Callister - 7e (Wiley, 2007)

Callister - 7e (Wiley, 2007)


Disciplina<strong>ciência e Engenharia de Materiais</strong>10 materiais15 seguidores
Pré-visualização50 páginas
Materials Science and Engineering
An Introduction
1496T_fm_i-xxvi 1/6/06 02:56 Page iii
John Wiley & Sons, Inc.
Materials Science
and Engineering
An Introduction
William D. Callister, Jr.
Department of Metallurgical Engineering 
The University of Utah
with special contributions by 
David G. Rethwisch
The University of Iowa
S E V E N T H E D I T I O N
1496T_fm_i-xxvi 1/6/06 22:25 Page v
Front Cover: A unit cell for diamond (blue-gray spheres represent carbon atoms), which is positioned
above the temperature-versus-logarithm pressure phase diagram for carbon; highlighted in blue is the
region for which diamond is the stable phase.
Back Cover: Atomic structure for graphite; here the gray spheres depict carbon atoms. The region of
graphite stability is highlighted in orange on the pressure-temperature phase diagram for carbon,
which is situated behind this graphite structure.
ACQUISITIONS EDITOR Joseph Hayton
MARKETING DIRECTOR Frank Lyman
SENIOR PRODUCTION EDITOR Ken Santor
SENIOR DESIGNER Kevin Murphy
COVER ART Roy Wiemann
TEXT DESIGN Michael Jung
SENIOR ILLUSTRATION EDITOR Anna Melhorn 
COMPOSITOR Techbooks/GTS, York, PA
ILLUSTRATION STUDIO Techbooks/GTS, York, PA
This book was set in 10/12 Times Ten by Techbooks/GTS, York, PA and printed and bound by
Quebecor Versailles. The cover was printed by Quebecor.
This book is printed on acid free paper.
Copyright © 2007 John Wiley & Sons, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (508)750-8400, fax
(508)750-4470. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011,
fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.
To order books or for customer service please call 1(800)225-5945.
Library of Congress Cataloging-in-Publication Data
Callister, William D., 1940-
Materials science and engineering : an introduction / William D. Callister, Jr.\u20147th ed.
p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-471-73696-7 (cloth)
ISBN-10: 0-471-73696-1 (cloth)
1. Materials. I. Title.
TA403.C23 2007
620.1\u20191\u2014dc22
2005054228
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1496T_fm_i-xxvi 1/11/06 23:05 Page vi
Dedicated to
my colleagues and friends in Brazil and Spain
1496T_fm_i-xxvi 1/6/06 02:56 Page vii
1496T_fm_i-xxvi 1/6/06 02:56 Page viii
\u2022 xv
Contents
LIST OF SYMBOLS xxiii
1. Introduction 1
Learning Objectives 2
1.1 Historical Perspective 2
1.2 Materials Science and Engineering 3
1.3 Why Study Materials Science and Engineering? 5
1.4 Classification of Materials 5
1.5 Advanced Materials 11
1.6 Modern Materials\u2019 Needs 12
References 13
2. Atomic Structure and Interatomic Bonding 15
Learning Objectives 16 
2.1 Introduction 16 
ATOMIC STRUCTURE 16
2.2 Fundamental Concepts 16
2.3 Electrons in Atoms 17
2.4 The Periodic Table 23
ATOMIC BONDING IN SOLIDS 24
2.5 Bonding Forces and Energies 24
2.6 Primary Interatomic Bonds 26
2.7 Secondary Bonding or van der Waals Bonding 30
2.8 Molecules 32
Summary 34 
Important Terms and Concepts 34
References 35
Questions and Problems 35
3. The Structure of Crystalline Solids 38
Learning Objectives 39
3.1 Introduction 39
CRYSTAL STRUCTURES 39
3.2 Fundamental Concepts 39
3.3 Unit Cells 40
3.4 Metallic Crystal Structures 41
3.5 Density Computations 45
3.6 Polymorphism and Allotropy 46
1496T_fm_i-xxvi 1/6/06 03:19 Page xv
3.7 Crystal Systems 46
CRYSTALLOGRAPHIC POINTS, DIRECTIONS, AND
PLANES 49
3.8 Point Coordinates 49
3.9 Crystallographic Directions 51
3.10 Crystallographic Planes 55
3.11 Linear and Planar Densities 60
3.12 Close-Packed Crystal Structures 61
CRYSTALLINE AND NONCRYSTALLINE
MATERIALS 63
3.13 Single Crystals 63
3.14 Polycrystalline Materials 64
3.15 Anisotropy 64
3.16 X-Ray Diffraction: Determination of
Crystal Structures 66
3.17 Noncrystalline Solids 71
Summary 72
Important Terms and Concepts 73
References 73
Questions and Problems 74
4. Imperfections in Solids 80
Learning Objectives 81
4.1 Introduction 81
POINT DEFECTS 81
4.2 Vacancies and Self-Interstitials 81
4.3 Impurities in Solids 83
4.4 Specification of Composition 85
MISCELLANEOUS IMPERFECTIONS 88
4.5 Dislocations\u2013Linear Defects 88
4.6 Interfacial Defects 92
4.7 Bulk or Volume Defects 96
4.8 Atomic Vibrations 96
MICROSCOPIC EXAMINATION 97
4.9 General 97
4.10 Microscopic Techniques 98
4.11 Grain Size Determination 102
Summary 104
Important Terms and Concepts 105
References 105
Questions and Problems 106
Design Problems 108
5. Diffusion 109
Learning Objectives 110
5.1 Introduction 110
5.2 Diffusion Mechanisms 111
5.3 Steady-State Diffusion 112
5.4 Nonsteady-State Diffusion 114
5.5 Factors That Influence Diffusion 118
5.6 Other Diffusion Paths 125
Summary 125
Important Terms and Concepts 126
References 126
Questions and Problems 126
Design Problems 129
6. Mechanical Properties of Metals 131
Learning Objectives 132
6.1 Introduction 132
6.2 Concepts of Stress and Strain 133
ELASTIC DEFORMATION 137
6.3 Stress-Strain Behavior 137
6.4 Anelasticity 140
6.5 Elastic Properties of Materials 141
PLASTIC DEFORMATION 143
6.6 Tensile Properties 144
6.7 True Stress and Strain 151
6.8 Elastic Recovery after Plastic
Deformation 154
6.9 Compressive, Shear, and Torsional
Deformation 154
6.10 Hardness 155
PROPERTY VARIABILITY AND DESIGN/SAFETY
FACTORS 161
6.11 Variability of Material Properties 161
6.12 Design/Safety Factors 163
Summary 165
Important Terms and Concepts 166
References 166
Questions and Problems 166
Design Problems 172
7. Dislocations and Strengthening
Mechanisms 174
Learning Objectives 175
7.1 Introduction 175
DISLOCATIONS AND PLASTIC
DEFORMATION 175
7.2 Basic Concepts 175
7.3 Characteristics of Dislocations 178
7.4 Slip Systems 179
7.5 Slip in Single Crystals 181
7.6 Plastic Deformation of Polycrystalline
Materials 185
7.7 Deformation by Twinning 185
xvi \u2022 Contents
1496T_fm_i-xxvi 1/6/06 02:56 Page xvi
MECHANISMS OF STRENGTHENING
IN METALS 188
7.8 Strengthening by Grain Size 
Reduction 188
7.9 Solid-Solution Strengthening 190
7.10 Strain Hardening 191
RECOVERY, RECRYSTALLIZATION, AND GRAIN
GROWTH 194
7.11 Recovery 195
7.12 Recrystallization 195
7.13 Grain Growth 200
Summary 201
Important Terms and Concepts 202
References 202
Questions and Problems 202
Design Problems 206
8. Failure 207
Learning Objectives 208
8.1 Introduction 208
FRACTURE 208
8.2 Fundamentals of Fracture 208
8.3 Ductile Fracture 209
8.4 Brittle Fracture 211
8.5 Principles of Fracture Mechanics 215
8.6 Impact Fracture Testing 223
FATIGUE 227
8.7 Cyclic Stresses 228
8.8 The S\u2013N Curve 229
8.9 Crack Initiation and Propagation 232
8.10 Factors That Affect Fatigue Life 234
8.11 Environmental Effects 237
CREEP 238
8.12 Generalized Creep Behavior 238
8.13 Stress and Temperature Effects 239
8.14 Data Extrapolation Methods 241
8.15 Alloys for High-Temperature 
Use 242
Summary 243