Buscar

AV2 Calculo numérico

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 4 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Avaliação: CCE0117_AV2_201401366351 » CÁLCULO NUMÉRICO
	Tipo de Avaliação: AV2
	Aluno:
	Professor:
	JULIO CESAR JOSE RODRIGUES JUNIOR
	Turma: 9019/Y
	Nota da Prova: 4,0 de 8,0         Nota do Trab.: 0        Nota de Partic.: 2        Data: 06/06/2015 16:26:00
	
	 1a Questão (Ref.: 201401523944)
	Pontos: 0,0  / 1,5
	O que entende por matriz mal condicionada? Que cuidados devem ser tomados quando aparecem em sistemas lineares. (0,5 ponto) O que entende por convergência linear e convergência quadrática, no cálculo de raízes ?(0,5 ponto) Explique a importância do Método LU.
		
	
Resposta: .
	
Gabarito: Entende-se por Matriz Mal Condicionada a matriz cujo determinante é muito pequeno quando comparado com a ordem de grandeza de seus elementos. (uma definição mais precisa exigiria definir norma de matriz). São matrizes que, quando envolvidas na solução de sistemas lineares, tornam os resultados pouco confiáveis, pois pequenos arredondamentos nos componentes da matriz, ou em resultados intermediários, alteram profundamente o cálculo final das raízes do sistema. Tendo um Sistema Linear uma matriz mal condicionada, os cálculos deverão ser feitos com a maior precisão possível, procurando-se minimizar a propagação desses erros, que são críticos nesse caso, podendo levar a resultados profundamente diferentes dos verdadeiros. Convergência¿ quando se calcula uma raiz de uma equação por um processo iterativo, busca-se, a cada nova iteração, aproximar-se mais e mais do verdadeiro valor da raiz. Em cada iteração, entretanto, há um erro associado a ela. Num método que convirja, a tendência é a da diminuição dos erros, que deverão tender a zero. Se o erro de uma iteração é aproximadamente proporcional ao erro da iteração anterior, isto é, ei+1 » k.ei , diz que a convergência é linear, sendo |k| < 1. Se ei+1 » k ei2 , isto é, se cada novo erro é proporcional ao quadrado do erro anterior, diz-se que a convergência é quadrática. Admitindo-se que os erros sejam pequenos, o quadrado do erro tende a zero mais rapidamente, daí a convergência quadrática ser mais rápida que a convergência linear. Método LU para resolução de Sistemas Lineares¿ nesse método, fatora-se a matriz do sistema no produto de duas matrizes: uma triangular inferior e outra triangular superior. Assim, transforma-se um sistema A.X = B num sistema L.U.X = B, onde L é uma matriz triangular inferior e U uma matriz triangular superior. Chamando-se U.X de Y , tem-se o sistema L.Y = B, de imediata solução, pois L é uma matriz triangular. Calculado o vetor Y, passa-se ao sistema U.X = Y, também triangular e de solução imediata. Assim calcula-se X, que é a solução do sistema A.X = B. É muito comum, na prática, ter-se que resolver sistemas onde só muda o vetor B, considerado, em geral, a carga do sistema. A solução fica acelerada pela fatoração inicial da matriz A e a resolução posterior de dois sistemas triangulares. Para cada novo vetor B, lado direito do sistema, repete-se a solução dos dois sistemas triangulares, de solução rápida.
	
Fundamentação do(a) Professor(a): Sem resposta para avaliação.
	
	
	 2a Questão (Ref.: 201401578197)
	Pontos: 0,5  / 0,5
	Seja f uma função de R em R, definida por f(x) = x2 - 1, calcule f(1/2).
		
	 
	- 3/4
	
	- 0,4
	
	3/4
	
	4/3
	
	- 4/3
	
	
	 3a Questão (Ref.: 201401645627)
	Pontos: 0,5  / 0,5
	as funções podem ser escritas como uma série infinita de potência. O cálculo do valor de sen(x) pode ser representado por: sen(x)= x - x^3/3! +x^5/5!+⋯ Uma vez que precisaremos trabalhar com um número finito de casas decimais, esta aproximação levará a um erro conhecido como:
		
	
	erro relativo
	
	erro de arredondamento
	
	erro booleano
	
	erro absoluto
	 
	erro de truncamento
	
	
	 4a Questão (Ref.: 201401673496)
	Pontos: 0,0  / 0,5
	O método da falsa posição está sendo aplicado para encontrar a raiz aproximada da equação f(x) =0 no intervalo [a,b]. A raiz aproximada após a primeira iteração é:
		
	 
	O encontro da função f(x) com o eixo y
	 
	O encontro da reta que une os pontos (a,f(a)) e (b,f(b)) com o eixo x
	
	O encontro da reta que une os pontos (a,f(a)) e (b,f(b)) com o eixo y
	
	O encontro da função f(x) com o eixo x
	
	A média aritmética entre os valores a e b
	
	
	 5a Questão (Ref.: 201401513696)
	Pontos: 0,5  / 0,5
	De acordo com o método do ponto fixo, indique uma função de iteração g(x) adequada para resolução da equação f(x) = x2 - 3x - 5 = 0
		
	
	5/(x+3)
	
	-5/(x-3)
	
	-5/(x+3)
	
	x
	 
	5/(x-3)
	
	
	 6a Questão (Ref.: 201402020139)
	Pontos: 0,5  / 0,5
	A resolução de sistemas lineares é fundamental em alguns ramos da engenharia. O cálculo numérico é uma ferramenta importante e útil nessa resolução. Sobre os sistemas lineares assinale a opção CORRETA.
		
	
	Para o mesmo sistema linear e para um mesmo chute inicial, o método de Gauss-Seidel tende a convergir para a resposta exata do sistema numa quantidade maior de iterações que o método de Gauss-Jacobi.
	
	O método da Eliminação de Gauss é um método iterativo para a resolução de sistemas lineares.
	 
	Ao se utilizar um método iterativo para solucionar um sistema de equações lineares deve tomar cuidado pois, dependendo do sistema em questão, e da estimativa inicial escolhida, o método pode não convergir para a solução do sistema.
	
	Nos métodos diretos para a resolução de sistemas lineares utilizamos o escalonamento que consiste em transformar a matriz incompleta em uma matriz identidade
	
	Um sistema é dito linear quando pelo menos uma variável tem expoente unitário.
	
	
	 7a Questão (Ref.: 201402020165)
	Pontos: 0,5  / 0,5
	A interpolação polinomial consiste em encontrar um polinômio que melhor se ajuste aos pontos dados. Suponha que você tenha que determinar por interpolação o polinômio P(x) que se ajuste aos pontos pontos A (1,2), B(-1,-1), C(3, 5).e D(-2,8). Qual dos polinômios abaixo pode ser P(x)
		
	
	Um polinômio do quarto grau
	 
	Um polinômio do terceiro grau
	
	Um polinômio do quinto grau
	
	Um polinômio do sexto grau
	
	Um polinômio do décimo grau
	
	
	 8a Questão (Ref.: 201401560675)
	Pontos: 1,5  / 1,5
	As integrais definidas têm várias aplicações. Podemos destacar o cálculo de área e a determinação do centróide de uma corpo. Um dos métodos numéricos para a resolução de integrais definidas é conhecido como método de Romberg, Cite duas características matemáticas deste método.
		
	
Resposta: Utiliza mais de uma vez o método do trapézio para alcançar maior precisão no cálculo.
	
Gabarito:
É um método de alta precisão
Tem como primeiro passo a obtenção de aproximações repetidas pelo método do trapézio
	
	
	 9a Questão (Ref.: 201402030152)
	Pontos: 0,0  / 1,0
	Em Cinemática Física, temos funções matemáticas que nos fornecem informações da posição, velocidade e aceleração em função do tempo e que se relacionam entre si através de operações matemáticas denominas de derivação e integração. Entre os diversos métodos numéricos para se obter a integral definida de uma função, podemos citar, com EXCEÇÃO de:
		
	
	Método do Trapézio.
	
	Método de Romberg.
	
	Regra de Simpson.
	 
	Método da Bisseção.
	 
	Extrapolação de Richardson.
	
	
	 10a Questão (Ref.: 201402020178)
	Pontos: 0,0  / 1,0
	Considere a equação diferencial ordinária y´= y, sendo y uma função de x, ou seja, y = y (x). A solução geral desta EDO é a função y(x) = k.ex, onde k é um número real e e um número irracional cujo valor aproximado é 2,718. Considerando a condição inicial tal que y(0) = 5, determine o valor da constante k para esta condição.
		
	
	1/5
	
	1/2
	 
	2
	 
	54

Outros materiais