Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

20
voltar ao índice
Esta seção é composta por três conjuntos de painéis e aparatos interativos com o objetivo de 
mostrar os principais tipos de olhos do reino animal, com ênfase no olho em câmara (como o olho 
humano) e como se forma a imagem neste tipo de olho.
Como são estes olhos e o que eles veem? 
A estrutura de olhos compostos, ocelos e olho em câmara estão associadas aos tipos de imagem 
que esses olhos veem. Um aparato interativo apresenta detalhes da estrutura de um olho humano.
Defeitos da visão
Um aparato interativo mostra os pontos no olho humano onde a imagem é formada em olhos normais, 
míopes e hipermetropes. Lentes de correção podem ser aplicadas pelos visitantes da exposição.
Ilusão de óptica 
As ilusões de óptica são decorrência de tentativas do encéfalo para interpretar as imagens com 
base em experiências anteriores. Quatro tipos diferentes de ilusões de óptica são apresentados e 
também três imagens que mostram movimento embora sejam estáticas.
Seção 2
Como são estes olhos 
e o que eles veem?
21
voltar ao índice
Como são estes olhos e o que eles veem?
Formados por uma série de unidades, os omatídeos, cada um deles com uma lente. 
As imagens formadas pelos omatídeos são unidas como em um mosaico. 
Olhos compostos
São olhos pequenos e simples que informam ao sistema nervoso sobre a intensidade 
e a direção da luz, mas não formam imagens. 
Ocelos
Possuem células fotossensíveis, cones e bastonetes, que permitem a percepção da luz, 
a visão de cores e a percepção de profundidade.
Olhos em câmara
lente um omatídeo
cristalino
facetas
nervo óptico
cristalino
fibras nervosas
células
sensoriais
células da 
retina
fortes 
pigmentosluz
Olho de mosca Como o olho composto vê
Ocelo de planária Como o ocelo vê
Olho humano Como o olho em câmara vê
22
voltar ao índice
Tipos de olhos e o que eles veem
olhos compostos - formados por uma série de unidades, os omatídeos, cada um deles com 
uma lente. As imagens formadas pelos omatídeos são unidas como em um mosaico. As libélulas, por 
exemplo, possuem mais de 28 mil omatídeos nos olhos.
ocelos são olhos pequenos e simples que informam ao sistema nervoso sobre a intensidade e 
a direção da luz, mas não formam imagens. São compostos por células sensoriais, como no caso da 
planária, por exemplo, ou por células sensoriais e uma única lente (ocelos de insetos).
O olho em câmara tem forma globular e localiza-se numa cavidade óssea e é protegido pelas 
pálpebras. Em seu interior possui células fotossensíveis, cones e bastonetes, que permitem a 
percepção consciente de luz, a visão de cores e a percepção de profundidade. Este tipo de olho pode 
se movimentar por meio de seis músculos a ele ligados.
Um mockup representando todas as estruturas do olho humano pode ser manipulado. As partes 
mais relevantes que possuem relações com os demais painéis da exposição serão tratadas em seguida.
A focalização dos raios luminosos
As partes principais do sistema de focagem do olho são: a córnea, o cristalino, e a retina. A córnea 
é um tecido resistente e transparente, em forma de cúpula que cobre a parte frontal do olho (não deve 
ser confundido com o branco do olho, a esclerótica). A córnea fica em frente da íris (parte colorida do 
olho). O cristalino é uma estrutura transparente, duplamente convexo, localizado atrás da íris. A retina 
é formada por células nervosas e revestem o fundo do globo ocular. Ela possui células foto sensíveis 
que convertem os raios de luz em sinais elétricos que são enviados ao longo do nervo óptico até o 
cérebro, que então interpreta as imagens. A mácula ou macula lútea (do latim macula, "ponto" + lútea, 
"amarelo") é um ponto ovalado de cor amarela junto ao centro da retina do olho humano. Tem um 
diâmetro de cerca 1,5 mm. É na mácula que se encontra a maior densidade de células cone do olho, 
responsáveis pela visão de cores. Essa alta densidade de cones faz com que a mácula seja o ponto 
do olho onde enxergamos com a maior clareza e definição. Porém, a grande quantidade de cones traz 
como consequência uma menor densidade de bastonetes. À noite, quando há pouca luz, os cones não 
conseguem ser estimulados com tanta eficácia, sendo nossa visão noturna fruto quase exclusivo da 
ação dos bastonetes. A fóvea ou mancha amarela é a região central da retina do olho humano onde 
se concentram os cones e onde se forma a imagem que será transmitida ao encéfalo. A Fóvea fica 
localizada no fundo da retina, ligeiramente para o lado temporal e seu tamanho é de 3mm de largura 
por 2mm de altura. É nela que há o encontro focal dos raios paralelos que penetram no olho. Fora da 
fóvea a acuidade visual vai gradativamente perdendo a eficiência, à medida que a concentração de 
cones, vai reduzindo. Basicamente a fóvea é composta de três tipos de cones: um para a cor vermelha, 
verde e outro para a azul. O ser humano tem um pequeno ponto cego no olho. Fica localizado no fundo 
da retina. Está situado ao lado da fóvea e é o ponto que liga a retina ao nervo óptico. Este ponto é 
desprovido de visão.
Em pessoas com visão normal, raios paralelos de luz entram no olho, são refratados (desviados) 
pela córnea e pelo cristalino e se concentram precisamente na retina, fornecendo uma imagem nítida 
e clara. 
23
voltar ao índice
DE
FE
IT
OS
 D
A 
VI
SÃ
O
vis
ão
 d
o 
hi
pe
rm
ét
ro
pe
vis
ão
 d
o 
m
ío
pe
A
 im
ag
em
 fo
rm
a-
se
 a
nt
es
 d
a 
re
tin
a.
Mi
op
ia
A
 im
ag
em
 fo
rm
a-
se
 a
pó
s 
a 
re
tin
a
Pa
ra
 c
or
rig
ir 
a 
m
io
pi
a 
o 
fo
co
 d
o 
ol
ho
 d
ev
e 
se
r 
es
te
nd
id
o 
co
m
 le
nt
es
 d
ive
rg
en
te
s.
Pa
ra
 c
or
rig
ir 
a 
hi
pe
rm
et
ro
pi
a 
o 
fo
co
 d
o 
ol
ho
 
de
ve
 s
er
 e
nc
ur
ta
do
 c
om
 le
nt
es
 c
on
ve
rg
en
te
s.
Hi
pe
rm
et
ro
pi
a
24
voltar ao índice
Disturbios da visão
As quatro disturbios oculares mais comuns, ou erros de refração, são a miopia, hipermetropia 
presbiopia e astigmatismo. Elas não são doenças, mas simplesmente defeitos menores na construção 
do olho. Os olhos humanos atingem sua forma e tamanho adulto ao redor dos vinte anos. Nesta idade 
os referidos distúrbios geralmente se estabilizam. 
O olho míope pode ter uma córnea acentuadamente curva ou um globo ocular mais alongado, ou 
ambos. Os raios de luz são desviados com maior intensidade (maior refração da luz) e convergem em 
um ponto na frente da retina. Em outras palavras, os raios luminosos convergem antes de atingir a 
retina. A partir deste ponto focal dos raios de luz começam a divergir. Por isso, a imagem que atinge a 
retina é desfocada. Esta imprecisão é chamado um erro refrativo e uma imagem difusa é formada. A 
visão do miope pode ser corrigida com lentes divergentes. 
Num olho hipermetrópe a luz não é suficientemente desviada (refratada) pela córnea e cristalino e 
se concentra (foco) num ponto atrás da retina. As pessoas hipermétropes veem bem objetos distantes, 
mas a visão de perto é dificultada. O globo ocular dos hipermétropes é mais curto e/ou a capacidade de 
refração é reduzida. A visão do hipermétrope pode ser corrigida com lentes convergentes.
Pessoas com astigmatismo possuem a córnea com curvatura imperfeita. Este erro de estrutura 
dá às córnea diferentes poderes refratários através de seu comprimento e largura e distorce a visão. 
Alguns raios de luz se concentram (focam) na frente da retina e outros atrás dela. Como resultado, 
nunca a retina recebe uma única imagem nítida; a imagem que se obtém é pouco nítida e distorcida.
A presbiopia é um defeito óptico que afeta a maioria das pessoas. Como a idade avisão de perto 
torna-se cada vez mais difícil, pois os olhos tem dificuldade de colocar objetos próximos em foco. 
25
voltar ao índice
Ilusão de ÓPTICA
Você consegue contar os pontos pretos? Olhe para a imagem e depois para outro ponto 
próximo a ela. A imagem realmente gira? 
As retas horizontais são paralelas?As duas retas têm o mesmo comprimento? 
O encéfalo processa os sinais recebidos pelo olho.
Veja movimento com imagens estáticas
26
voltar ao índice
Ilusões de óptica 
(Wikipedia)
O termo Ilusão de óptica se aplica a todas as ilusões que "enganam" o sistema visual humano 
fazendo-nos ver algo que não está presente ou fazendo-nos ver de um modo errôneo. Algumas ilusões 
são de caráter fisiológico, outras de caráter cognitivo. 
Os circuitos neuronais do nosso sistema visual evoluem, por aprendizagem neuronal, para um 
sistema que faz interpretações muito eficientes das cenas 3D usuais, com base na emergência no 
nosso cérebro de modelos simplificados que tornam muito rápida e eficiente essa interpretação, mas 
causam muitas ilusões ópticas em situações fora do comum. 
A nossa percepção do mundo é em grande parte autoproduzida. Os estímulos visuais não são 
estáveis: por exemplo, os comprimentos de onda da luz refletida pelas superfícies mudam com as 
alterações na iluminação. Contudo o cérebro atribui-lhes uma cor constante. Uma mão gesticulando 
produz uma imagem sempre diferente e, no entanto, o cérebro classifica-a consistentemente como 
uma mão. O tamanho da imagem de um objeto na retina varia com a sua distância, mas o cérebro 
consegue perceber qual é o seu «verdadeiro» tamanho. A tarefa do cérebro é extrair as características 
constantes e invariantes dos objetos a partir da enorme quantidade de informação sempre mutável 
que recebe. O cérebro pode também deduzir a distância relativa entre dois objetos quando há 
sobreposição, interposição ou oclusão. Ele pode também deduzir a forma de um objeto a partir das 
sombras. No entanto, existem vários tipos de ilusões de distância e profundidade que surgem quando 
esses mecanismos de dedução inconsciente resultam em deduções errôneas.
A imagem da retina é a fonte principal de dados que dirige a visão, mas o que nós vemos é uma 
representação “virtual” 3D da cena em frente a nós. Não vemos uma imagem física do mundo, vemos 
objetos. E o mundo físico em si não está separado em objetos. Vemos o mundo de acordo com a maneira 
como o nosso cérebro o organiza. O processo de ver é um de «completar» o que está em frente a nós 
com aquilo que o nosso cérebro julga estar vendo. O que vemos não é a imagem na nossa retina - é 
uma imagem tridimensional criada no cérebro, com base na informação sobre as características que 
encontramos, mas também com base nas nossas «opiniões» sobre o que estamos vendo. 
O que vemos é sempre, em certa medida, uma ilusão. A nossa imagem mental do mundo só 
vagamente tem por base a realidade. Porque a visão é um processo em que a informação que vem dos 
nossos olhos converge com a que vem das nossas memórias. Os nomes, as cores, as formas usuais 
e a outra informação sobre as coisas que nós vemos surgem instantaneamente nos nossos circuitos 
neuronais e influenciam a representação da cena. As propriedades percebidas dos objetos, tais como 
o brilho, tamanho angular, e cor, são “determinadas” inconscientemente e não são propriedades físicas 
reais. As ilusões surgem quando os “julgamentos” implícitos na análise inconsciente da cena entram em 
conflito com a análise consciente e raciocinada sobre ela.
A interpretação do que vemos no mundo exterior é uma tarefa muito complexa. Já se descobriram 
mais de 30 áreas diferentes no cérebro usadas para o processamento da visão. Algumas parecem 
corresponder ao movimento, outras à cor, outras à profundidade (distância) e mesmo à direção de um 
contorno. E o nosso sistema visual e o nosso cérebro tornam as coisas mais simples do que aquilo que 
elas são na realidade. E é essa simplificação, que nos permite uma apreensão mais rápida (ainda que 
imperfeita) da «realidade exterior», que dá origem às ilusões de óptica.
27
Uma ilusão de distância 
O sistema visual «conhece a perspectiva», e isso nos é muito útil para interpretar uma imagem 
tridimensional. Mas isso gera algumas ilusões, quando numa figura plana há pistas que enganam o 
sistema visual e o levam erradamente a fazer uma interpretação usando a perspectiva. 
Em situações usuais, quando o sistema visual detecta linhas que parecem paralelas (embora na 
imagem da retina não o sejam), usa o seu ângulo para estimar o ângulo do nosso olhar relativamente 
ao solo. É um mecanismo automático que nos é muito útil. Mas o que se passa é que o sistema visual 
por vezes o usa erradamente no caso de certas figuras planas.
No exemplo acima vemos a linha que está em baixo como sendo mais curta do que a outra. Mas 
as duas linhas têm exatamente o mesmo tamanho. Isso acontece porque o sistema visual usa o ângulo 
entre as duas retas laterais para estimar o ângulo do nosso olhar relativamente ao solo. E isso faz com 
que se pense que a linha de baixo está mais próxima. Ora, se ambas têm a mesma aparência visual e 
a linha de cima está mais longe, então ela deve ser na realidade mais longa. E é assim mesmo que a 
vemos. O sistema visual (julgando ser muito esperto) engana-se redondamente.
Mas esta é uma «ilusão» que mostra o sucesso do sistema visual na estimativa da perspectiva. 
A capacidade que ele tem para realizar é aquilo a que se chama a «constância do tamanho» dos 
objetos. É essa capacidade que faz com que, quando uma pessoa se afasta de nós, não a «sintamos» 
diminuindo de tamanho. Em outras palavras, existe um mecanismo cerebral que impõe a constância do 
tamanho dos objetos, como se eliminasse o efeito da perspectiva. E o mecanismo funciona com bastante 
precisão. Se virmos uma folha de certo tamanho ao longe, desde que a distância não seja exagerada, e 
tivermos ao nosso lado algumas folhas de vários tamanhos diferentes, sabemos normalmente escolher 
entre elas a que tem o mesmo tamanho daquela que está longe! O problema é quando esse mecanismo 
é usado indevidamente.
voltar ao índice
Outro exemplo de ilusão de óptica é o triangulo de Kaniza, um triângulo branco “flutuante”, que não 
existe, mas pode ser “visto”. O encéfalo tem necessidade de ver objetos familiares e tem a tendência 
de criar uma imagem “inteira” a partir de elementos individuais.
28
voltar ao índice
Seção 3
Como enxergamos as cores? 
Como se formam as cores em 
plantas e animais?
Como enxergamos as cores?
Esta seção mostra como as cores são formadas do ponto de vista da física e como elas são 
percebidas e interpretadas pelo encéfalo dos seres vivos. Um aparato interativo mostra as cores 
primárias e como é possível compor estas cores para obter outras.
Como se formam as cores em plantas e animais? 
Na natureza há dois tipos de cores: estruturais e pigmentares. As cores pigmentares são ocasionadas 
por moléculas (pigmentos) com capacidade de absorver algumas cores e reemitir outras. As cores das 
flores são pigmentares. As cores estruturais são ocasionadas por estruturas microscópicas presentes 
em alguns tecidos biológicos como, por exemplo, asas de borboletas, escamas de cobras e penas de 
aves. Um conjunto de mock ups explicita que as cores estruturais fazem parte do órgão ou tecido vivo 
e não podem ser extraídas por solventes como as cores pigmentares.
29
voltar ao índice
Como enxergamos as cores?
As alterações elétricas 
originadas pela absorção da luz 
são transmitidas pelo nervo 
óptico até o encéfalo onde são 
interpretadas e compostas.
nervo óptico
retina
cor / forma
movimento / profundidade
profundidade
cor
forma
movimento
NEURÔNIOS 
os que formam o nervo 
óptico transmitem 
informações da retina para 
o encéfalo
NEURÔNIOSfazem sinapses 
com cones e 
bastonetes
CÉLULAS 
PIGMENTADAS 
bloqueiam a 
passagem da luz 
para outras regiões
BASTONETES
células fotorreceptoras 
que detectam diferentes 
níveis de luminosidade
CONES
células fotorreceptoras 
que detectam as cores 
primárias
entrada da luz
retina
30
voltar ao índice
As células cone
O painel mostra que existem três tipos de células cone que são as responsáveis pela visão de cores. 
As células cone são células fotorreceptoras presentes na retina do olho e responsáveis pela visão de 
cores; funcionam melhor em luz relativamente brilhante, ao contrário de bastonetes que funcionam 
melhor com pouca luz. Os cones estão presentes em grande número na fóvea, mas sua concentração 
se reduz rapidamente para a periferia da retina. A retina do olho humano possui em média 4,5 milhões 
de cones e 90 milhões de bastonetes. 
Os seres humanos tem visão tricromática, pois possuem três tipos de cones. O primeiro responde a 
luz de comprimentos de onda longos (vermelho). O segundo tipo responde mais a luz de comprimento 
de onda médio, atingindo um máximo de absorção da cor verde. O terceiro tipo responde a luz de 
comprimento curto, de uma cor azulada. Os três tipos têm picos de comprimentos de onda entre 564-
580 nm, 534-545 nm, e 420-440 nm, respectivamente. A diferença entre os sinais recebidos a partir dos 
três tipos de cones permite que o cérebro perceba todas as cores possíveis. Todos os receptores contem 
o pigmento fotoopsina, com variações na sua conformação causando diferenças nos comprimentos de 
onda óptimos absorvidos.
A cor amarela, por exemplo, é percebida quando os cones que absorvem comprimentos de onda 
longos são estimulados ligeiramente mais do que os cones que absorvem comprimentos de onda 
medianos . 
As opsinas
Os fotopigementos que absorvem luz são denominados opsinas. Eles se localizam na membrana das 
células cone. A opsina é formada por uma parte proteica, uma cadeia polipeptídica de 348 aminoácidos, 
e uma parte não proteica, o 11-cis-retinal, derivado da vitamina A. Quando a luz incide no 11-cis-retinal 
esta molécula é transformada produzindo reações que levam a um impulso nervoso. A opsina dos 
bastonetes absorve fortemente a luz verde azulada e é responsável pela visão monocromática no escuro. 
As opsinas das células cone são denominadas fotopsinas, diferem em apenas alguns aminoácidos, o 
suficiente para que absorvam a luz em comprimentos de onde diferentes. Estes pigmentos são a base 
da visão a cores. 
A luz incide na frente da retina onde há fibras nervosas que se juntam formando o nervo 
óptico. A absorção de luz pelos pigmentos origina alterações elétricas nos cones que são transmitidas 
por neurônios que compõem o nervo óptico até o encéfalo onde ela é interpretada. A informação óptica 
passa por várias partes do cérebro em seu caminho até a região occipital do encéfalo, onde uma parte 
significnte da imagem é avaliada e processada. 
31
voltar ao índice
G
ire
 c
ad
a 
um
 d
os
 b
ot
õe
s 
se
pa
ra
da
m
en
te
 p
ar
a 
pe
rc
eb
er
 a
s 
co
re
s 
pr
im
ár
ia
s.
 
G
ire
 a
o 
m
es
m
o 
te
m
po
 m
ai
s 
de
 u
m
 b
ot
ão
 p
ar
a 
co
m
bi
na
r a
s 
co
re
s 
pr
im
ár
ia
s 
e 
co
m
po
r o
ut
ra
s 
co
re
s.
Co
mo
 as
 c
or
es
 sã
o f
or
ma
da
s ?
co
mp
os
iç
ão
 da
s c
or
es
+ + +
= = =
Aparato interativo
32
voltar ao índice
Cores
A cor é uma percepção visual provocada pela ação de um feixe de fótons sobre células especializadas 
da retina, que transmitem através de informação pré-processada no nervo óptico, impressões para o 
sistema nervoso. 
A cor de um material é determinada pelas médias de frequência dos pacotes de onda que as suas 
moléculas constituintes refletem. Um objeto terá determinada cor se não absorver justamente os raios 
correspondentes à frequência daquela cor.
Assim, um objeto é vermelho se absorve preferencialmente as frequências fora do vermelho.
Teoria da cor (Wikipédia)
Quando se fala de cor, há que distinguir entre a cor obtida aditivamente (cor luz) ou a cor obtida 
subtrativamente (cor pigmento). 
No primeiro caso, chamado de sistema RGB, temos os objetos que emitem luz (monitores, 
televisão, lanternas, etc) em que a adição de diferentes comprimentos de onda das cores primárias de 
luz Vermelho + Azul (cobalto) + Verde = Branco.
No segundo sistema (subtrativo ou cor pigmento) iremos manchar uma superfície sem pigmentação 
(branca) misturando-lhe as cores secundárias da luz (também chamadas de primárias em artes 
plásticas); Ciano + Magenta + Amarelo. Este sistema corresponde ao "CMY" das impressoras e serve 
para obter cor com pigmentos (tintas e objetos não-emissores de luz). Subtraindo os três pigmentos 
temos uma matiz de cor muito escura, muitas vezes confundido com o preto.
O sistema "CMYK" é utilizado pela industria gráfica nos diversos processos de impressão, como por 
exemplo: o off-set, e o processo Flexográfico, bastante usado na impressão de etiquetas e embalagens.
O "K" da sigla "CMYK" corresponde à cor "Preto" (em inglês, "Black"), sendo que as outras são:
• C = Cyan (ciano)
• M = Magenta (rosa)
• Y = Yellow (amarelo)
• K = Black (preto)
Alguns estudiosos afirmam que a letra "K" é usada para o "Preto" ("Black") como referência a 
palavra "Key", que em inglês significa "Chave". O "Preto" é considerado como "cor chave" na Industria 
Gráfica, uma vez que ele é usado para definir detalhes das imagens. Outros afirmam que a letra "K" da 
palavra "blacK" foi escolhida pois, a sigla "B" é usada pelo "Blue" = "Azul" do sistema RGB.
As cores primárias de luz são as mesmas secundárias de pigmento, tal como as secundárias de 
luz são as primárias de pigmento. As cores primárias de pigmento combinadas duas a duas, na mesma 
proporção, geram o seguinte resultado:
• magenta + amarelo = vermelho
• amarelo + ciano = verde
• ciano + magenta = azul cobalto
Focos de luz primária combinados dois a dois geram o seguinte resultado:
• azul cobalto + vermelho = magenta
• vermelho + verde = amarelo
• verde + azul cobalto = ciano.
33
voltar ao índice
A principal diferença entre um corpo azul (iluminado por luz branca) e uma fonte emissora azul é de 
que o pigmento azul absorve o verde e o vermelho refletindo apenas azul enquanto que a fonte emissora 
de luz azul emite efetivamente apenas azul. Se o objeto fosse iluminado por essa luz ele continuaria a 
parecer azul. Mas, se pelo contrário, ele fosse iluminado por uma luz amarela (luz Vermelha + Verde) 
o corpo pareceria negro.
Note-se ainda que antes da invenção do prisma e da divisão do espectro da luz branca, nada disto 
era conhecido, pelo que ainda hoje é ensinado nas nossas escolas que Amarelo/Azul/Vermelho são as 
cores primárias das quais todas as outras são passíveis de ser fabricadas, o que não é incorreto. As 
cores percebidas por nossos receptores visuais não correspondem as cores encontradas na Natureza.
Na Natureza amarelo, azul e vermelho são as cores de onde todas as outras se originam a partir 
de suas combinações:
• amarelo + azul = verde
• vermelho + amarelo = laranja
• azul + vermelho = roxo.
A combinação de cores primárias formam cores secundárias, que combinadas com cores secundárias 
formam cores terciárias e assim por diante.
34
COMO SE FORMAM AS CORES EM PLANTAS E ANIMAIS?
Flor contendo pigmento
=
=
+
+
Flor cujo pigmento foi 
retirado por solvente
Solvente contendo o 
pigmento retirado da flor
Asa de borboleta com 
cor estrutural
Não há pigmento na asa para 
ser retirado
Solvente sem pigmento
Cores pigmentares
De todas as cores absorvidas pelas moléculas dos pigmentos, 
apenas algumas sãoreemitidas.
asa de borboleta
Escamas da asa ampliadas 
1.000 vezes 
Escamas ampliadas 5.000 vezes Escamas ampliadas 16.500 vezes 
Cores Estruturais
A presença de estruturas microscópicas 
em alguns tecidos biológicos faz com que, 
de toda a luz incidente nelas, 
apenas certas cores sejam percebidas.
voltar ao índice
COMO SE FORMAM AS CORES EM PLAN
asa de borboletatat
Cores Est
A presença de estruturas microscópicas 
em alguns tecidos biológicos faz com que, 
de toda a luz incidente nelas, 
apenas certas cores sejam percebidas.
Asa de borboleta com ta com t Não há pigmento to t na asa para para p
to retirado to retirado t da florda flord
35
voltar ao índice
Cores na natureza
Na natureza as cores podem ser pigmentares ou estruturais. As cores pigmentares são geradas pela 
absorção seletiva de pigmentos, ou seja, eles absorvem alguns comprimentos de onda e refletem outros. 
A cor vermelha, por exemplo, é gerada por um tipo de pigmento que absorve todos os comprimentos 
de onda exceto o vermelho. Por isso, o comprimento de onda do vermelho é o único a ser refletido pelo 
pigmento. Os pigmentos podem ser removidos dos organismos por solventes, nos quais se dissolvem. 
O painel acima apresenta mock ups da flor de azaleia que possui cor pigmentar. Os pigmentos 
podem ser retirados por solventes. No caso da cor estrutural, como as asas de borboleta e escamas de 
cobras, os solventes não removem a cor.
A cor estrutural é causada pela interação da luz com estruturas muito dominutas (nanoescala), com 
geometrias da ordem de grandeza de comprimentos de onda visíveis de luz. A luz que encontra estas 
estruturas microscópicas está sujeita a fenômenos ópticos, incluindo interferência, efeitos de grade de 
difração, efeitos de cristal fotônico, e espalhamento de luz. Esses fenômenos levam a reflexão seletiva 
de determinados comprimentos de onda de luz através de interferência construtiva e destrutiva. Este 
tipo de coloração é bastante diferente do que podemos considerar cor de absorção eletronica, isto 
é, a cor derivada da absorção seletiva de comprimentos de onda discretos do espectro visível por 
electrons temporariamente promovidos a orbitais mais elevadas de energia. Ao contrário de coloração 
de absorção electronica, a cor estrutural não é uma propriedade do material, mas é antes uma função 
da geometria de um material.
As tonalidades brilhantes encontrados nas penas do pavão são o resultado de disposição periódica 
de moléculas de melanina e dos espaços de ar numa estrutura bidimensional fotonica. As ondas de luz 
refletidas por esta estrutura são seletivamente reforçadas e anuladas, em última análise, produzindo 
aquilo que nossos olhos percebem como uma única cor predominante. Variando-se a periodicidade 
geométrica destas estruturas de melanina, a cor percebida é muito diferente. Se estas penas foram 
finamente moídas, a periodicidade da sua nanoestrutura será perdida e um pó essencialmente incolor 
permaneceria. Tais exemplos de cor estrutural são encontrados em todo o mundo natural, a partir de 
exoesqueletos de insetos, asas de borboletas, escamas de cobras, pedras de opala, etc.
É comum a visuzalização de franjas coloridas na superfície das bolhas de sabão. Estas franjas 
devem-se à interferência entre os raios de luz refletidos nas duas faces da fina película de líquido que 
forma a bolha de sabão. Numa parte da bolha, vista de um certo ângulo, a interferência pode intensificar 
certos comprimentos de onda, ou cores, da luz refletida, enquanto suprime outros comprimentos de 
onda. A cor vista depende das intensidade relativas dos diferentes comprimentos de onda na luz 
refletida. Em outras zonas, vistas de outros ângulos, os comprimentos de onda que se reforçam ou se 
cancelam são outros. A estrutura das franjas de cores depende da espessura da película de líquidos 
nos diferentes pontos.