Prévia do material em texto
Acadêmico: Disciplina: Geometria Analítica e Álgebra Vetorial (EMC02) Avaliação: Avaliação II - Individual Semipresencial ( Cod.:460873) ( peso.:1,50) Prova: 13435020 Nota da Prova: 9,00 Legenda: Resposta Certa Sua Resposta Errada Parte superior do formulário 1. As operações vetoriais existentes são a soma e a multiplicação por um escalar. Combinando estas operações, podemos realizar uma série de outros vetores que podem ser aplicados em diversas áreas. Sendo assim, dados os vetores u = (1, -2) e v = (3,-3), quanto à opção que apresenta o vetor resultante da operação w = u - 2v, classifique V para as opções verdadeiras e F para as falsas: ( ) w = (4,5). ( ) w = (-1,-1). ( ) w = (-5,4). ( ) w = (2,-1). Assinale a alternativa que apresenta a sequência CORRETA: a) F - V - F - F. b) V - F - F - F. c) F - F - V - F. d) V - V - F - V. 2. No estudo das transformações lineares, o conceito de imagem da transformação linear é o conjunto de todos os vetores do contradomínio que são imagens de pelo menos um vetor o espaço vetorial de saída. A respeito da base para a imagem da transformação T(x,y) = (x+y, x), analise as opções a seguir: I- [(1,1),(1,0)]. II- [(1,1),(0,1)]. III- [(0,1),(1,0)]. IV- [(1,1)]. Assinale a alternativa que apresenta a sequência CORRETA: a) Somente a opção III está correta. b) Somente a opção I está correta. c) Somente a opção IV está correta. d) Somente a opção II está correta. Parabéns! Você acertou a questão: Parabéns! Você acertou! 3. Quando trabalha-se com vetores do espaço vetorial R³, pode-se combinar o produto escalar com o produto vetorial para definir uma nova operação entre três vetores. A esta operação damos o nome de produto misto, porque o resultado é uma quantidade escalar. Em particular, o módulo deste resultado nos calcula o volume do paralelepípedo formado pelos três vetores. Sobre o exposto, classifique V para as sentenças verdadeiras e F para as falsas: ( ) O volume do paralelepípedo formado por (2,-1,3), (0,2,-5), (1,-1,-2) é igual a 19. ( ) O volume do paralelepípedo formado por (2,-1,3), (0,2,-5), (1,-1,-2) é igual a 38. ( ) O volume do paralelepípedo formado por (2,-1,3), (0,2,-5), (1,-1,-2) é igual a 15. ( ) O volume do paralelepípedo formado por (2,-1,3), (0,2,-5), (1,-1,-2) é igual a 12. Assinale a alternativa que apresenta a sequência CORRETA: a) F - F - F - V. b) F - F - V - F. c) F - V - F - F. d) V - F - F - F. 4. Imagine que você queira empurrar um objeto. A força que você aplica sobre ele precisa estar na direção e sentido em que você pretende movimentá-lo ou não chegará ao resultado desejado: se desejar que o objeto vá para frente, logicamente não adiantará empurrá-lo para baixo. Isso porque a força é um exemplo de grandeza vetorial. Para descrevê-la, é preciso que se diga também o sentido e a direção em que ela é aplicada. Com relação ao vetor resultado (R) da operação -u + 2v, sendo u = (-1,2,0) e v = (-1,-2,3), analise as opções a seguir: I- R = (-3,0,6). II- R = (-1,6,-6). III- R = (-1,-6,6). IV- R = (3,0,6). Assinale a alternativa CORRETA: a) Somente a opção III está correta. b) Somente a opção I está correta. c) Somente a opção IV está correta. d) Somente a opção II está correta. Parabéns! Você acertou a questão: Parabéns! Você acertou! 5. Com relação às transformações lineares, é importante determinar corretamente conceitos de núcleo, imagem, juntamente a suas respectivas dimensões para um entendimento teórico do problema encontrado. Baseado nisto, considere T, um operador linear de R³ em R³: T(x,y,z) = (z, x - y, -z) Assinale a alternativa CORRETA que melhor apresenta uma base para o Núcleo deste operador: a) [(0,1,1)]. b) [(1,1,0)]. c) [(1,0,1)]. d) [(0,0,1)]. Parabéns! Você acertou a questão: Parabéns! Você acertou! 6. Quando trabalhamos em geometria, analisar o comportamento de duas retas ou ainda como estas retas estão situadas no espaço é uma simples tarefa, pois basta fazer uma simples visualização. No entanto, quando falamos de retas na geometria analítica ou de vetores representados por coordenadas, determinar a posição dessas retas não é uma tarefa tão simples. Sobre o ângulo formado pelos pares de vetores apresentados, com relação aos ângulos agudos, analise as opções a seguir: I- u = (2, -3, -2) e v = (1, 2, -2). II- u = (4, -2, 3) e v = (0, 2, 1). III- u = (-2, -1, 2) e v = (2, 1, 3). IV- u = (0, 2, -1) e v = (-3, -2, -4). V- u = (-2, 2, 0) e v = (-1, 1, -3). Assinale a alternativa CORRETA: a) As opções I, III e IV estão corretas. b) As opções I e IV estão corretas. c) Somente a opção II está correta. d) As opções III e V estão corretas. 7. A norma ou módulo de um vetor trata da verificação de qual é o comprimento do vetor analisado. Fisicamente, o módulo do vetor informa qual a intensidade da grandeza física envolvida em um dado problema. Sendo assim, assinale a alternativa CORRETA que apresenta a norma (ou módulo) do vetor z = (3,4): a) Raiz de 5. b) 3. c) Raiz de 10. d) 5. Parabéns! Você acertou a questão: Parabéns! Você acertou! 8. Um conjunto de vetores é dito linearmente independente (frequentemente indicado por LI) quando nenhum elemento contido nele é gerado por uma combinação linear dos outros. Em contrapartida, naturalmente, um conjunto de vetores é dito linearmente dependente (LD) se pelo menos um de seus elementos é combinação linear dos outros. Baseado nisso, assinale a alternativa CORREA que apresenta um conjunto de vetores LI: a) {(1,0,0),(0,1,0),(0,0,1)}. b) {(1,1,0),(2,2,0),(0,0,3)}. c) {(2,1,-1),(0,0,1),(2,1,0)}. d) {(1,1,0),(1,0,1),(5,2,3)}. 9. A figura a seguir apresenta a representação de um cubo de vértices nos pontos do espaço A, B, C, D, E, F, G e H. Neste cubo, imagine vetores, todos com origem no vértice A, e com extremidades em todos os outros vértices (excetuando-se A). Sobre as informações na imagem, assinale a alternativa CORRETA: a) AB. b) AC. c) AD. d) AE. 10. Os problemas ligados ao conceito de autovalores, vistos em Álgebra Linear, permeiam muito mais do que estamos acostumados a verificar. Não são apenas as raízes do polinômio característico de uma transformação linear, mas sim o problema clássico de autovalores, que é absolutamente essencial para a compreensão e a análise de estruturas simples, tais como treliças, vigas, pórticos, placas etc., como também de sistemas estruturais mais complexos, dentre os quais podem ser citados os seguintes: pontes rodoviárias e ferroviárias, torres de aço de telecomunicações e de transmissão de energia, estádios de futebol, passarelas de pedestres, edificações residenciais, edifícios altos, plataformas off-shore etc. Sobre a soma dos autovalores da transformação apresentada a seguir, classifique V para as opções verdadeiras e F para as falsas e, em seguida, assinale a alternativa que apresenta a sequência CORRETA: a) V - V - F - V. b) V - F - F - F. c) F - F - V - F. d) F - V - F - F. Parte inferior do formulário