A maior rede de estudos do Brasil

Grátis
11 pág.
Cap 2_Revisao_Conceitos (1)

Pré-visualização | Página 1 de 2

2-1 
 
2. CONCEITOS BÁSICOS 
 
O objetivo deste capítulo é fazer uma breve revisão de conceitos vistos em disciplinas da grade fundamental 
e que serão de utilidade nesta disciplina. 
ENERGIA 
O objetivo de utilizar uma máquina de fluxo hidráulica é realizar a troca de energia entre fluido e 
equipamento. De modo que se torna importante quantificar esta troca. 
Para obter este valor de energia aplica-se a 1ª lei da termodinâmica a um volume de controle. A Figura 2.1 
indica as fronteiras físicas de uma máquina de fluxo hidráulica, que pode ser motora ou geradora. 
 
Figura 2.1 - Volume de controle 
 
A Figura 2.1 mostra o volume de controle cujas fronteiras coincidem com as delimitações físicas da máquina 
de fluxo (M.F.). As seções de entrada e descarga são representadas pelos subíndices “e” e “s” respectivamente. 
Considerando propriedades uniformes nas seções de entrada e saída, tem-se: 
 
 
 
onde: 
 Q – taxa de energia recebida na forma de calor [J/s] 
 W – taxa de energia fornecida na forma de trabalho [J/s] 
 h – Entalpia [J/kg] 
 m - vazão mássica [kg/s] 
 V – velocidade média do fluido [m/s] 
 g – aceleração da gravidade [m/s2] 
 z – cota em relação a uma referência arbitrária [m] 
 
Considerando regime permanente e somente uma entrada e uma saída: 
 
 
 
Aplicando o princípio da conservação da massa ao volume de controle, considerando regime permanente e 
somente uma entrada e uma saída, 
 
 












s
s
s
ss
e
e
e
ee gz
VhmgzVhmWQ
dt
dE
22
22













 s
s
sse
e
ee gz
VhmgzVhmWQ
22
0
22

mmmmm
dt
dm
sese
VC   
2-2 
 
Aplicando à equação da energia, 
 
 
 
Considerando “Y” como a energia por unidade de massa (J/kg) cedida pela máquina na forma de trabalho, e 
“q” a energia por unidade de massa (J/kg) recebida pela máquina na forma de calor, resulta: 
 
 
 
Para bombas hidráulicas (hydraulic pumps) e ventiladores (fans), considerando: 
o Transformação adiabática (q=0) e sem atrito (isentrópica) 023  dsss 
o Trabalho recebido pelo sistema é negativo (convenção termodinâmica) 
 
Considerando “T” a temperatura absoluta (em K) e “s” a entropia (em J/kg.K) e lembrando que: 
 
Das considerações anteriores (ds=0): 
 
 
 
Resulta, 
 
 
 (2.1) 
 
Ao utilizar a Eq.(2.1) para calcular a energia (por unidade de massa) em forma de trabalho (Y) entregue à 
bomba/ventilador, o valor obtido será negativo. Isto está em conformidade com nossa convenção termodinâmica de 
que a energia que entra no volume de controle em forma de trabalho é negativa. Como nosso interesse é quantificar 
o valor desta energia e já temos ciência de que ela entra no volume de controle, que é entregue ao equipamento, 
deixaremos seu valor positivo. Além disto, dividiremos a equação pela aceleração da gravidade (g) para obter a 
energia por unidade de peso (H) cuja unidade é [J/N], dada por: 
 
(2.2) 
 
 
Para turbinas hidráulicas (hydraulic turbines), considerando: 
o Transformação adiabática (q=0) e sem atrito (isentrópica) 023  dsss 
o Trabalho entregue pelo sistema é positivo (convenção termodinâmica) 
 
Aplicando as hipóteses acima à equação da energia tem-se o mesmo desenvolvimento dado para bombas, 
chegando-se à mesma Eq.(2.1). Que resulta, 
 
(2.3) 
vdp-dh=Tds=dq

es
eses
s
e
ctevs
e
ppppvhhvdhdh     )(dpvdpvdpdh
s
e
s
e
   eseses zzgVVppY  222
1



















 e
e
es
s
s gz
VhgzVhmWQ
22
22

   eseses zzg
VVhhYq 




 

2
22
   eseses zzVVg
ppH  22
2
1

   sesese zzVVg
pp
H 

 22
2
1

2-3 
 
VAZÃO 
A mecânica dos fluidos define vazão volumétrica [m3] como o volume de fluido que atravessa dada seção 
transversal qualquer na unidade de tempo; e vazão mássica a quantidade de massa [kg] que passa nesta seção na 
unidade de tempo, sendo esta última escrita como: 
 

SC
AdVm

 .
 
Considerando que “A” é a área da seção transversal do tubo, “V” a velocidade média do escoamento na 
seção transversal do tubo tratada e “” a massa específica do fluido, que para as máquinas hidráulicas é constante, e 
fazendo a integração tem-se que a taxa mássica será: 
 
m VA  (2.4) 
 
Enquanto a vazão volumétrica é dada por: 
 
 (2.5) 
 
Medidores de Vazão de Restrição para escoamentos internos 
Segundo Fox & MacDonald (2001, p. 249) a maioria dos medidores de restrição para escoamentos internos 
baseiam-se no princípio da aceleração da corrente fluida através de alguma forma de bocal. 
A equação geral dos medidores de orifício pode ser escrita como: 
 
(2.6) 
 
Onde: 
 “Cq” vem de gráficos (Fig.2.2) e é função de Reynolds e “m”, 
 
 
 
 Am é a área de seção, de diâmetro “d”, do medidor, 
 At é a área da seção de entrada (do tubo), de diâmetro “D”, 
 “g” a aceleração da gravidade, e 
 “ΔH” a diferença de pressão (em m) no medidor, ou a perda de carga (em m). 
Outras relações para definição dos coeficientes de vazão podem ser vistas em Fox & MacDonald (2001, 
p.249-257). 
VAmVQ 


HgACQ mQ  2
2






D
d
A
A
m
t
m
2-4 
 
 
 
Figura 2.2 - Valores de “CQ” para alguns medidores de vazão 
2-5 
 
Rotação 
Para máquinas geradoras (bombas e ventiladores) a rotação é fornecida pelo motor de acionamento. Se for 
elétrico podem ser os de corrente alternada (C.A.) ou de corrente contínua (C.C.). Existem alternativas aos motores 
elétricos; bombas de sistemas de incêndio, por exemplo, são normalmente acionadas por motores diesel. 
Os motores elétricos C.C. têm sua velocidade determinada pela tensão de alimentação. Apresentam torque 
constante em praticamente toda sua faixa de velocidade. 
Motores elétricos C.A. são divididos entre síncronos e assíncronos (indução). Os motores síncronos 
trabalham na rotação síncrona, já o assíncrono tem uma perda de velocidade devido a um fenômeno chamado 
escorregamento, que faz com que operem em rotações pouco mais baixas que a rotação síncrona. Os motores 
elétricos C.A. mais comuns tem 1 e 2 pares de pólos, e suas rotações são: de 3600 rpm e 1800 rpm para os síncronos, 
e de 3500 rpm e 1750 rpm para os assíncronos. 
Caso seja necessário ter uma rotação diferenciada da rotação dos motores C.A. pode-se utilizar acionamento 
por correia, por engrenagens ou outro tipo de redutor ou amplificador de rotação. Em motores de C.C. isto é feito 
eletronicamente. 
As máquinas motoras (turbinas) são geralmente acopladas a alternadores (geradores de C.A.) que devem 
trabalhar com rotações síncronas constantes. Essa rotação síncrona depende do número de pares de pólos do 
gerador e da frequência da rede elétrica a qual está ligada a máquina. 
A rotação síncrona (nsinc) é dada por: 
 
 f-freqüência da rede (Brasil - 60 Hz); 
 p-número de pares de pólos do alternador; 
 n-rotação síncrona. 
 
 
Perdas de Carga 
As perdas de carga em tubos e acessórios podem ser calculadas com alguns métodos: 
Hazen-Willians1: 
É um método empírico muito utilizado, que apresenta resultados razoáveis para tubos com diâmetros de 50 
mm a 3000 mm, velocidades inferiores a 3,0 m/s e escoamento com água. O sucesso de sua utilização depende, 
dentre outros fatores, da correta avaliação do coeficiente “C”. 
 
LDCQH pc ....643,10
87,485,185,1  (2.7) 
 
Onde: 
 Q – vazão [m3/s] 
 Hpc – perda de carga na tubulação forçada [m] 
 C – coeficiente

Crie agora seu perfil grátis para visualizar sem restrições.