Buscar

PROBLEMAS DE FLEXÃO ESTATICAMENTE INDETERMINADOS.

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

C
A
P
ÍT
U
L
O
 
1 
 
 
 
 
PROBLEMAS DE FLEXÃO 
ESTATICAMENTE INDETERMINADOS. 
Profa. Dra. Fernanda Rodrigues Mittelbach 
2. Problemas de flexão estaticamente indeterminados. 
2.1. Grau de hiperestaticidade. 
Nos casos particulares de vigas isostáticas, as reações de apoio são facilmente 
obtidas utilizando-se, apenas, as equações de equilíbrio da estática. Conhecida as reações, é 
possível obter os esforços internos (momento fletor e forças cortantes) da viga e, por 
conseguinte, as correspondentes tensões e deformações. Nos casos de vigas hiperestáticas ou 
estaticamente indeterminadas, as equações da estática são em número insuficiente para se 
determinar as reações. Neste caso, deve-se lançar mão de equações de compatibilidade de 
deformação, como complementação as equações de equilíbrio estático, para possibilitar a 
determinação das reações de apoio da estrutura. 
O grau de hiperestaticidade de uma estrutura é determinado pela diferença entre o 
número de equações de equilíbrio estático e o número de incógnitas, a saber: reações de 
apoio (grau de hiperestaticidade externa) e esforços internos (hiperestaticidade interna) da 
estrutura. Neste curso será estudado somente o caso de hiperestaticidade externa, sendo o 
grau de hiperestaticidade determinado pela diferença entre o número de reações de apoio a 
determinar e o número de equações de equilíbrio estático disponíveis. 
 Estudaremos alguns métodos para resolução de vigas estaticamente indeterminadas, 
os quais têm como objetivo principal determinar as reações que excedem o caso isostático. 
2.2. Método baseado na superposição de efeitos 
O método consiste no emprego das equações da linha elástica de vigas isostáticas, 
superpondo ou combinando os efeitos isolados dessas vigas, de modo a resultar na estrutura 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
2 
 
hiperestática analisada. Tal método é de fácil compreensão, cuja essência pode ser descrita 
na seguinte seqüência: 
a) Inicialmente identifica-se o grau de hiperestaticidade, ou número de reações que 
tornam a viga hiperestática; 
b) Escolhem-se e retiram-se os vínculos em excesso, de modo que a viga resulte 
em uma estrutura isostática, denominada estrutura primária; 
c) Na estrutura primária é fácil determinar, para o carregamento externo, as reações 
de apoio e os deslocamentos na posição e na direção dos vínculos retirados; 
d) Novamente na estrutura primária consideram-se isoladamente as reações 
excedentes (chamadas de reações hiperestáticas), cujos vínculos foram removidos, como 
cargas atuantes. Dessa forma, determinam-se os deslocamentos, na direção de todos os 
vínculos retirados, para cada uma dessas cargas; 
e) Pelo princípio da superposição de efeitos, os deslocamentos finais, decorrentes 
da ação simultânea das cargas reais e das cargas correspondentes aos vínculos, devem ser 
iguais à soma algébrica dos deslocamentos calculados separadamente; 
f) Finalmente devem-se compatibilizar os deslocamentos nas posições e direções 
dos vínculos removidos. No caso, os deslocamentos finais associados a esses vínculos são 
valores prescritos (nulos, de valor conhecido, no caso de recalque de apoio ou uma função 
dos hiperestáticos correspondentes no caso de apoios elásticos). A partir dessa 
compatibilização, obtém-se um sistema de equações lineares cuja solução resulta nas reações 
excedentes (reações hiperestáticas); 
g) Finalmente, utilizando-se as equações de equilíbrio da estática determinam-se as 
reações restantes. 
Vale relembrar que a validade deste método está associada à consideração da 
linearidade física e geométrica utilizada no estudo de vigas realizado. 
Considere a viga seguinte: 
 
A
B
x
y
l
q
 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
3 
 
A viga da anterior apresenta grau de hiperestaticidade 1, pois temos 3 reações a 
determinar (RA, MA e RB) e apenas duas equações de equilíbrio estático 
  0yF
e 
  0oM
. Para resolver tomemos, por exemplo, a reação RB como reação hiperestática. 
O sistema primário será então uma viga engastada e livre, na qual devemos aplicar o 
carregamento externo e a reação de apoio separadamente (figura a seguir), superpor os dois 
casos e compatibilizar o deslocamento vertical em B. 
y
l
q
x
A B
 
y
A
l
B
RB
x
 
Essas vigas foram resolvidas no capítulo anterior, sendo obtidas as seguintes 
equações: 
Carregamento externo: 
  





 432
2
24
1
64
xx
l
x
l
EI
q
xy
z
 , deslocamentos transversais; 






 32
2
6
1
22
xx
l
x
l
EI
q
dx
dy
z
, rotações das seções. 
Com isso o deslocamento associado à posição e a direção do vínculo retirado 
corresponde ao deslocamento vertical no ponto B, o qual é determinado a seguir: 
 
zz
I
B
EI
ql
ll
l
l
l
EI
q
yylx
824
1
64
4
432
2







 
Reação excedente RB : 
  





 23
26
1
x
l
x
EI
R
xy
z
B
, deslocamentos transversais; 






 lxx
EI
R
dx
dy
z
B 2
2
1
, rotações das seções. 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
4 
 
Assim, o deslocamento na posição e na direção de RB será dado por: 
 
z
B
z
BII
B
EI
lR
l
l
l
EI
R
yylx
326
1 323 






 
Pelo princípio da superposição, o deslocamento final no ponto B é dado pela soma 
algébrica 
( ) ( )I II
B By y
 que, por força da vinculação existente, é igual a zero. Assim: 
   
8
3
83
0
43 ql
R
EI
ql
EI
lR
yy B
zz
BII
B
I
B 
 
Essa equação (
( ) ( ) 0I IIB By y 
) é comumente denominada “equação de 
compatibilidade”, porque exprime condições impostas ao deslocamento. 
Conhecido o valor de RB, é de fácil determinação as outras reações da viga. Para 
isso, basta empregar as equações de equilíbrio da estática: 
MA
RBRA
q
l
 
 
8
5
00 
ql
RqlRqlRRF BABAy  
 
+ 82020
2ql
lR
l
qlMlR
l
qlMM BABAa 
 
2.3. Apoios elásticos: 
Seja resolver a viga ilustrada na figura a seguir. 
y
l
A q
B
x
 
 
Na mola linear em B (também chamada de apoio elástico) aparecerá uma força 
restauradora no sentido oposto ao deslocamento vertical neste ponto. 
Considerando um deslocamento vertical  “para baixo” (direção positiva do 
deslocamento) a mola exercerá uma força “para cima” (RB =  KV) na seção B da viga, sendo 
KV a constante da mola. 
A resolução é a mesma já realizada para o caso da viga engastada e apoiada, bastando 
atentar para o fato de que a condição de contorno geométrica em x = l será neste caso dada 
por: 
 
V
B
K
R
ly 
. 
Resolução da viga com apoio elástico em B: 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
5 
 
Novamente, o sistema primário será então uma viga engastada e livre, na qual 
devemos aplicar o carregamento externo e a reação de apoio separadamente (figura a seguir), 
superpor os dois casos e compatibilizar o deslocamento vertical em B. 
y
l
q
x
A B
 
y
A
l
B
RB
x
 
A resolução destes dois casos é exatamente igual à feita anteriormente: 
Carregamento externo: 
  





 432
2
24
1
64
xx
l
x
l
EI
q
xy
z
 , deslocamentos transversais; 






 32
2
6
1
22
xx
l
x
l
EI
qdx
dy
z
, rotações das seções. 
Com isso o deslocamento associado a posição e a direção do vínculo retirado 
corresponde ao deslocamento vertical no ponto B, o qual é determinado a seguir: 
 
zz
I
B
EI
ql
ll
l
l
l
EI
q
yylx
824
1
64
4
432
2







 
Reação excedente RB : 
  





 23
26
1
x
l
x
EI
R
xy
z
B
, deslocamentos transversais; 






 lxx
EI
R
dx
dy
z
B 2
2
1
, rotações das seções. 
Assim, o deslocamento na posição e na direção de RB será dado por: 
 
z
B
z
BII
B
EI
lR
l
l
l
EI
R
yylx
326
1 323 






 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
6 
 
Pelo princípio da superposição, o deslocamento final no ponto B é dado pela soma 
algébrica 
( ) ( )I II
B By y
. Assim: 
   














3
443
3
1
8
3
83
l
K
EI
ql
R
EI
ql
EI
lR
K
R
yy
V
z
B
zz
B
V
BII
B
I
B
 
Note-se que para o caso em que KV   a reação 
8
3ql
RB 
, caso de apoio 
simples (deslocamento vertical nulo em B). 
Conhecido o valor de RB, é de fácil determinação as outras reações da viga. Para isso, 
basta empregar as equações de equilíbrio da estática. 
O apoio elástico representa, por exemplo, uma viga ou pilar que se deforma 
verticalmente. Fazendo uma comparação com a variação de comprimento de um pilar 
(considerando  positivo “para baixo”), devido a uma carga axial centrada RB, tem-se: 
RB
 
l
EA
K
l
EA
R
EA
lR
RN VB
B
B 
 
, 
que seria a constante de mola equivalente para o 
pilar. 
 
 
Tratemos de outro caso, como o de uma viga apoiada em outra viga. Como exemplo, 
uma viga “de apoio” biapoiada, recebendo o carregamento RB no meio do vão. 
y
l
x
RB
 
A elástica da viga fornece, para a seção do 
meio do vão: 
33
3 4848
48 l
EI
K
l
EI
R
EI
lR z
V
z
B
z
B 
 
 
 Num caso real, a viga ou pilar que servem de apoio elástico não suportam somente a 
viga em questão, mas também outras cargas provenientes de outros elementos estruturais e 
também de seus pesos próprios. Assim, no ponto de apoio, existe um comportamento do tipo 
mola (reação e deslocamento ligados) e uma deformada independente da viga que se apoia 
(que deve ser tratado como um recalque de apoio). 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
7 
 
No caso de recalque de apoio, a resolução é exatamente a mesma. Porém na equação 
de compatibilidade 
  ly
, tomado como um valor conhecido e constante ao dimensionar 
a viga. 
l
A q
B
x
 
 Podemos resolver os casos de apoio elástico e recalque de apoio em separado e 
somar os resultados obtidos. Com isso o caso mais geral de um apoio real pode ser encarado 
como a soma de um caso de apoio elástico com outro de recalque de apoio. 
 Da mesma forma que existe deformação dos apoios na vertical, existe também um 
impedimento não perfeito da rotação da viga. A ligação viga pilar, por exemplo, funciona 
como uma mola rotacional, como a ilustrada a seguir. 
B
x
q
A
y
l
 
A
MA
 
 rotação positiva e momento 
da viga sobre a mola 
MA
 
momento da mola sobre a 
viga para uma rotação 
positiva 
 
Os princípios da mola rotacional são exatamente os mesmos da linear: a viga 
apresenta uma rotação em um sentido e a mola gera uma “força” restauradora (neste caso um 
momento) em sentido contrario. O problema é resolvido de forma análoga, sendo a condição 
de contorno em A, considerando uma rotação positiva, dada por: 
R
A
K
M
dx
dy

0
, sendo KR a 
constante da mola rotacional. Da mesma forma que no apoio elástico linear, existindo 
também uma rotação  independente do momento MA, basta imaginá-la como um recalque 
no apoio A e resolver o problema separadamente utilizando 

0dx
dy
, sendo este um valor 
considerado conhecido e constante ao dimensionar a viga. 
2.4. Método da equação diferencial da elástica. 
O processo de solução é essencialmente o mesmo que aquele utilizado para as 
vigas estaticamente determinadas, o qual consiste em estabelecer a equação diferencial, 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
8 
 
achar sua solução geral e, por intermédio das condições de contorno, determinar as 
constantes de integração. Sempre haverá condições de contorno suficientes para as 
constantes de integração assim como para as reações excedentes. 
Tomemos o mesmo exemplo da viga engastada e apoiada do item anterior. 
A
B
x
y
l
q
 
Pelo equilíbrio estático obtém-se; 
2
0 0
0 0
2 2
A B A B
A A B A B
Fy R ql R R ql R
l ql
M M ql l R M l R
         
 
 
           
 
 
AR
 e 
AM
 em 
função de 
BR
 
A função geral do momento fletor pode ser escrita, em função de
BR
, na seguinte 
forma: 
 
2
2 2
2
2
( ) ( )
2 2 2
( )
2 2
A A B B
B B
q ql q
M x R x M x M x qlx R x l R x
q ql
M x x ql R x l R
           

      
 
A equação diferencial da elástica apresenta, então, a seguinte redação: 
 







22
1 22
2
2
2
2 ql
lRxRqlxx
q
EIdx
yd
EI
xM
dx
yd
BB
zz
 
Desenvolvendo-se duas integrais sucessivas resulta, para o caso particular de EIZ 
constante: 
1
2
223
2226
Cx
ql
lxRx
R
x
ql
x
q
dx
dy
EI B
B
z 
 
  21
2
2
2334
426624
CxCx
ql
lx
R
x
R
x
ql
x
q
xyEI BBz 
 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
9 
 
Na expressão geral de y(x) há três constantes a determinar: C1, C2 e RB. Da mesma 
forma há três condições de contorno geométricas que podem ser utilizadas: 
0Ay 
, 
0A 
 
e 
0By 
. 
Aplicando-se essa três condições de contorno obtém-se: 
0 (0) 0Ax y y   
 e 
(0) 0A
dy
dx
   
 
1 1
2 2
0 0 0 0 0 0
0 0 0 0 0 0 0A
dy
C C
dx
y C C
       
        
 
( ) 0Bx l y l y   
 
 
8
3
426624
0 2
2
2334 qlRl
ql
l
lR
l
R
l
ql
l
q
ly B
BB 
 
Com o valor de RB fica fácil determinar as outras reações utilizando-se as equações 
de equilíbrio da estática. Isso já foi feito anteriormente, obtendo-se as seguintes expressões: 
2 2 2 2
3 5
8 8
3
2 2 8 8
A B A A
A B A A
ql ql
R ql R R ql R
ql ql ql ql
M l R M M
      
       
 
É importante comentar que surgem dificuldades de cálculo quando há um número 
excessivo de constantes de integração. Dessa forma, este processo de resolução de vigas 
estaticamente indeterminadas só é prático para os casos simples de carregamento e para 
vigas com um único vão. 
 
Caso de apoio elástico em B: 
 Da mesma forma que anteriormente, a resolução seria feita da mesma forma do que 
para a viga engastada e apoiada, bastando substituir, na equação de compatibilidade 
 
V
B
K
R
ly 
, em lugar de 
  0ly
, tal procedimento fornece: 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
10 
 
 














3
4
2
2
2334
3
1
8
3
426624
l
K
EI
ql
R
K
R
EIl
ql
l
lR
l
R
l
ql
lq
K
R
ly
V
z
B
V
B
z
BB
V
B
 
2.5. Método dos momentos estáticos de área. 
Consiste basicamente na aplicação do método dos momentos estáticos de área, 
também empregado para o caso de vigas isostáticas. 
Considerando-se uma porção AB da elástica de uma viga (figura seguinte). O 
diagrama de momentos fletores entre os pontos A e B também se encontra ilustrado na 
figura. Partindo-se de duas seções m1 e m2 da viga, distantes de ds: para este trecho de 
comprimento infinitesimal, pode-se admitir que o raio de curvatura  seja constante e, neste 
caso, seu comprimento ds pode ser escrito como 
 dds
, sendo  o raio de curvatura. 
Utilizando apenas valores absolutos, escreve-se: 
dx
EI
M
d
z

= área infinitesimal do diagrama 
zEI
M
 
 
C
A
B
x 1d
dx
x
x 1
B '
p 1
p 2
DM

d
m 1
ds

m 2
d
+
 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
11 
 
A linha m1p1 é a tangente à elástica em m1 e a linha m2p2 é a tangente à elástica em 
m2. O ângulo formado por estas duas tangentes é d

. 
Integrando agora entre os pontos A e B, obtém-se o ângulo 

 formado pelas 
tangentes à elástica em dois pontos, A e B: 
 
B
A z
dx
EI
M
Área do diagrama de M (DM), entre A e B, dividida por EIz. 
Primeiro teorema do momento estático de área: O ângulo 

 entre as tangentes à curva da 
elástica entre dois pontos A e B é igual à área do diagrama de momento fletor entre esses 
dois pontos, dividida por EIz. 
Sendo 

 pequeno, a contribuição do elemento m1m2 para a deflexão  do ponto B 
em relação à tangente no ponto A, pode ser escrita como: 
dx
EI
M
xdx
z
11 
 
Integrando entre A e B a deflexão total  resulta em: 
 
B
A
B
A
dx
EI
M
xdx 11
 Momento estático em relação ao ponto B, da área do diagrama 
de M entre A e B, dividida por EIz. 
Segundo teorema do momento estático de área: A deflexão  de um ponto B para a tangente 
em um ponto A é igual ao momento estático, em relação a B, da área do diagrama de 
momento fletor entre A e B dividida por EIz. 
Neste método também se faz necessário utilizar uma estrutura isostática primária, 
determinar os deslocamentos causados pelo carregamento real e pelas reações excedentes 
para, em seguida aplicar o teorema. 
Como ilustraçao, façamos mais uma vez o exemplo da viga engastada e apoiada. 
A
B
x
y
l
q
 
Estrutura primária: retiremos novamente o vínculo relativo a B. 
Momentos relativos ao carregamento real q e a carga RB na direção do vínculo: 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
12 
 
Carregamento Diagrama de momento fletor 
y
l
q
x
A B
 
(1) 
-
-ql 
2
2
 
y
A
l
B
RB
x
 
(2) 
RBl +
 
Carregamento externo: 
 
2
2
1
22
x
q
qlx
ql
M 
 e x1 = l-x 
O momento estático da área do diagrama é dado por: 
   
82222
4
0
32
2
22
3
0
111
ql
dxx
q
qlxx
ql
x
ql
xql
ql
dxxMS
ll






 
 
Reação hiperestática: 
  xRlRM BB 2
 e x1 = l-x 
O momento estático da área do diagrama é dado por: 
     
3
3
0
22
0
122
lR
dxxRlxRlxRlRdxxMS B
l
BBBB
l
 
 
A tangente à elástica, na estrutura real, em A passa pelo ponto B, logo a deflexão 
de B em relação a A vale zero. Com isso, e considerando o segundo Teorema do Momento 
Estático, pode-se escrever: 
   
8
3
0
38
0
34
21 ql
R
lRql
EI
SS
B
B
z

 
Com as equações d equilíbrio da estática determinam-se as outras reações. 
Capítulo 2: Problemas de flexão estaticamente indeterminados 
 
13 
 
Caso do apoio elástico: 
Note-se, pela figura a seguir, que para o caso do apoio elástico, tem-se: 
y
A
l
q
 x
B
 
deformada da viga 
tangente à elástica em A 
 
   















3
434
21
3
1
8
3
38
l
K
EI
ql
R
K
R
EI
lRql
K
R
EI
SS
V
z
B
V
B
z
B
V
B
z
 
 Novamente, basta aplicar as equações de equilíbrio da estática para encontrar RA e 
MA.

Outros materiais