sendo que na extremidade esquerda deve ficar o pólo positivo.
O gráfico a seguir mostra a variação da carga Q que atravessa um condutor em um determinado intervalo de tempo. Com base nos dados colhidos deste gráfico, podemos afirmar que a corrente elétrica que circula no condutor é igual a: 4 mA.
Por um fio condutor passam 30C de carga em 2 minutos. Que intensidade de corrente elétrica média isso representa? 2min=120s i=30/120 i= 0,25A.
Considere o circuito com resistores abaixo, Se o valor de cada um dos resistores (6 resistores em paralelo) tiver um valor de 6 ohms, a resistência equivalente total será de: 1,5 ohms.
As propriedades magnéticas de materiais ferrosos já são conhecidas desde a Grécia antiga, onde já era conhecido um minério de ferro, a magnetita, que sendo um ímã permanente, atrai pequenos fragmentos de ferro. Porém podemos também induzir campo magnético através de passagem de corrente por um fio condutor reto, de seção transversal circular. Se colocarmos uma carga puntiforme de teste, sobre a qual atua uma força magnética, temos que essa força terá: Vetor perpendicular à direção da velocidade da carga e do campo magnético induzido.
Numa residência onde a tensão da rede elétrica é de 110 V, está acesa uma lâmpada em cujo bulbo se lê 60 W - 110 V. Isso significa que: a lâmpada dissipa 60 J de energia elétrica em cada segundo;
Duas esferas eletrizadas encontram-se no vácuo distantes horizontalmente 1m uma da outra. Sendo as cargas de cada uma delas igual a Q1 = 6x10-9 C e Q2= -2x10-8 C, podemos afirmar que a intensidade da força de interação eletrostática entre as duas esferas vale aproximadamente: (Considere a constante eletrostática no vácuo como 9 x10 9). 1x10-6 N
Uma carga puntiforme de 2x10-6 C é deslocada graças ao trabalho realizado por uma força elétrica, de um ponto de potencial 4x103 V até um ponto de potencial 2x103 V. Podemos afirmar que tal trabalho realizado pela força elétrica vale: 0,004 J
No gráfico abaixo pode-se observar a variação da corrente elétrica i em função do tempo t através da secção transversal de um condutor. A partir dos dados fornecidos, podemos afirmar que a carga elétrica total que circulou por esta secção. Considere a carga do elétron = 1,6.10¿ 19 C. 0,6C.
As cargas Q e q estão separadas pela distância (2d) e se repelem com força (F). Calcule a intensidade da nova força de repulsão (F') se a distância for reduzida à metade e dobrada a carga Q. F' = 8 . F.
Uma lâmpada incandescente para 220 V, dissipa uma potência de 60 W. Por engano, liga-se a lâmpada a uma fonte de 127 V. Determine a potência que a lâmpada dissipa nestas condições. Considere a resistência elétrica da lâmpada constante. P = V²/R = (127)²/R(equação 1) 60 = (220)² / R (equação 2) Dividindo a equação (2) com a equação (1), temos: P/60 = (127/220)² A potência será de aproximadamente igual a 20W.
Consideremos um circuito fechado, com uma bateria cuja força eletromotriz seja igual a 12 V, e com um resistor de 3 ohms. A resistência interna da bateria é de 1 ohm. Se utilizarmos um amperímetro (considere sua resistência interna nula) para medir a corrente que passa pelo circuito, ele indicará. 3 A.
São bons condutores elétricos os materiais compostos por metais e soluções eletrolíticas.
Considere a situação onde uma corrente de 3A percorre um condutor de 12V. Neste caso, podemos afirmar que a potencia elétrica fornecida pelo condutor é igual a : 36W.
Se tivermos um motor elétrico, em cujos fios passa uma corrente de 3 A, perpendiculares a um campo de indução magnética com módulo de 1 T, a força que será aplicada, por centímetro do fio, será de: 0,03 N.cm.
No gráfico abaixo é possível observar a variação da tensão elétrica em um resistor quando o mesmo é mantido a uma temperatura constante em função da corrente elétrica que passa por ele. Com base nas informações contidas no gráfico, podemos afirmar que: a resistência elétrica do resistor aumenta quando a corrente elétrica aumenta.
O gráfico a seguir mostra a variação da carga Q que atravessa um condutor em um determinado intervalo de tempo. Com base nos dados colhidos deste gráfico, podemos afirmar que a corrente elétrica que circula no condutor é igual a: 4 ma
A dona de uma casa onde as lâmpadas, ligadas a uma tensão de 110 V, queimam com muita frequência, pensa em adquirir lâmpadas de 220 V ao invés de 110 V como é habitual, supondo que estas terão maior durabilidade. Esse procedimento será: Válido, porém as lâmpadas terão luminosidade reduzida.
Em um experimento de Física, um aluno dispunha de 4 esferas idênticas e condutoras (A, B, C e D), carregadas com cargas respectivamente iguais a -2Q, 4Q, 3Q e 6Q. O estudante então colocou a esfera em contato com a esfera B e a seguir com as esferas C e D sucessivamente. Ao final do processo feito pelo aluno, podemos afirmar que a carga adquirida pela esfera A foi: 4Q.
Três esferas condutoras idênticas I, II e III têm, respectivamente, as seguintes cargas elétricas: 4q, -2q e 3q. A esfera I é colocada em contato com a esfera II e, logo em seguida, é encostada à esfera III. Pode-se afirmar que a carga final da esfera I será: 2q.
A estrutura atômica de uma partícula mostra que os elétrons fazem uma órbita em torno do núcleo, onde se localizam os prótons. Experimentalmente, concluiu-se que as quantidades de carga elétrica tanto do elétron como do próton são idênticas em valores absolutos. Podemos afirmar que, em valor absoluto, a carga elementar tanto do próton quanto do elétron é igual a: 1,602 x 10-19 C.
Durante uma atividade no laboratório de física, um estudante, utilizando uma luva de material isolante, encostou uma esfera metálica A, carregada com carga +8 µC, em outra esfera metálica B, idêntica e eletricamente neutra. Em seguida, encosta a esfera B em outra C, também idêntica e eletricamente neutra. Podemos afirmar que a carga de cada uma das esferas medida pelo estudante ao final dos processos descritos foi: +2 µC.
Uma carga elétrica de intensidade Q= +7µC gera um campo elétrico no qual se representam dois pontos, A e B, conforme mostra a Figura. Com base nesses dados e sabendo que a constante eletrostática no vácuo vale 9x109 N.m2/C2, podemos afirmar que o trabalho realizado pela força para levar uma carga  q=2x10^-6 C. do ponto B até o ponto A é igual a: 0,063 J. 
Um corpo eletrizado positivamente apresenta uma quantidade de carga de 480u C. Sabendo-se que o corpo estava inicialmente neutro e que e=1,6 x 10-19, podemos afirmar que o número de elétrons pedidos pelo corpo é igual a: 3x10 15
A teoria de Processos de eletrização nos permite afirmar que não é possível eletrizar uma barra metálica ao segurarmos a mesma com a mão. Esse fato possui a seguinte explicação: tanto a barra metálica como o corpo humano são bons condutores.
Uma carga puntiforme de -10 x 10-6 C é lançada em uma campo elétrico de intensidade 10 6 N/C e a mesma adquire um sentido horizontal. Podemos afirmar que a intensidade da força que atua sobre a carga neste caso é igual a: 10 N.
As linhas de força de um campo elétrico: são linhas imaginárias que saem das cargas negativas e chegam às positivas;
Se tivermos, em um circuito com bateria de 48 V e resistência interna desprezível (r=0), dois resistores associados em série, um com 2 ohms e outro com 4 ohms, a corrente e potência totais no circuito serão de, respectivamente: 8 A e 384 W.
São dados dois corpos eletrizados que se atraem no ar, se forem imersos em óleo, a força de atração entre eles: diminui;
Considere duas esferas carregadas respectivamente com +2,5 µC e -1,5 µC, dispostas horizontalmente e distantes 30 cm uma da outra. Sendo a constante eletrostática no vácuo K igual a 9x109 N.m2 /C2, podemos afimar que a força eletrostática, em Newtons, entre as partículas, vale: 0,375;
Uma pequena esfera metálica carregada toca em uma esfera metálica isolada, muito maior, e inicialmente descarregada. Pode-se dizer que: a esfera pequena perde a maior parte de sua carga;
Considere a situação onde uma carga puntiforme Q, de 2x10-6 C e que está no vácuo, gera um campo elétrico. Podemos afirmar que, em um ponto A, situado a 2m da carga Q, é gerado um potencial elétrico de intensidade: (Considere k=9x 10 9N.m 2 /C 2 ): 9000V.
Em seus trabalhos,no ano de 1820, o físico dinamarquês Oersted fez um condutor ser percorrido por uma corrente elétrica e percebeu que a agulha de uma pequena bússola sofria deflexão. Com esta experiência, foi possível mostrar que: Uma carga em movimento gera um campo magnético;
Quando um imã em forma de barra é partido ao meio, obseva-se que: damos origem a dois novos imãs.
Suponha um fio de cobre, reto e extenso, que é percorrido por uma corrente i = 1,5 A. Qual é a intensidade do vetor campo magnético originado em um ponto à distância r = 0,25 m do fio? B = 1,2 x 10-6 T;
A Lei de Faraday-Neumann preconiza que uma força eletromotriz é induzida em um circuito sempre que há variação do fluxo magnético, sendo a força dada pela taxa de variação do fluxo magnético em função do tempo.Levando-se em conta a Lei de Faraday-Neumann, considere uma espira retangular de dimensões iguais a 20cm e 30cm posicionada de forma perpendicular a um campo magnético uniforme é de intensidade igual a 10-2T. Após 10 segundos, a intensidade do campo magnético é reduzida a zero. Neste contexto, calcule a ¿fem¿ induzida. 6 . 10-3 V.
Um corpo de carga elétrica q e massa m penetra em um campo magnético de intensidade B constante e movimenta-se com velocidade v perpendicularmente a B; a trajetória é circular de raio r. A partir de determinado instante, o corpo passa a descrever uma trajetória de maior raio. O fenômeno pode ser explicado por: redução da carga q.
Segundo a Lei de Faraday-Neumann, uma força eletromotriz é induzida em um circuito ou objeto semelhante a circuito elétrico sempre que há variação do fluxo magnético, sendo a força dada pela taxa de variação do fluxo magnético em função do tempo.Levando em conta a Lei de Faraday, considere um avião de 40 m de comprimento entre as extremidades de suas asas, voando a 700km/h através de um campo magnético terrestre uniforme e de intensidade igual a 8.10-5T. Nesse contexto, calcule a ¿fem¿ induzida entre as extremidades das asas. 0,62V
A primeira lei de Ohm diz que a tensão elétrica é igual ao produto da corrente elétrica com a resistência elétrica. A respeito dos conceitos de tensão, corrente e resistência elétrica, podemos afirmar que: corrente elétrica é o fluxo ordenado de elétrons e é diretamente proporcional à tensão elétrica.
A intensidade do campo magnético produzido no interior de um solenóide muito comprido percorrido por corrente elétrica, depende basicamente: do número de espiras por unidade de comprimento e intensidade da corrente
Considerando-seos fenômenos eletromagnéticos, aqueles que ocorrem envolvendo os campos magnéticos e elétricos coexistindo no mesmo fenômeno, NÃO podemos afirmar: - As Equações de Maxwell não fornecem a velocidade das ondas eletromagnéticas no vácuo, que demonstrou-se posteriormente serem variáveis. - - - -
Considere uma bobina com 300 espiras circulares e raio igual a 5,00 cm. Esta é inserida entre os pólos de um eletroímã, cujo campo magnético é uniforme e forma um ângulo de 45 graus com o plano da bobina. Se o campo magnético sofre uma diminuição a uma taxa de 0,100 T/s, o módulo e sentido da força eletromotriz (fem) induzida serão: 0,39 V, no sentido horário.
Considere uma espira condutora imersa em um campo magnético permanente, gerado pelos pólos de um ímã. O módulo do campo magnético aumenta a uma taxa crescente de 0,010 T/s. A área desta espira é igual 60m2 e ela está ligada a um galvanômetro, sendo que a resistência total deste circuito é de 3 ohms. A corrente que indicará no galvanômetro será de: 2,0 mA.
Na Grécia Antiga, o filósofo Thales de Mileto verificou que uma quantidade de âmbar, quando atritado com outro material, atraia palha e fragmentos de madeira. Atualmente, sabe-se que tal fenômeno é associado a partículas elementares, como prótons e elétrons. Estes possuem uma propriedade inerente que faz com que o fenômeno ocorra. Podemos afirmar que tal propriedade em questão é: carga elétrica.
Uma força de intensidade F atua entre duas cargas q idênticas que estão separadas por uma distância d. Ao dobrarmos a distância de separação das cargas, a intensidade da força eletrostática atuante e a interação entre as cargas será respectivamente: F/4 e repulsão.
Um campo elétrico não uniforme dado por E = 3x. i + 4. j atravessa o cubo gaussiano mostrado na figura seguinte. (E é dado em Newtons por Coulomb e x em metros.) Qual o fluxo elétrico através da face direita, em unidades do SI? 36.
Analise as afirmações abaixo sobre a lei de Gauss. I A lei de Gauss é válida apenas para distribuições de carga simétricas, tais como esferas e cilindros. II Se uma superfície gaussiana estiver completamente dentro de um condutor eletrostático, o campo elétrico deve sempre ser zero em todos os pontos dessa superfície. III O campo elétrico que passa por uma superfície gaussiana depende apenas da quantidade de carga dentro da superfície, não de seu tamanho ou forma. Apenas II e III são verdadeiras.
Considere a figura abaixo em que o sólido é um cubo de aresta 1m. O campo elétrico é uniforme e tem a direção e sentido do eixo y com módulo 12N/C. nulo
Nos quatro vértices de um quadrado são fixadas quatro cargas +Q e Q, alternadamente. Considere o campo elétrico e o potencial no centro do quadrado como E e V, respectivamente. Assinale a opção correta: V e E iguais a zero.
Campo elétrico pode ser entendido de forma qualitativa como sendo a influência do campo da carga elétrica, que pode assumir diversas configurações. Seja um campo elétrico um Considerando o exposto, calcule a distância entre dois pontos A e B em um campo elétrico uniforme de linhas paralelas e de intensidade igual a 400V/m e d.d.p igual 40V. 0,10 m
A figura mostra a configuração das equipotenciais (linhas tracejadas) de um campo eletrostático. Uma carga de 0,02 C deve ser deslocada entre os pontos A e B, pela trajetória indicada por traço cheio, na figura. O trabalho realizado pelas forças eletrostáticas no deslocamento de A para B é de: 0,08 J
A figura representa algumas superfícies equipotenciais de um campo eletrostático e os valores dos potenciais correspondentes. O trabalho realizado pelo campo para levar uma carga q = 3.106 C do ponto A ao ponto B, através da trajetória y, vale, em joules, 9.10-5
Os elétrons da camada livre iniciam movimento ordenado após serem submetidos ao efeito de um campo elétrico; a este movimento denominamos CORRENTE ELÉTRICA. Considerando a passagem de 4,0x105 elétrons através da seção reta de um condutor no tempo de 4s e o valor de carga elementar igual 1,6x10 19 C. Determine a intensidade da corrente elétrica. 1,6 x 10 -14C.
Pela secção reta de um condutor de cobre passam 320 coulombs de carga elétrica em 20 segundos. A intensidade de corrente elétrica no condutor vale: 16ª
Considere um fio longo reto, percorrido por uma corrente elétrica constante. O módulo do vetor indução magnética produzido pela corrente a 2,0 cm do fio é igual a 2,0T. Qual a intensidade do vetor indução magnética a 1,0 cm do mesmo fio, quando percorrido pela mesma corrente? 4,0T
Um gráfico de uma função constante que representa a corrente elétrica um um condutor em função do tempo intercepta o eixo i(A) em (0,8). Sabendo que o tempo está representado em segundos, a quantidade de carga que atravessa a secção transversal desse condutor nos primeiros 10 s é: 80 C.
Um cidadão que morava em Brasília, onde a voltagem é 220 V, mudou-se para o Rio, onde a voltagem é 110 V. Para que tenha a mesma potência no chuveiro elétrico, ele deverá modificar a resistência do mesmo para: 1/4 da resistência original.
Considere as seguintes situações: I. Um corpo condutor retilíneo percorrido por uma corrente elétrica. II. Um transformador em funcionamento. III. Um feixe de elétrons movimentando-se com velocidade constante. Em que situações se forma um campo magnético? I, II e III.
A resistência elétrica em uma espira circular influenciará: i) o valor da Força eletromotriz induzida, já que a resistência elétrica é diretamente proporcional a corrente elétrica; ii) o valor da Força eletromotriz induzida, já que a resistência elétrica é inversamente proporcional a corrente elétrica; iii) somente no valor da corrente elétrica induzida, já que a Força eletromotriz induzida não depende do valor da resistência elétrica na espira. somente iii está correto.
A lei de Ampère permite determinar o campo magnético B a uma distância r de um fio retilíneo infinito, percorrido por uma corrente elétrica contínua de intensidade i. Qual o módulo de B a uma distância de 3 cm de um fio retilíneo infinito percorrido por uma corrente de 60A? 0,4 mT
Assinale a alternativa incorreta. Uma carga elétrica submetida à ação de um campo magnético sempre sofrerá a ação de uma força magnética.
Uma espira circular de raio r (10 cm) é colocada num campo magnético uniforme B, perpendicular ao plano da espira. Aproximadamente, a que taxa constante o campo magnético B deverá variar (dB/dt), a fim de induzir uma tensão de 1 V na espira? 31,83T/s.
Um pequeno corpo imantado está preso à extremidade de uma mola e oscila verticalmente na região central de uma espira cujos terminais A e B estão abertos, conforme indica a figura. Devido à oscilação do ímã, aparece entre os terminais A e B da espira: uma tensão elétrica variável
Uma pequena espira com 6,8 mm^2 de área é colocada no interior de um solenóide longo com 854 espiras/cm, percorrido por uma corrente senoidal i com 1,28 A de amplitude e uma frequência angular de 212 rad/s. Os eixos centrais da espira e do solenóide coincidem. Qual é, aproximadamente, a amplitude da força eletromotriz induzida na espira? (μ0 = 4π x 10^7Tm/A; π = 3,14). 1,98 x 10^-4V.
Uma espira circular de 100 cm de diâmetro, feita de fio de cobre (de resistência desprezível) tem ligado aos seus terminais uma resistência de 60Ω, e é colocada num campo magnético uniforme de modo que o seu plano fique perpendicular ao vetor B. Qual deve ser a taxa de variação de B com o tempo para que a corrente induzida na espira seja igual a 1 A? 80T/s.
Uma pequena espira circular com 2,00 cm^2 de área é concêntrica e coplanar com uma espira circular muito maior, com 1,00 m de raio. A corrente na espira maior varia a uma taxa constante de 200 A para 200 A (ou seja, troca de sentido) em um intervalo de 1,00 s, começando no instante t = 0. Determine o módulo do campo magnético no centro da espira menor devido à corrente na espira maior em t = 0. (μ0 = 4π x 10^7Tm/A). 1,26 x 10^4T.
Dois fios longos e paralelos de cobre, com 2,5 mm de diâmetro, conduzem correntes de 10 A em sentidos opostos. Seos eixos centrais dos fios estão separados por uma distância de 20 mm, determine o fluxo magnético por metro de fio que existe no espaço entre os fios. (μ0 = 4π x 10^7Tm/A; π = 3,14). 1,3 x 10^5Tm
Cem espiras de fio de cobre (isolado) são enroladas em um núcleo cilíndrico de madeira com uma seção reta de 1,20 X 10^3m^2, As duas extremidades do fio são ligadas a um resistor. A resistência total do circuito é 13,0Ω. Se um campo magnético longitudinal uniforme aplicado ao núcleo muda de 1,60 T em um sentido para 1,60 T no sentido oposto, qual é a carga que passa por um ponto do circuito durante a mudança? 2,95 x 10^2C
A primeira lei de Ohm diz que a tensão elétrica é igual ao produto da corrente elétrica com a resistência elétrica. A respeito dos conceitos de tensão, corrente e resistência elétrica, podemos afirmar que: corrente elétrica é o fluxo ordenado de elétrons e é diretamente proporcional à tensão elétrica.
Dispõe-se de um capacitor de placas planas e paralelas com capacitância de 1 NF. Deseja-se que haja uma corrente de deslocamento entre as placas do capacitor igual a 1,0 A. Qual a variação da diferença de potencial que deve existir nas extremidades deste capacitor? 1X10^6 V/s.
Uma lâmpada de 100W emite 50% de ondas eletromagnéticas uniformes. Calcular a intensidade da radiação eletromagnética (I) a 3m da lâmpada. 0,442W/m2
Sobre Equações de Maxwell, é INCORRETO afirmar. O vetor Campo Elétrico (E) e o vetor Campo Magnético (B) não estão em fase.
Os fusíveis devem ser colocados: antes da corrente atravessar os aparelhos domésticos;
Com relação as equações de Maxwell, assinale a opção correta: De acordo com elas, um campo magnético pode ser criado por um campo elétrico variável no tempo.
Um corpo eletrizado positivamente apresenta uma quantidade de carga de 480u C. Sabendo-se que o corpo estava inicialmente neutro e que e=1,6 x 10-19, podemos afirmar que o número de elétrons pedidos pelo corpo é igual a: 3x10^15.
James Clerk Maxwell, conhecido atualmente pelas suas famosas equações, ou equações de Maxwell, conferiu tratamento matemático às equações de Ampère, Faraday e Gauss, prevendo teoricamente a existência de uma onda que é resultante de dois efeitos, a variação de campo magnético e a variação de campo elétrico. Com relação ao exposto, identifique a opção INCORRETA. As ondas eletromagnéticas, entre as quais a luz, possuem velocidades de propagação diferentes no vácuo.

Outros materiais