equação diferencial avaliação 2
5 pág.

equação diferencial avaliação 2


DisciplinaEquações Diferenciais I5.969 materiais34.444 seguidores
Pré-visualização1 página
Acadêmico:
	Eduarda Boing da Silva (996273)
	
	Disciplina:
	Equações Diferenciais (MAT26)
	Avaliação:
	Avaliação II - Individual FLEX ( Cod.:455175) ( peso.:1,50)
	Prova:
	12930320
	Nota da Prova:
	10,00
	
	
Legenda:  Resposta Certa   Sua Resposta Errada  
Parte superior do formulário
	1.
	No cálculo, a integral de uma função foi criada originalmente para determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas de problemas de Física. Calculando a área entre as curvas y = 4 - x² e y = x + 2, obteremos:
	 a)
	Área igual a 14/3 u.a.
	 b)
	Área igual a 8 u.a.
	 c)
	Área igual a 9/2 u.a.
	 d)
	Área igual a 11/2 u.a.
Anexos:
Formulário - Equações Diferenciais (Saulo)
	2.
	O diferencial total de uma função de várias variáveis reais corresponde a uma combinação linear de diferenciais, cujos coeficientes compõem o gradiente da função. Sobre diferencial total da função, analise as sentenças a seguir:
	
	 a)
	Somente a sentença II está correta.
	 b)
	Somente a sentença IV está correta.
	 c)
	Somente a sentença III está correta.
	 d)
	Somente a sentença I está correta.
Parabéns! Você acertou a questão: Parabéns! Você acertou!
	3.
	Para retomar o processo de cálculo utilizando integrais duplas, calcule a integral iterada a seguir e assinale a alternativa CORRETA:
	
	 a)
	A opção III está correta.
	 b)
	A opção II está correta.
	 c)
	A opção I está correta.
	 d)
	A opção IV está correta.
Anexos:
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
	4.
	O processo de resolução das integrais duplas acontece de dentro para fora. Desta forma, leia a questão a seguir e assinale a alternativa CORRETA:
	
	 a)
	A opção I está correta.
	 b)
	A opção III está correta.
	 c)
	A opção IV está correta.
	 d)
	A opção II está correta.
Anexos:
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
	5.
	O estudo da derivação parcial permite que estendamos os conceitos estudados no Cálculo Diferencial e Integral para duas dimensões, para o espaço tridimensional. Com isto, podemos generalizar vários casos existentes e que antes não eram acessados. Baseado nisto, dada a função f(x,y) = x² - 3y², analise as sentenças a seguir:
I- f(x,y) é diferenciável em todos os pontos do plano.
II- A soma de suas derivadas parciais é 2x - 6y.
III- A soma de suas derivadas parciais é x² - y².
IV- O limite da função quando (x,y) tende a (0,0) é zero.
Assinale a alternativa CORRETA:
	 a)
	As sentenças I e III estão corretas.
	 b)
	As sentenças II e III estão corretas.
	 c)
	As sentenças III e IV estão corretas.
	 d)
	As sentenças I, II e IV estão corretas.
	6.
	Uma das aplicações clássicas dentro da análise de integração é o cálculo de área. Neste sentido, leia a questão a seguir e assinale a alternativa CORRETA:
	
	 a)
	A opção I está correta.
	 b)
	A opção IV está correta.
	 c)
	A opção II está correta.
	 d)
	A opção III está correta.
Anexos:
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
	7.
	A função do tipo x=y é chamada dentro da matemática de função identidade, ou seja, valores em "x" serão iguais para "y". Deste modo, as funções y = 2, y = x e y = 2x delimitam uma região do plano cartesiano. Utilizando a integração do tipo II, calcule a área dessa região. Em seguida, assinale a alternativa CORRETA:
	 a)
	Área = 2.
	 b)
	Área = 1.
	 c)
	Área = 0.
	 d)
	Área = -1.
Anexos:
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
	8.
	As funções delimitam os espaços que serão analisados pelo conceito de integral. Deste modo, calcule a área da região limitada pelas funções y = x,  y = 3x  e x + y = 4.
	 a)
	Área = 1.
	 b)
	Área = 2.
	 c)
	Área = 0.
	 d)
	Área = 3.
Anexos:
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
	9.
	Uma peça cilíndrica tem 10 cm de raio e 18 cm de altura. Se o raio aumentar à razão de 0,1 cm/s e a altura diminuir à razão de 0,05 cm/s, qual a taxa de variação do volume desse cilindro em relação ao tempo?
	
	 a)
	108,04.
	 b)
	98,1.
	 c)
	97,34.
	 d)
	97,7.
Anexos:
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
	10.
	As integrais duplas podem ser aplicadas em cálculos de área ou volume, dentre outras aplicações. Deste modo, leia a questão a seguir e assinale a alternativa CORRETA:
	
	 a)
	A opção II está correta.
	 b)
	A opção IV está correta.
	 c)
	A opção III está correta.
	 d)
	A opção I está correta.
Anexos:
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Formulário - Equações Diferenciais (Saulo)
Parte inferior do formulário