Buscar

Pontos de Acumulação e Conjuntos Abertos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 5 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Questão 1/5 - Análise Matemática
Considere o trecho de texto a seguir:
 “Um espírito mais crítico indagaria sobre a existência dos números reais, ou seja, se realmente se conhece algum exemplo de corpo ordenado completo. Em outras palavras: partindo dos números naturais (digamos, apresentados através dos axiomas de Peano) seria possível, por meio de extensões sucessivas do conceito de número, chegar à construção dos números reais? A resposta é afirmativa. Isto pode ser feito de várias maneiras. A passagem crucial é dos racionais para os reais, a qual pode seguir o método dos cortes de Dedekind ou das sequências de Cauchy [...], para citar apenas os dois mais populares”.
 Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E. L. Curso de Análise. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. v. 1. p. 60.
 
Conforme os conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir e marque V para as afirmativas verdadeiras e F para as afirmativas falsas.
         I.( ) A relação de equivalência que permite a construção dos números racionais dá a esse conjunto a propriedade de seus elementos possuírem um inverso multiplicativo, exceto ao elemento neutro da adição.
        II.( ) Os cortes de Dedekind são subconjuntos próprios do conjunto dos números racionais com algumas propriedades.
       III. ( ) O conjunto Xα={x∈Q∣x2<1}Xα={x∈Q∣x2<1} é um corte de Dedekind.
       IV. ( ) Pelos axiomas de Peano constrói-se o conjunto dos números naturais, partindo de um conjunto denominado  NN e uma função denominada de função sucessor.
 
Agora marque a sequência correta:
Nota: 20.0
	
	A
	a) F – V – V – V
	
	B
	b) V – F – F – V
	
	C
	c) F – V – F – V
	
	D
	d) V – F – V – V
	
	E
	e) V – V – F – V
Você acertou!
A afirmativa I é verdadeira pois, se x∈Qx∈Q, então x=¯¯¯¯¯¯¯¯¯¯¯¯(a,b) a,b∈Z,b≠0x=(a,b)¯ a,b∈Z,b≠0. Se a≠0a≠0, então, xx não é o elemento neutro da adição e y=¯¯¯¯¯¯¯¯¯¯¯¯(b,a)∈Qy=(b,a)¯∈Q. Temos que ¯¯¯¯¯¯¯¯¯¯¯¯(a,b)⋅¯¯¯¯¯¯¯¯¯¯¯¯(b,a)=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(ab,ba)=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(ab,ab)=¯¯¯¯¯¯¯¯¯¯¯¯(1,1)(a,b)¯⋅(b,a)¯=(ab,ba)¯=(ab,ab)¯=(1,1)¯. Como ¯¯¯¯¯¯¯¯¯¯¯¯(1,1)(1,1)¯ é o elemento neutro da multiplicação, temos que y=x−1y=x−1. A afirmativa II é verdadeira, pois se XαXα é um corte de Dedekind, então Xα⊂QXα⊂Q e Xα≠QXα≠Q por definição. A afirmativa III é falsa porque XαXα não contém todos os pontos menores que seus pontos. Basta ver que, por exemplo, 0∈Xα,−2<00∈Xα,−2<0, mas −2∉Xα−2∉Xα. A afirmativa IV é verdadeira por definição. (livro-base, capítulo 1).
Questão 2/5 - Análise Matemática
“Em vários problemas da Matemática e das duas aplicações busca-se uma função que cumpra certas condições dadas. É frequente, nestes casos, obter-se uma sequência de funções cada uma das quais cumpre as condições exigidas apenas aproximadamente, porém com aproximações cada vez melhores.” 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
LIMA, E.L. Análise Real. 4. ed. Rio de Janeiro: IMPA, 1999. p. 151.
De acordo com os conteúdos do livro-base Análise Matemática, assinale a alternativa correta.
Nota: 20.0
	
	A
	Na convergência simples o valor de NN encontrado não depende de nenhum valor atribuído.
	
	B
	A sequência de Cauchy está relacionada é um exemplo de convergência simples.
	
	C
	Na convergência uniforme o valor de NN a ser encontrado deve depender apenas do valor de εε.
Você acertou!
Consequência da definição da convergência uniforme em contraposição à convergência simples onde NN depende dos valores dados para εε e xx. (livro-base p.167-168)
	
	D
	Geometricamente qualquer sequência de funções fnfn converge de forma simples para outras funções sendo dependente de εε e xx.
	
	E
	Seja (fn)(fn) uma sequência de funções com fn:[a,b]→Rfn:[a,b]→R que converge uniformemente para uma função f:[a,b]→Rf:[a,b]→R. Se cada função fnfn é integrável então ff não tem primitiva.
Questão 3/5 - Análise Matemática
Considere o seguinte trecho de texto a seguir:
“Diz-se que a∈Ra∈R é um ponto de acumulação do conjunto X⊂RX⊂R quando toda vizinhança VV de aa contém algum ponto de XX diferente do próprio aa.”
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p. 52. 
De acordo com os conteúdos do livro-base Análise Matemática , assinale a alternativa correta.
Nota: 20.0
	
	A
	Dado um conjunto X⊂RX⊂R, um ponto x∈Xx∈X é um ponto interior de XX quanto existe ε>0ε>0 tal que o intervalo (x−ε,x+ε)(x−ε,x+ε) sempre tem pontos interiores e exteriores a XX.
	
	B
	Se X=(a,b)={x∈R:aX=(a,b)={x∈R:a, então XX é um conjunto aberto.
Você acertou!
De fato, demonstramos que XX é aberto demonstrando que X0=(a,b)=XX0=(a,b)=X, ou seja, o conjunto XX será aberto quando todos os seus pontos forem interiores a ele. (Livro base-p.87)
	
	C
	Um conjunto XX será fechado se o seu complementar Xc=R−XXc=R−X também for fechado.
	
	D
	Uma vizinhança V(x)V(x) de um ponto x∈Xx∈X é qualquer número que está na fronteira de XX.
	
	E
	Um ponto xx é chamado de ponto de acumulação de um conjunto X⊂RX⊂R quando qualquer vizinhança V(x)V(x) contém somente pontos interiores de XX.
Questão 4/5 - Análise Matemática
Considere o seguinte trecho de texto a seguir:
“A soma de uma série é o limite da sequência de somas parciais. Deste modo, quando escrevemos ∑∞n=1an=s∑n=1∞an=s, queremos dizer que, somando um número suficientes de termos da série, podemos chegar tão perto quanto quisermos do número ss. Observe que ∑∞n=1an=limn→∞∑ni=1ai∑n=1∞an=limn→∞∑i=1nai”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
STEWART, J. Cálculo. 6. ed. São Paulo: Cengage Learning , v. 2. 2011. p. 653.
De acordo com os conteúdos do livro-base Análise Matemática referentes à séries numéricas, assinale a alternativa que contém apenas séries convergentes.
Nota: 20.0
	
	A
	∑∞n=11n∑n=1∞1n, ∑∞n=11n2∑n=1∞1n2, ∑∞n=1n∑n=1∞n
	
	B
	
∑∞n=11n2∑n=1∞1n2, ∑∞n=12n+1∑n=1∞2n+1, ∑∞n=11n∑n=1∞1n
	
	C
	∑∞n=11n2∑n=1∞1n2, ∑∞n=112n+1∑n=1∞12n+1, ∑∞n=1(−1)nn∑n=1∞(−1)nn
Você acertou!
A série ∑∞n=11n2∑n=1∞1n2  é uma p-série com p=2>1p=2>1, logo, é convergente. A série ∑∞n=112n+1∑n=1∞12n+1 é uma série geométrica com |p|=12<1|p|=12<1, logo, converge. A série ∑∞n=1(−1)nn∑n=1∞(−1)nn converge pelo teste de Leibniz. (livro-base, capítulo 2).
	
	D
	∑∞n=11n∑n=1∞1n, ∑∞n=11n2∑n=1∞1n2, ∑∞n=11n3∑n=1∞1n3
	
	E
	∑∞n=1n3∑n=1∞n3, ∑∞n=1n2∑n=1∞n2, ∑∞n=1n∑n=1∞n
Questão 5/5 - Análise Matemática
“Informalmente: limx→af(x)=Llimx→af(x)=L quer dizer que se pode tornar f(x)f(x) tão próximo de LL quanto se queira desde que se tome x∈Xx∈X suficientemente próximo, porém diferente, de aa.”
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p. 61.}
De acordo com os conteúdos do livro-base Análise Matemática, assinale a alternativa correta.
Nota: 20.0
	
	A
	Seja f:R−{2}→Rf:R−{2}→R, f(x)=x+3f(x)=x+3, então o valor de limx→2(x+3)limx→2(x+3) é 11.
	
	B
	Seja f:X→Rf:X→R e x0∈X′x0∈X′. Assim, se limx→x0f(x)=L1limx→x0f(x)=L1 e limx→x0f(x)=L2limx→x0f(x)=L2, então L1≠L2L1≠L2.
	
	C
	Sejam as funções f:X→Rf:X→R e g:X→Rg:X→R. Se limx→x0f(x)=L1limx→x0f(x)=L1 e limx→x0g(x)=L1limx→x0g(x)=L1, então limx→x0f(x)g(x)=L1+L2limx→x0f(x)g(x)=L1+L2.
	
	D
	Seja a função f(x):X→Rf(x):X→R então limx→x0k⋅f(x)=limx→x0f(x)klimx→x0k⋅f(x)=limx→x0f(x)k.
	
	E
	Sejam ff e g:R−{2}→Rg:R−{2}→R definidas por f(x)=3x+1f(x)=3x+1 e g(x):x+1g(x):x+1 e os limites limx→2f(x)=7limx→2f(x)=7 e limx→2g(x)=3limx→2g(x)=3 então limx→23x+1x+1=limx→2(3x+1)limx→2(x+1)=73limx→23x+1x+1=limx→2(3x+1)limx→2(x+1)=73.
Você acertou!
Sejam as funções f:X→Rf:X→R e g:X→Rg:X→R. Se limx→x0f(x)=L1limx→x0f(x)=L1 e limx→x0g(x)=L2limx→x0g(x)=L2 com L2≠0L2≠0, então limx→x0f(x)g(x)=L1L2limx→x0f(x)g(x)=L1L2.(Livro-base p. 93 a 95)

Outros materiais