Buscar

Avaliação economica em projetos renovaveis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 51 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 51 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 51 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 1 
 
 
Avaliação econômica em projetos 
Renováveis 
 
 
 
 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 2 
Avaliação Econômica em Projetos Renováveis 
 
 
UNIDADE 1. Conceitos Básicos 
 
1.1 Eficiência Energética 
 
A eficiência energética tem o objetivo de reduzir o consumo de energia provendo 
o mesmo nível de serviço energético ou manter o consumo e aumentar o oferecimento 
do serviço energético. É a característica de um equipamento ou processo produtivo de 
entregar a mesma quantidade de produto ou serviço a partir da menor quantidade de 
energia (quantificada como sendo o inverso de sua intensidade energética). 
 
O uso racional de energia representa a utilização da menor quantidade técnica e 
economicamente possível para a obtenção dos diversos produtos e serviços por meio 
da eliminação dos desperdícios, do uso de equipamentos eficientes e do 
aprimoramento de processos produtivos. 
 
 
Energia é a capacidade de algo de realizar trabalho, ou seja, gerar força em 
um determinado corpo, substância ou sistema físico. 
 
• Na Física, a energia está associada à capacidade de qualquer corpo de produzir 
trabalho, ação ou movimento; 
• O conceito de energia é utilizado no sentido figurado para designar o vigor, a 
firmeza e a força. 
 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 3 
Veja que conceito de energia está relacionado à capacidade de produzir trabalho. 
A energia causa modificações na matéria e, em muitos casos, de forma irreversível. 
 
A energia elétrica é a forma de energia mais utilizada no mundo. Ela pode ser obtida 
de várias maneiras, mas a principal fonte provém das usinas hidrelétricas. Como o 
próprio nome (hidrelétrica) já indica, a força da água é responsável pela geração de 
energia, e o processo consiste em grandes volumes de águas represadas que caem 
pelas tubulações fazendo girar turbinas acopladas a um gerador, produzindo assim 
energia elétrica. As redes de transmissão são responsáveis pela distribuição da energia 
elétrica para as diferentes regiões do país. 
 
1.2 Energia Renovável 
 
É toda energia produzida com o uso de recursos naturais que se renovam ou podem 
ser renovados. O conceito existe em oposição ao da energia não renovável, gerada 
por combustíveis fósseis, como petróleo, gás natural e carvão mineral, cujas reservas 
um dia acabarão, visto que a Terra necessita de milhões de anos para reproduzi-los. 
 
A mais antiga energia renovável em uso é a queima de lenha, pois replantar as 
árvores garante seu suprimento. A energia produzida pelo movimento da água (por 
meio de turbinas, nos rios ou nas ondas do mar), a da luz solar, a dos ventos, e a dos 
biocombustíveis são os exemplos mais relevantes hoje. 
 
1.3 Energia Sustentável 
 
É a que mantém um ciclo equilibrado de produção e consumo, por que é gasta em 
quantidade e velocidade nas quais a natureza pode repô-la. 
 
O conceito está diretamente ligado ao de desenvolvimento sustentável: Levam-se em 
conta os fatores ambientais, mas não dignifica necessariamente energia limpa. 
 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 4 
A lenha, por exemplo, é um recurso sustentável quando a madeira é cultivada para 
esse fim; mas a fumaça de sua queima é tóxica e poluente. Portanto, não é limpa. 
 
Várias fontes de energia podem ser ou não sustentáveis. A água é sustentável desde 
que seus mananciais e o fluxo sejam preservados, o que implica em proteger a matas 
e evitar que um rio ou uma represa percam volume. 
 
1.4 Energia Limpa 
 
É aquela que não polui, ou que polui menos do que as tradicionais. Na produção e no 
consumo, os exemplos mais comuns são a energia hidrelétrica, a dos ventos (eólica) 
e a solar. 
 
Contudo, a busca da energia limpa exige pesquisa e aprimoramento constantes. No 
Brasil, grandes represas hidrelétricas foram construídas pois sua energia é renovável, 
mas os projetos deixaram de considerar os danos que sua construção causaria ao meio 
ambiente, e, principalmente, a necessidade de, antes encher os lagos, retirar as matas. 
Resultado: debaixo de água, as árvores se decompõem e liberam gases de efeito 
estufa por dezenas de anos, como ocorre em Itaipu, Balbina e Tucuruí. 
 
O conceito também é aplicado na comparação entre produtos: automóveis movidos a 
gás natural são considerados mais “limpos” do que os movidos a gasolina, pois são 
menos poluentes. 
 
Agora que os conceitos já foram apresentados, vamos tratar dos aspectos econômicos 
deste tema em nossa disciplina. 
 
Nos dias atuais, as empresas estão buscando cada vez mais soluções para melhorar a 
eficiência do sistema de energia, porém, os grandes desafios deste setor estão no 
aumento do custo e da demanda, além da integração de fontes renováveis e do 
envelhecimento da infraestrutura energética. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 5 
A utilização racional de energia, chamada simplesmente de eficiência energética, 
consiste em usar menos energia para fornecer a mesma quantidade de valor 
energético. Por sua vez, eficiência energética é uma atividade que procura aperfeiçoar 
o uso das fontes de energia. 
 
Nossa disciplina visa analisar a eficiência energética com a aplicação de metodologias 
propostas no protocolo de medição e verificação. Este protocolo permite conhecer o 
quanto está sendo efetivamente economizado, de modo a otimizar o consumo e gastos 
de energia, a fim de aumentar a produtividade; visando a uma boa gestão em 
eficiência energética. 
 
Quando as empresas investem em eficiência energética, seus executivos naturalmente 
desejam saber o quanto economizaram e quanto tempo as economias irão durar. 
 
A determinação das economias em energia requer medição precisa e metodologia 
reprodutível, conhecida como protocolo de medição e verificação. Uma solução 
para superar este problema é instituir uma consistente metodologia de medição e 
verificação de eficiência energética junto a um sistema de monitoramento confiável. 
 
1.5 Entendendo a Curva de Carga 
 
Curva de carga é o registro horário, em um período diário, das demandas de 
capacidade, podendo ser, excepcionalmente para período semanal, mensal ou anual. 
 
A curva de carga típica, conforme a figura abaixo, é o “somatório” das curvas de 
cargas típicas: residencial, comercial, industrial e de iluminação pública. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 6 
 
A figura acima demonstra claramente as diversas “curvas de carga” de acordo com 
as respectivas fontes. 
 
O Fator de Carga, de um consumidor de energia, e o Fator de Capacidade, de um 
gerador, são definidos da seguinte maneira: 
 
 
 
Onde: 
• E [MWh] é a energia gerada no período de tempo t; 
• P [MW] é a potência instalada, assegurada ou garantida; 
• t [h] é o intervalo de tempo considerado. 
• No caso específico de um ano, o período t equivale a 8760 horas e no caso 
de um mês equivale a 730 horas. 
 
O fator de carga é adimensional, variando entre 0 e 1, e pode ser interpretado como 
sendo: 
• O percentual de tempo, do período considerado, no qual a usina operou a plena 
carga; 
• A potência média gerada, em percentual da potência total, no intervalo de 
tempo considerado. 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 7 
Podemos então concluir que o fator de capacidade de uma estação de geração de 
energia elétrica é a proporção entre a produção efetiva da usina em um período de 
tempo e a capacidade total máxima neste mesmo período. 
 
 
 
 
1.6 Aspecto importante em relação à “PotênciaInstalada” 
 
A potência instalada ou ainda potência nominal instalada de uma Pequena Central 
Hidrelétrica (PCH) ou de uma Central Geradora Hidráulica (CGH) era, até 
recentemente, definida, em números inteiros, como o somatório das potências 
elétricas ativas nominais das unidades geradoras da central. 
 
A potência elétrica ativa, por sua vez, é dada pelo produto entre a potência elétrica 
aparente do gerador e o fator de potência nominal do mesmo, considerando regime 
de operação contínuo e condições normais de operação. 
 
Essa era a definição dada pela Resolução Aneel n° 407, de 19 de outubro de 2000. 
Embora na referida resolução seja feita referência à questão da máquina primária 
(turbina hidráulica), não há uma definição clara de como considerar a influência desta 
na potência final gerada, e, por consequência, na potência instalada. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 8 
Em outras palavras, quando não há casamento entre as potências da turbina e do 
gerador, o que é relativamente comum em centrais menores, e especificamente 
quando a turbina tem potência de eixo menor do que a potência elétrica ativa do 
gerador, resulta para a central uma potência instalada que é maior do que aquela que 
ela é efetivamente capaz de gerar. 
 
Visando corrigir esta falha, em 30 de novembro de 2010, foi publicada pela Aneel a 
Resolução Normativa n° 420. Segundo esta resolução, no processo de outorga, 
deverão ser registrados os valores de potência instalada e potência líquida, devendo 
estes ser confirmados posteriormente quando da entrada em operação comercial da 
central. 
 
A potência instalada continua a ser dada pelo somatório das potências elétricas 
ativas nominais das unidades geradoras principais da central. Potência esta que é 
definida como a máxima potência elétrica ativa possível de ser obtida nos terminais do 
gerador elétrico, respeitados os limites nominais do fator de potência, e comprovada 
mediante dados de geração ou “ensaio de desempenho”. 
 
Já a potência líquida é definida como a potência elétrica ativa máxima 
disponibilizada pela central em seu ponto de conexão, ou seja, descontando da 
potência bruta o consumo relativo a serviços auxiliares e a perdas no sistema de 
conexão, e comprovada mediante dados de geração ou “ensaio de desempenho”. 
 
Ressalta, ainda, a resolução que as centrais hidráulicas com potência instalada menor 
do que 1.000 [kW] (CGHs) estão dispensadas da determinação da potência líquida. 
Ainda, nestes casos, a potência instalada será definida com base no menor valor entre 
a potência nominal do equipamento motriz (kW) e a potência elétrica ativa do gerador 
(kW), definida pelo produto entre a potência aparente (kVA) e o fator de potência 
nominal, ambos tomados diretamente da placa aprovada pelo fabricante para 
operação em regime contínuo. 
 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 9 
 
 
1.7 Curva de Produção da Geração 
 
A curva de produção (despacho) da geração apresenta, ao longo do tempo, a potência 
gerada. Assim como para a curva de carga, a curva de produção apresenta uma 
produção média e uma produção de ponta, limitada pela capacidade instalada (no 
sistema gerador ou na usina). 
 
 
 
1.8 Aspectos Técnicos e Econômicos da Integração da Geração aos Sistemas 
Elétricos de Potência 
 
A integração de projetos de geração de energia elétrica aos sistemas de potência deve 
basear-se, conforme enfatizado em nossa aula, na busca de um objetivo global voltado 
ao melhor desempenho conjunto, à eficiência energética e às inserções ambiental e 
social mais adequadas. 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 10 
Aspectos fundamentais nesta integração são as características básicas do mercado a 
ser atendido, do sistema elétrico já existente, e, obviamente, das novas fontes e da 
sua integração a este sistema. 
 
É importante ressaltar que todos os aspectos relevantes do problema – sociais, 
ambientais, políticos, técnicos e econômicos – têm apresentado, cada vez mais, 
influência preponderante nas decisões relativas à geração de energia. 
 
Embora técnicas mais modernas de análise e planejamento estejam avaliando, com 
maior segurança e profundidade, todos esses aspectos, qualquer estudo mais 
completo deve ter como base, necessariamente, os aspectos técnicos e econômicos. 
 
Com relação à integração das alternativas de geração dos sistemas de potência, cada 
uma dessas variáveis afeta principalmente uma característica específica do 
dimensionamento do sistema gerador: 
 
a) A demanda média e a consequente energia se relacionam com a capacidade 
de o sistema gerador alimentar continuamente, no período considerado, a carga 
suprida, influenciando então o dimensionamento da energia firme, ou 
barragem/reservatório, no caso de fontes com características estocásticas, ou, 
então, do consumo de combustível, no caso das demais fontes; 
b) A demanda máxima relaciona-se diretamente com a capacidade de o sistema 
gerador alimentar instantaneamente a carga, ou seja, com a potência instalada. 
 
Em função das características específicas, cada componente do sistema de geração 
vai adequar-se melhor a um certo tipo de operação de carga: 
• Na Base, 
• Na Ponta; ou 
• Na Posição Intermediária. 
 
Essa adequação é traduzida, na prática, pelo desempenho técnico e econômico do 
componente, que é então utilizado para definir a melhor alocação na curva de carga. 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 11 
 
Neste contexto, os custos formam uma parte de grande importância, sendo, portanto, 
necessária uma análise de suas características em função dos diversos tipos de usina 
e suas condições operativas. 
 
Os principais componentes dos custos das usinas geradoras para o tipo de análise que 
se pretende no momento (não considerando impostos, taxas, custos financeiros e 
ambientais etc.) são: 
a) Custos de investimento, associados com o capital empregado na construção 
da usina; 
b) Juros durante a construção, que são função financeira do cronograma de 
desembolso da usina durante a construção; 
c) Custos de combustível, importantes para as usinas termelétricas (UTEs), 
começam a ser considerados para as usinas hidrelétricas (UHEs), por meio do 
custo da água, e são inexistentes para as usinas solares fotovoltaicas e eólicas; 
d) Custos de operação e manutenção, alguns incluem aqui os custos de 
combustível. 
 
1.9 Considerações Importantes 
 
O processo de decisão de investimento em um projeto se dá através de uma 
avaliação de sua viabilidade econômico-financeira, onde as técnicas desenvolvidas 
fornecem os recursos necessários para esta tomada de decisão. 
 
Nesse processo, busca-se a melhor proporção de capital próprio e de terceiros para 
definir os recursos a serem empregados no projeto. Esta pesquisa busca descrever as 
principais etapas de avaliação de investimento abordando a projeção de fluxo de caixa, 
o cálculo do custo de capital empregado e a aplicação de técnicas de avaliação. 
 
No processo de análise da viabilidade da atividade serão avaliados: 
• A estimativa do investimento do fluxo de caixa; 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 12 
• A determinação da taxa mínima de atratividade do negócio em relação ao Valor 
Presente Líquido (VPL), da Taxa Interna de Retorno (TIR), e do período de 
retorno do investimento (payback descontado), da avaliação do desconto de 
fluxo de caixa (DFC), para projetos de sistema de micro e minigeração 
distribuída fotovoltaica (Solar). 
 
UNIDADE 2. Comparação Econômica de Projetos de Geração 
 
2.1 ComparaçãoEconômica de Projetos de Geração 
 
A comparação econômica de projetos de geração permite a tomada de decisão a favor 
de uma alternativa com relação às outras, ou, ainda, o estabelecimento de uma ordem 
prioritária de desenvolvimento de projetos de geração ao longo do tempo (por meio 
de ordenamento dos custos de forma crescente). 
 
Em sua forma mais simples, baseia-se na determinação do custo unitário da energia, 
utilizado como índice de mérito, usualmente expresso em US$/MWh ou R$/MWh. 
 
Para considerar a diferença entre a vida útil econômica das diversas usinas, esses 
índices são, em geral, calculados em bases anuais: custos anuais e energia produzida 
anualmente. 
 
A seguir, apresentam-se as etapas básicas do cálculo do referido índice. 
 
Parcela relativa aos custos de investimentos e aos juros durante a construção, dada 
por: 
CI = (I / EG) x FRG 
 
Em que: 
• I= Investimento, já considerados os juros durante a construção (JDC) e 
supondo-se ter sido efetuado no início da operação da usina; 
• EG= Energia anual gerada, calculada por: 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 13 
EG= PI x FCM x 8.760 (MWh/ano) 
 
Sendo: 
• PI= Potência Instalada (MW); 
• FCM= Fator de Capacidade, que pode ser médio, mínimo, máximo, ou mesmo 
um valor resultante de avaliações estatísticas, quando se utiliza análise de riscos 
instalada. Esse custo é muitas vezes representado como porcentagem dos 
custos de investimentos. 
 
Por equações, pode-se inferir a relação existente entre os custos unitários e o fator de 
capacidade de uma dada usina, o que permitirá, por comparação com outras usinas 
(ou alternativas para uma mesma usina), a determinação de uma faixa de fatores da 
capacidade na qual esta será mais econômica do que as demais alternativas de 
geração. 
 
O sistema econômico será aquele que determinará adequadamente, e da forma mais 
barata, essas características das diversas usinas, para atender aos requisitos de carga 
(demanda máxima, fator de carga). 
 
A variação dos custos unitários com o fator de capacidade é função de diversos 
componentes e características das outras. 
 
 
 
2.2 Custo Unitário x Fator de Capacidade para Usinas Termelétricas 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 14 
Os custos unitários de usinas termelétricas apresentam comportamento diferente em 
função do fator de capacidade em que operam, dependendo principalmente do tipo 
de combustível utilizado e da tecnologia associada. 
 
Abaixo, exemplificamos o comportamento típico do custo unitário de UTEs em função 
do fator de capacidade para os principais tipos de centrais termelétricas. 
 
 
 
 
As usinas termelétricas nucleares e a carvão, com altos custos de investimentos e 
baixos custos variáveis (operação + manutenção + combustível), em geral, adaptam-
se à operação na base da curva de carga, com altos fatores de capacidade. 
 
Usinas com baixos custos de investimento e elevados custos variáveis, como aqueles 
a gás, adaptam-se à operação na ponta da curva de carga, com baixos fatores de 
capacidade. Por sua vez, usinas com custos intermediários, como, em geral, as usinas 
a óleo, adaptam-se à posição intermediária na curva de carga. 
 
Essas curvas foram desenvolvidas admitindo-se a não existência de restrições de 
combustível. Admite-se apenas saída de unidades devido aos índices de 
indisponibilidade forçada e programada. 
 
2.3 Custo Unitário x Fator de Capacidade para Usinas Hidrelétricas 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 15 
 
O custo de uma usina hidrelétrica é composto por duas parcelas: 
 
1. Uma parcela fixa, praticamente independente da potência instalada (também 
denominada motorização), incluindo custos de barragem, vertedouro, 
estruturas principais, terrenos etc.; 
 
2. Uma parcela variável, dependente do nível de motorização (ou seja, da 
potência instalada), incluindo custos de casa de força, tomada d’água, 
equipamentos eletromecânicos etc. Os custos de O & M são incluídos nesses 
custos variáveis. 
 
De uma certa forma, a parcela fixa (associada às obras que determinam a capacidade 
de armazenamento) pode ser relacionada à energia a ser produzida pela usina, 
enquanto a parcela variável pode ser relacionada à potência instalada. 
 
A partir dessa relação, pode-se usar CE (E de Energia) para representar os custos 
relacionados à parcela fixa e CP para o custo da potência instalada por unidade de 
potência (custo incremental de potência). 
 
A seguir, apresentamos o gráfico de uma usina hidrelétrica em função da potência 
instalada. É interessante notar que, para uma energia constante, o fator de capacidade 
diminui com a potência instalada. 
 
 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 16 
A equação do custo, deverá ser representada por: 
C = CF + CV x POT x 10³ = CE + CP x POT x 10³ 
 
Em que: 
• C = custo total da usina (US$); 
• CF = custos fixos, correspondentes às parcelas relacionadas com a energia e, 
portanto, com CE; 
• CV = custos variáveis, correspondentes às parcelas relacionadas com a potência 
instalada e, portanto, com a motorização da usina; 
• CE = custo atribuído à energia (US$); 
• CP = custo incremental de potência (US$/kW); 
• POT = potência instalada em MW. 
 
Assim como para as UTEs, obviamente, usina de base será aquela econômica para 
fatores de capacidade elevados (operação com toda potência na maior parte do 
tempo) e usina de ponta, aquela econômica para baixos fatores de capacidade 
(operação com potência máxima apenas em parte do tempo). 
 
Em geral, a alocação de usinas para atender à curva de carga (cobertura da curva de 
carga) tem como base, no caso das UHEs, critérios econômicos dependentes 
principalmente do custo incremental de ponta e das distâncias aos centros de carga 
(custo de transmissão). 
 
Com relação ao custo incremental de ponta, lembrando-se que a potência varia 
proporcionalmente com a altura H e a vazão Q, sabe-se que, para uma mesma 
potência, vazões menores e alturas maiores levam a menores custos incrementais de 
ponta. 
 
Assim, para UHEs, tem-se, em geral: 
• Usinas de alta queda com baixo custo incremental de ponta; 
• Usinas de baixa e média quedas, com custo mais elevado. 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 17 
 
Com relação à distância do centro de carga, menores distâncias implicam baixos custos 
de transmissão; e maiores distâncias, custos elevados. 
 
A partir da equação apresentada anteriormente para custo das UHEs, pode-se obter 
seu custo unitário (US$/MWh) em função do fator de capacidade: 
 
CU = CE x FRC_ + CP x FRC x POT x 10³ 
 POTxFCx8.760 POT x FC x 8.760 
 
CU = CME + CMP 
8,76xFC 
 
Em que: 
• CME = CE x FRC 
POTxFCx8760 
• CMP = CP x FRC 
• CP dado em US$/kW 
• POT dada em MW 
 
Sendo: 
 
• CU = custo unitário da energia produzida (US$/MWh); 
• CME = custo marginal de energia pura (US$/MWh); 
• CMP = custo marginal de ponta pura (US$/kW.ano); 
• FC = fator de capacidade (pu). 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 18 
 
 
Com a equação CU x 8,76 x FC = CME x 8,76 x FC + CMP, chega-se ao custo 
unitário em US$ / kW ano, CU’: 
CU’ = CME’ x FC + CMP 
 
Em que: 
• CU’ = custo unitário da energia produzida (US$/kW ano); 
• CMP = custo marginal de ponta pura (US$/kW ano); 
• CME’ = custo marginal de energia pura (US$/kW médio) 
 
Esse custo unitário pode ser também representado por: 
CU’ = CME’ x H x CMP 
 
Em que: 
• H = horas de operação no ano;• CME’ = custo marginal de energia pura em US$ / kWh. 
 
Pois: 
CME = CME’ x FC = CME x 8,76 x FC = CE x FRC x 8,76 x FC = CE x 
1 
H H POT x 8.760 x FC x H 1000 POT 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 19 
Usando esse custo unitário, em termos de US$/kW ano, podem ser construídos 
diagramas similares ao apresentado para UTEs, em que é possível visualizar a melhor 
localização das usinas na curva de carga. 
 
2.4 Exemplo de Comparação Econômica 
 
Dados fornecidos: 
 
a) Hidrelétrica 
• Custo da usina: 1.350 . 106 US$ + 800 US$/Kw; 
• Custo de O & M Fixo: 5 US$/kW.ano (O&M Variável ~=0); 
• Vida útil: 50 anos; 
• Energia firme: 300 MWMéd. 
 
b) Termelétrica 
• Custo da usina: 400 US$/kW; 
• Custo de O&M Fixo: 10 US$/kW.ano (O&M Variável ~=0); 
• Custo do combustível: 60 US$/MWh; 
• Vida útil: 30 anos. 
 
c) Cálculo dos custos unitários 
 
➢ Hidrelétrica 
 
• Custo do investimento (CI): 1.350.106 + 800 . [MW] . 103 
• Para potência instalada de 300 MW (FC = 1): CI = 1.590.106 US$ 
• Para potência de instalada de 1.000 MW (FC = 0,3): CI = 2.150.106 US$ 
• Custo anual unitário (em US$/kW.ano): CUG’ = CME’’ . H + CMP 
 
CME’’ = CIE . FRC / (PI . FC . 8760) 
 => 1350.106 . 0,10086 / PB . 103 . 8760 = 0,0518 US$ / kWh, pois: 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 20 
PI . FC = PB e PB = 300 MW, para os dois casos. 
 
CMP = CIP . FRC => 800 . 0,10086 = 80,69 [US$/kW.ano] 
 
Considerando-se custo de O & M: 
CUG’ hidr = 0,0518 . H + 85,69 (US$/kW.ano) 
 
Sendo: H o número de horas trabalhadas a plena carga no ano. 
 
➢ Termelétrica 
 
• Custo Anual do investimento (CAI): 400 . FRC => 400 . 0,10608 = 42,43 
US$/kW.ano = CMP 
 
Em que: 
 
• FRC: 0,10608 para taxa de desconto de 10% e vida útil de 30 anos; 
• Custo de O & M = 10 US$/kW.ano; 
• Custo de combustível = CComb = 60 US$ / MWh; 
• CUC’ = (CComb * PIMW * H) / (PIMW *1000) = (Ccomb / 1000) * H. 
 
Similarmente ao caso da hidrelétrica, obtém-se: 
CUG’Term = 0,06 . H + 52,43 
 
 
➢ Comparação dos custos unitários 
 
• Operação na base: H = 8.760; 
• CTerm = 578,03 US$/kW.ano ou 65,98 US$/MWh = CME (US$/MWh); 
• CHidr = 539,45 US$/kW.ano ou 61,58 US$/MWh. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 21 
Esse custo é o que se teria para operação na base, com 300 MW, sendo a hidrelétrica 
mais econômica. 
 
Observa-se que a hidrelétrica não pode trabalhar na base, com mais de 300 MW, pois 
esta é sua energia firme. 
 
Operação de ponta com FC = 30% 
 
Equivale à potência instalada de 1.000 MW, com FC = 0,30: 
• H = 8.760 . 0,30 = 2628 horas; 
• CTerm = 210,11 US$/kW.ano ou 79,93 US$/MWh; 
• CHidr = 221,82 US$/kW.ano ou 84,40 US$/MWh. 
 
2.5 Determinação dos Custos Unitários de Projetos de Geração 
 
Uma verificação mais detalhada da análise dos custos unitários, anteriormente 
apresentada, permite que se reconheça que, em sua determinação, o fator de 
capacidade da usina durante o seu tempo de vida útil é a principal variável 
representativa de sua integração a um sistema de potências. 
 
A escolha e o cálculo do fator de capacidade a ser utilizado (mínimo, médio, máximo 
ou associado a riscos, conforme já apresentado) podem ser simples ou complexos, 
dependendo de diversas características, como objetivo da análise econômica, porte da 
usina e sua área de influência no sistema, tipo de sistema, tipos de centrais operando 
em um sistema, forma de interligação energética, formas de produção energética e 
critérios relacionados com indisponibilidade, reserva etc. 
 
A seguir, são apresentadas diversas situações importantes para a determinação dos 
custos unitários para os projetos de geração, considerando as diferentes situações, 
características e pontos de vista que podem influir em sua integração aos sistemas 
elétricos de potência. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 22 
Inicialmente, aborda-se a integração de um projeto de geração de grande porte a um 
grande sistema interligado hidrotérmico, caso que apresenta maior complexidade para 
tratamento. 
 
Depois, expõe-se uma visão do processo de planejamento do setor elétrico brasileiro, 
dando-se ênfase aos critérios usuais para dimensionamento da geração e explica-se a 
conceituação da complementação termelétrica. 
 
Em seguida, são apresentados comentários gerais sobre o tratamento de projetos de 
geração em sistemas isolados; aplicações de pequeno porte e área limitada de 
influência. 
 
Finalmente, enfocam-se, separadamente, alguns temas considerados de maior 
importância na questão da geração, uma vez que permitem melhor e mais econômica 
utilização dos recursos energéticos, e que, em certos casos, dependendo 
principalmente do porte dos projetos, podem requerer um tratamento diferenciado 
quando da análise técnico-econômico de viabilidade: 
• Técnicas para melhorar a utilização a partir de fontes renováveis; 
• Integração de centrais termelétricas e projetos de cogeração; 
• Geração distribuída. 
 
UNIDADE 3. Grandes projetos de geração integrados a grandes sistemas 
 
 
Das situações possíveis, a que se configura mais complexa é a da integração de 
geração de grande porte em grandes sistemas hidrotérmicos interligados. Nesse caso, 
há a necessidade de estudos de simulação da operação do sistema a longo prazo, para 
a determinação de fatores de capacidade e atendimento a critérios específicos quanto 
à indisponibilidade e à reserva. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 23 
No caso de grandes usinas termelétricas, é necessária uma clara definição de suas 
condições operativas, até mesmo para verificar sua possível operação nas condições 
de uma complementação termelétrica voltada ao melhor uso da água. 
 
Neste caso, de forma geral, valem as considerações a seguir: 
 
É preciso, inicialmente, dimensionar as hidrelétricas, o que é geralmente complexo por 
diversos fatores, como o efeito de novas usinas no fator de carga, no fator de 
capacidade das usinas existentes, a melhor utilização possível de energia secundária 
(valorizada em termos de energia hidrelétrica deslocando termelétricas) e outros 
fatores. 
 
Nesse contexto, faz-se análise de custo versus benefício para diferentes alternativas 
de motorização (capacidade ao ser instalado) das UHEs, usando valorização advinda 
de dados e parâmetros do sistema e considerando trabalho na base, na semibase (ou 
posição intermediária da curva de carga), na ponta e com uso de energia secundária 
e na ponta garantida. 
 
Dimensionada a UHE, é estabelecido o custo de geração, por exemplo, em US$/MWh 
de energia firme ou garantida. 
 
É importante notar que, entre outros aspectos, a análise é fortemente dependente de 
variáveis estatísticas/estocásticas, relacionadas principalmente com a disponibilidade 
de geração das hidrelétricas. Além disso, a análise é fortemente dependente dos 
processos de planejamento e de operação (principalmente quanto aos critérios 
associados à entrada em operação das termelétricas) do setor elétrico brasileiro. 
 
UNIDADE 4. Técnicas para melhorar a utilização de geração a partir de 
fontes 
 
É fundamental o entendimento de cada tecnologia com foco em suas principais 
características técnicas e econômicas, bem como no critério de apresentação a serem 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 24 
utilizados no planejamento e no dimensionamento. Também são listados resultados 
da introdução de algumas dessas tecnologias no Brasil.Sistemas de geração de energia elétrica considerados renováveis, como hidrelétrico, 
solar fotovoltaico e eólico, apresentam características estatísticas e estocásticas que 
demandam medidas apropriadas para conciliar a geração com a carga, de forma que 
obtenha melhor uso das fontes primárias de energia e que reduza ao máximo as 
perdas. 
 
São importantes características desses sistemas de geração a potência máxima e a 
potência que pode ser gerada constantemente durante a vida útil de operação, 
relacionadas respectivamente à capacidade instalada e à energia firme. 
 
A capacidade instalada é a potência máxima (pico) que um sistema pode produzir 
instantaneamente. Ela é relacionada com os equipamentos de geração instalados. Com 
a energia firme, melhor será sua utilização. 
 
Essas características são determinadas por meio de uma análise de dimensionamento 
que envolve avaliações técnicas, econômicas, sociais, políticas e ambientais. 
 
Os métodos mais conhecidos para aumentar a utilização de energia renovável nos 
sistemas elétricos têm como conceito principal o emprego de sistemas de 
armazenamento para estocar a energia que poderia potencialmente ser gerada a mais 
do que a carga momentânea, nas situações em que a disponibilidade do recurso 
renovável excede sua necessidade, de forma que permita seu consumo futuro, 
naquelas situações nas quais a carga excede a capacidade de energia à disposição. 
 
Podemos citar como exemplos bastante conhecidos de todos nós as barragens das 
usinas hidrelétricas e as baterias dos sistemas solares fotovoltaicos e dos sistemas 
eólicos. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 25 
Pela natureza estatística e estocástica dos recursos, as técnicas de dimensionamento 
dependem fortemente de um processo baseado em coleta de informações, em critérios 
assumidos e em hipóteses quanto ao futuro, processo sempre direcionado à solução 
mais econômica. 
 
Isso faz com que, durante a vida útil, possam ocorrer situações de perda de parte do 
recurso primário devido a limitações no dimensionamento. Esse é o caso, por exemplo, 
de uma usina hidrelétrica vertendo água por estar com seus reservatórios cheios em 
épocas de chuva, que, do ponto de vista elétrico, é um desperdício. 
 
UNIDADE 5. Critérios para análise da expansão da geração 
 
Quanto aos critérios para as análises da expansão da geração de energia, é 
fundamental o entendimento quanto às importantes questões financeiras relacionadas 
ao planejamento desta geração objetivando sua ampliação. 
 
Vamos enfatizar, então, os seguintes aspectos: 
 
• A energia elétrica é um insumo energético nobre, além de ser uma forma de 
energia limpa e eficiente e de fácil manutenção e aplicação; 
 
• A energia elétrica é um produto capital intensivo, que exige parcelas 
consideráveis da capacidade de investimentos do país; 
 
• O investimento em projetos de geração de energia elétrica é um investimento 
com maturação lenta, que só passa a ter retorno após entrada em operação; 
 
• Os projetos de geração de energia elétrica apresentam vida útil econômica 
longa (aspecto que atua em contrapartida ao anterior) tipicamente de 50 anos 
para UHEs e 30 anos para UTEs; 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 26 
 
• O planejamento da geração, principalmente para os países em 
desenvolvimento, implica a necessidade de um grande número de obras e de 
grandes parcelas de investimentos, apresentando como característica um 
crescimento exponencial da demanda, que se reflete em grandes necessidades 
de oferta. 
 
Os dois aspectos básicos orientadores da análise da expansão da geração são: 
 
• Os custos, dirigidos à busca da economia; e 
• A qualidade, voltada principalmente à qualidade do atendimento. 
 
A diretriz básica é oferecer eletricidade com mínimos custos e qualidade satisfatória. 
Quanto à análise econômica, que definirá as alternativas de custos mínimos, devem 
ser considerados os princípios apresentados anteriormente, com inclusão de métodos 
adequados para determinação e custeamento de déficits (ou seja, energia não 
suprida). 
 
Quanto à qualidade satisfatória, diversos aspectos e níveis podem ser considerados: 
• Simples atendimento aos requisitos de energia e ponta; 
• Índice de suprimento garantido acima de certo valor; 
• Características mínimas garantidas quando de emergência; 
• Relacionamento aberto e transparente com os consumidores. 
 
A definição mais adequada dessa qualidade dependerá largamente do tipo, da 
localização e das características da carga. Assim, em um país com as disparidades do 
Brasil, diferentes metas de qualidade podem ser aplicadas, por exemplo, a áreas 
industriais, urbanas, rurais, regiões mais ou menos desenvolvidas, entre outras. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 27 
A equalização dessa qualidade será um tema estratégico que deverá nortear o rumo 
do planejamento a longo prazo, em conjunto com o desenvolvimento do país e sua 
homogeneização. 
 
UNIDADE 6. Geração Distribuída 
 
Vamos abordar as questões fundamentais da “Geração Distribuída” no Brasil. É 
importante entender que a geração distribuída consiste em estabelecer diversos 
pontos de geração de energia junto aos pontos de consumo. 
 
Trata-se de uma revolução com potencial para mudar completamente a forma que 
estamos acostumados a gerar e consumir eletricidade. Nesta modalidade, o 
consumidor deixa de ser passivo, sujeito a qualquer tipo de política governamental 
que impacte o preço da tarifa de energia, e obrigado a comprar a energia da empresa 
concessionária do serviço de distribuição em sua região. 
 
Para denominar esse novo tipo de consumidor foi usado o termo “prosumidor”, 
mesclando as palavras produtor e consumidor. 
 
No Brasil, a geração distribuída foi regulamentada pela Resolução n°482 da ANEEL, 
em 2012, e posteriormente atualizada pela Resolução n°687, de 2015. A política 
adotada no Brasil é a de compensação de energia, e permite que sejam usadas fontes 
de energia renováveis, com destaque para a energia solar fotovoltaica. 
 
De acordo com as regras estabelecidas, a energia gerada pelos painéis solares é 
abatida da conta de luz das distribuidoras. Ou seja, no fim do mês o “prosumidor” irá 
pagar apenas a diferença entre o que gerou e consumiu. 
 
O que é Geração Distribuída? 
 
A geração distribuída consiste em estabelecer diversos pontos de geração de energia 
junto aos pontos de consumo. 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 28 
 
Caso a geração seja maior do que o consumo, serão gerados créditos energéticos, 
com validade de 60 meses, que poderão ser utilizados em períodos futuros com maior 
consumo. Tais créditos podem ainda ser aproveitados em outras unidades 
consumidoras, desde que localizadas dentro da área de concessão da mesma 
distribuidora. 
 
 
 
 
Vantagens da Geração Distribuída 
 
Uma das principais vantagens de um sistema de geração distribuída é a eliminação 
das baterias, o que reduz bastante o investimento nos sistemas de geração. Em 
momentos onde a geração é maior do que o consumo, em vez de ser armazenada em 
bancos de bateria, a energia excedente é injetada na rede da concessionária. 
 
Outra vantagem é que o “prosumidor” continua conectado à rede de distribuição, o 
que garante a disponibilidade de energia a qualquer momento, mesmo quando o 
sistema não está gerando. 
 
Finalmente, a geração distribuída também beneficia o sistema energético como um 
todo. Como a geração ocorre junto aos pontos de consumo, as perdas com a 
transmissão de energia são praticamente eliminadas.AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 29 
Outros Aspectos Relevantes 
 
A GD tem vantagem sobre a geração central pois economiza investimentos em 
transmissão e reduz as perdas nestes sistemas, melhorando a estabilidade do serviço 
de energia elétrica. 
 
A geração elétrica perto do consumidor chegou a ser a regra na primeira metade do 
século, quando a energia industrial era praticamente toda gerada localmente. A partir 
da década de 1940, no entanto, a geração em centrais de grande porte ficou mais 
barata, reduzindo o interesse dos consumidores pela GD e, como consequência, o 
desenvolvimento tecnológico para incentivar esse tipo de geração também parou. 
 
 
 
As crises do petróleo introduziram fatores perturbadores que mudaram 
irreversivelmente este panorama, revelando a importância, por exemplo, da economia 
de escopo obtida na cogeração. 
 
A partir da década de 1990, a reforma do setor elétrico brasileiro permitiu a competição 
no serviço de energia, criando a concorrência e estimulando todos os potenciais 
elétricos com custos competitivos. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 30 
Com o fim do monopólio da geração elétrica, em meados dos anos 1980, o 
desenvolvimento de tecnologias voltou a ser incentivado com visíveis resultados na 
redução de custos. 
 
O crescimento da GD nos próximos anos parece inexorável e alguns autores fazem 
uma analogia com o crescimento do microcomputador em relação aos grandes 
computadores centrais (“main frames”). 
 
 
 
 
O Futuro do Sistema de Energia Elétrica 
 
As redes de energia são sistemas complexos, integrados e com uma interação sensível 
entre fontes de geração, sistemas de rede e as demandas de energia. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 31 
A rede elétrica tradicional, como visto anteriormente, tem como principais 
características uma infraestrutura de geração centralizada e consumidores com 
participação passiva sem contribuir com a gestão operacional das fontes de geração 
de energia. 
 
Cada usuário é simplesmente um nó final para entrega de eletricidade. O fluxo de 
comunicação e de energia é unidirecional e, de forma geral, o objetivo do sistema 
elétrico é o fornecimento de energia para os usuários finais. 
 
O novo modelo de rede elétrica inteligente propõe diversas novidades. A mais discutida 
e mais amplamente implementada é a infraestrutura de medição inteligente. 
 
Nesse sentido, toda a medição, que exigia a presença de um técnico para anotar o 
consumo de cada medidor analógico nas unidades consumidoras, é substituída por 
medidores digitais, capazes de se comunicar diretamente com uma central. 
 
Esse medidor digital, permite, entre outras funcionalidades, uma comunicação 
bidirecional com a central de energia. Assim, ao invés de o usuário apenas informar o 
seu consumo de energia, ele passa também a receber dados da empresa 
concessionária. 
 
Dentre as vantagens desse novo modelo, estão a possibilidade de diferenciar o preço 
da energia ao longo do dia e informar ao cliente em tempo real as mudanças de preço 
e o seu consumo, e, ainda, controlar a carga dos clientes em caso de aumento 
excessivo da demanda. 
 
Nesse caso, seria possível enviar notificações aos clientes para que se reduza o 
consumo desligando alguns aparelhos de forma a evitar o corte de energia em toda 
uma região. 
 
Portanto, nesse novo modelo, toda a inteligência e automação que antes só existiam 
em parte do sistema, como em subestações, deverão ser levadas para todo o sistema, 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 32 
chegando à casa dos consumidores. Na proporção que o sistema muda, tanto a 
infraestrutura elétrica é afetada como a comunicação no sistema. 
 
Nessa nova arquitetura, a comunicação entre a concessionária de energia e os 
consumidores é um passo fundamental para o progresso das redes elétricas 
inteligentes. 
 
Outra vantagem que a infraestrutura de medição inteligente traz é a geração de 
energia pelo cliente. Muitas vezes, ao se falar em GD, se pensa nas formas de geração 
alternativas, como fazendas para geração de energia eólica ou usinas construídas para 
funcionar com a variação das marés. Tudo isso é parte da iniciativa sustentável para 
reduzir a emissão de poluentes, conectando à rede plantas virtuais de energia 
renovável em escala industrial. 
 
Contudo, a GD inclui também a geração de energia pelos clientes. Assim, uma 
residência equipada com um painel solar ou uma pequena turbina eólica pode ser uma 
fonte geradora para todo o sistema, disponibilizando o excesso de energia que foi 
gerado. 
 
Isso só é possível devido à comunicação bidirecional dos medidores. Assim, a GD, os 
medidores inteligentes e outras tecnologias do lado da demanda estão se tornando 
cada vez mais necessários para controlar a demanda de energia, tanto durante o 
horário de pico quanto fora do pico. 
 
Essas e outras características mudaram o paradigma de geração de energia e 
distribuição. O sistema deixa de ser centralizado e unidirecional para formar uma rede 
de energia e comunicação. Com isso, o sistema de comunicação passa a ser totalmente 
integrado. 
 
O futuro do sistema de energia elétrica inclui muitos pontos de mudança introduzidos 
pela modernização do sistema. Os pontos mais fortes considerados aqui incluem o 
cliente, a rede de distribuição e a rede de transmissão do sistema. 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 33 
 
As empresas de distribuição terão que lidar com clientes mais conscientes das 
possibilidades oferecidas pelo mercado, que terão essa resposta online. Estas 
possibilidades incluem: 
• Tarifas flexíveis com preços competitivos; 
• Geração de energia local; 
• Suporte a programas de energias renováveis; 
• Programas de economia de energia; 
• Geração pelo lado da demanda; e 
• Serviços de comunicação e de faturamento. 
 
Além disso, os eletrodomésticos poderão receber, em tempo real, o preço da energia 
via rede de comunicação. Com isso, os próprios dispositivos poderão otimizar o seu 
nível de consumo de acordo com o preço atual de energia. 
 
Dessa forma, a eficiência na utilização da energia aumenta e o consumo é reduzido, o 
que ajuda a combater a crise de recursos energéticos. 
 
As aplicações de automação residencial e de gerenciamento de energia residencial 
tendem a crescer e a incorporar novas funcionalidades. A tecnologia de rede usada 
para automatizar uma casa terá que coexistir com a rede de comunicação com a 
concessionária. 
 
Existe ainda uma grande discussão sobre qual tecnologia deverá ser usada para a rede 
que irá interligar casas inteligentes, concentradores e medidores inteligentes. No lado 
da demanda, o uso de aparelhos inteligentes, a adoção de veículos elétricos e a 
geração distribuída fazem com que o perfil de carga do consumidor seja variado. 
 
Os dados gerados do lado da demanda deverão ser filtrados e tratados a fim de gerar 
informação útil para as concessionárias. A rede de distribuição será muito mais ativa. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 34 
A GD poderá ser conectada a redes de distribuição ou ainda a redes de transmissão, 
e o controle deverá ser coordenado. A função da rede de distribuição ativa é interligar 
de forma eficiente as fontes geradoras de energia com a demanda dos consumidores, 
permitindo uma operação em tempo real. 
 
Os tipos de geração deverão ser iniciados ou deixados em standby de acordo com o 
mercado de energia e com o controle da rede. A necessidade de supervisão dessa rede 
aumenta já que o equilíbrioentre oferta e demanda, também chamado de 
balanceamento de carga, é essencial para um fornecimento estável e confiável de 
eletricidade. 
 
A rede deverá interagir com o consumidor e, para isso, o nível de controle necessário 
é muito maior do que em sistemas de distribuição atuais. Além disso, essa rede 
precisará ser protegida, e proteção requer tecnologias de custo competitivo, bem como 
novos sistemas de comunicação com mais sensores e atuadores do que no sistema de 
distribuição atual. 
 
O uso de tecnologia da informação, comunicação e infraestruturas de controle serão 
necessárias devido ao aumento da complexidade de gerenciamento do sistema. O 
controle poderá ser distribuído em microgrids e Virtual Power Plants (VPPs) para 
facilitar a gestão do sistema e sua integração, tanto no sistema físico como no 
mercado. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 35 
 
 
Projetos no Brasil 
 
No Brasil, as iniciativas nessa área vêm crescendo bastante. Como característica geral, 
os projetos brasileiros iniciam-se com a implementação dos medidores inteligentes, já 
que é um ponto crucial inclusive para o funcionamento da GD. 
 
Em seguida, o enfoque passa para GD e o desenvolvimento de sistemas de 
armazenamento de energia mais eficientes. Um exemplo é o projeto “Redes 
Inteligentes Brasil” [RIB 2015] que, dentre outros assuntos, trata dos requisitos de 
telecomunicações e tecnologia da informação necessários para suportar: 
• As necessidades geradas pelos sistemas de medição; 
• A automação e integração de geração distribuída; 
• O armazenamento de energia; e 
• Veículos elétricos plugáveis. 
 
Esse projeto tem diversos projetos pilotos espalhados pelo Brasil, dentre eles podemos 
citar: 
• Cidade Inteligente Búzios, no Rio de Janeiro; 
• Smart Grid Light, no Rio de Janeiro; 
• Cidade do Futuro, em Minas Gerais; 
• InovCity, em São Paulo; 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 36 
• Paraná Smart Grid; 
• Arquipélago de Fernando de Noronha. 
 
Esses projetos — muitos ainda em desenvolvimento — também estudam tecnologias 
e soluções para redes e telecomunicações. De forma geral, as concessionárias 
brasileiras têm investido bastante em projetos dessa linha. 
 
O Smart Grid Light, além do amplo investimento em medidores inteligentes, tem 
uma área que trata fortemente do sistema de geração distribuída com o 
desenvolvimento de um modelo de GD baseada em painéis fotovoltaicos e 
armazenamento que possibilite ações de DSM. 
 
Esse programa conta ainda com: 
• Interface web de supervisão e controle; 
• Conjunto de 136 painéis fotovoltaicos monocristalinos; 
• Área total de 220m2 em painéis; 
• Aproximadamente 30kW de potência de pico; 
• 64kWh de armazenamento em banco de baterias; 
• Conexão com a rede de distribuição atualmente em curso. 
 
A Cemig, desde 2010, está executando o projeto Cidades do Futuro e, em 2014, 
entregou, na cidade de Sete Lagoas, quatro microusinas fotovoltaicas on-grid para 
geração de energia elétrica que fazem parte do projeto e serão utilizadas para estudo 
da interação dos sistemas de GD na rede elétrica. 
 
A estrutura conta com sistemas de monitoramento que permitem acompanhar em 
tempo real o desempenho dos equipamentos, a geração de energia e o 
comportamento da rede elétrica. 
 
A energia produzida irá abastecer em parte a demanda de energia de cada local de 
implantação. Quando não existir consumo, ela será injetada à rede. 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 37 
O InovCity é considerado o maior projeto de redes elétricas inteligentes do país e 
está transformando Aparecida em uma cidade mais sustentável, através de ações da 
adoção de geração distribuída de energia por fontes renováveis, de eficiência 
energética, da utilização de iluminação pública eficiente, e permitindo a utilização de 
veículos elétricos entre outras ações, contribuindo de forma significativa para a 
redução das emissões de CO2. 
 
O Paraná Smart Grid criado pelo governo do Paraná em setembro de 2013 foi 
pensado para incentivar a geração distribuída por fontes renováveis. O projeto inclui 
microgeração distribuída por fontes solares e eólicas e testes de conceito que 
abrangem desde a automação predial até a integração à rede inteligente de 
eletropostos para carros, bicicletas e ônibus elétricos. 
 
O Arquipélago de Fernando de Noronha será o primeiro local no Estado de 
Pernambuco a contar com redes elétricas inteligentes instaladas pela Celpe. A 
concessionária, por meio de um projeto de P&D, está implantando na ilha um 
sistema que vai reunir as principais tecnologias nas áreas de medição, 
telecomunicações, tecnologia da informação e automação em um único produto. 
 
Uma das iniciativas do projeto incluem a Usina Solar Noronha II, que tem previsão 
para entrar em operação no primeiro semestre de 2015 e, por meio do sistema de 
compensação de energia, regulamentado pela Aneel para minigeração, a energia 
gerada será utilizada para compensar o consumo das unidades da Administração 
Estadual da Ilha de Fernando de Noronha. 
 
A AES Eletropaulo e a Silver Spring Networks estão implantando uma plataforma de 
medição inteligente em São Paulo. O Sistema Brasileiro de Multimedição 
Avançada (SIBMA), sistema desenvolvido pelo Centro de Estudos e Sistemas 
Avançados do Recife (C.E.S.A.R) que visa automatizar a medição de energia elétrica a 
distância, desde a concessionária até o consumidor, já começa a tratar também a GDS. 
 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 38 
Considerações Importantes 
 
As redes elétricas inteligentes estão provocando uma revolução nos sistemas de 
energia elétrica, pois exigem uma integração do sistema elétrico com diversas outras 
áreas de pesquisa, incluindo fortemente as redes de comunicação. 
 
No contexto de redes elétricas inteligentes, a geração distribuída de energia vem 
recebendo cada vez mais destaque. Nesse novo cenário de rede elétrica, o fluxo de 
energia deixa de ser unidirecional, como no sistema atual, e passa a ser bidirecional 
coexistindo com fluxos de dados e de controle bidirecionais, o que muda drasticamente 
a arquitetura do sistema. 
 
Aqui tivemos uma visão geral sobre geração distribuída de energia elétrica com 
enfoque no requisitos e desafios que são trazidos às redes de comunicação que darão 
suporte à transmissão de dados e mensagens de controle em redes elétricas 
inteligentes. 
 
Foram abordados novos conceitos relacionados à GD, tais como microgrids e VPPs, 
que introduzem novas formas de funcionamento dos sistemas para geração de 
energia. Foram discutidos também diversos desafios de comunicação relacionados à 
GD, considerando aspectos como escalabilidade, confiabilidade, segurança e gerência 
da rede. 
 
Foram comentados ainda os principais projetos de redes elétricas inteligentes que 
incluem a geração distribuída de energia no Brasil e no Mundo. Temas atuais na área 
de redes e sistemas distribuídos, como computação em nuvem e redes definidas por 
software, podem ser aplicados a novas soluções de redes de comunicação que darão 
suporte a redes elétricas inteligentes e GD, como já vem sendo proposto em trabalhos 
recentes publicados na literatura. 
 
 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 39 
Como ainda não existem soluções completas e consolidadas, há bastante espaço para 
pesquisa e desenvolvimento em arquiteturas de rede e modelos e protocolos de 
comunicação que possam ser usados nas redes elétricas do futuro. 
 
 
 
Caso a geração seja maior do que o consumo, serão gerados créditosenergéticos, 
com validade de 60 meses, que poderão ser utilizados em períodos futuros com maior 
consumo. Tais créditos podem ainda ser aproveitados em outras unidades 
consumidoras, desde que localizadas dentro da área de concessão da mesma 
distribuidora. 
 
Uma das principais vantagens de um sistema de geração distribuída é a eliminação 
das baterias, o que reduz bastante o investimento nos sistemas de geração. Em 
momentos onde a geração é maior do que o consumo, em vez de ser armazenada em 
bancos de bateria, a energia excedente é injetada na rede da concessionária. 
 
Outra vantagem é que o “prosumidor” continua conectado à rede de distribuição, o 
que garante a disponibilidade de energia a qualquer momento, mesmo quando o 
sistema não está gerando. 
 
Finalmente, a geração distribuída também beneficia o sistema energético como um 
todo. Como a geração ocorre junto aos pontos de consumo, as perdas com a 
transmissão de energia são praticamente eliminadas. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 40 
UNIDADE 7. Avaliação Econômica em Projetos – Parte I 
 
O estudo de viabilidade de qualquer negócio é iniciado pela esfera econômica. Dentre 
as várias alternativas de investimentos, é possível a identificação do projeto mais viável 
que possua bom retorno e que o investidor tenha afinidade. 
 
Para mostrar sua consistência, é preciso que seja feito com base em estimativas 
coerentes e confiáveis dos elementos de custos e de receitas, o que permitirá montar 
um fluxo de caixa projetado. 
 
Para tanto, inicialmente, se analisa se o lucro projetado é positivo, resultado do fato 
de que as saídas projetadas necessitam ser menores do que as entradas. Quando a 
decisão de investimento está baseada somente na análise comparativa das receitas 
entrantes e de saídas referentes aos custos e despesas, resultando em lucro, trata-se 
de viabilização econômica. 
 
Ainda deve-se considerar que quando a decisão de investir for baseada na 
disponibilidade de recursos, com a finalidade de se obter o equilíbrio entre as entradas 
e saídas, será considerado o fluxo de caixa, que na verdade é a própria viabilidade 
financeira. 
 
Resumindo, um estudo de viabilidade econômico-financeira procura caracterizar um 
empreendimento que proporciona lucro aos investidores, sendo capaz de evitar saldos 
negativos, de forma a proporcionar um fluxo de caixa positivo ao longo da vida útil do 
empreendimento. 
 
As ferramentas mais usadas para uma análise de viabilidade de um projeto são: 
• Taxa Interna de Retorno (TIR); 
• Valor Presente Líquido (VPL); 
• Período de Retorno do Investimento (Payback); 
• Índices de Retorno. 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 41 
A análise por meio destas ferramentas permite identificar o lucro e se a Taxa de 
Retorno do projeto estudado é maior do que a Taxa Mínima de Atratividade (TMA), 
também conhecida como custo de oportunidade. 
 
A decisão de em qual projeto deve-se investir resume-se em escolher um projeto entre 
diversas alternativas, após um estudo embasado na engenharia econômica. Porém, se 
houver apenas um projeto em estudo, sua rentabilidade precisa ser comparada com o 
rendimento de aplicações financeiras disponíveis ao empreendedor ao mesmo volume 
de recursos. 
 
Como a TMA é a taxa de juros que representa o mínimo que o investidor deseja obter, 
as rentabilidades destas aplicações servirão de base para definir a TMA. 
 
O processo de avaliação envolve três etapas: 
• Projeção do fluxo de caixa; 
• Cálculo da TMA; 
• Aplicação de técnicas de avaliação. 
 
Após definir o horizonte da análise, coletar dados relevantes, elaborar as estimativas 
de fluxo de caixa e obter a TMA, o passo seguinte à elaboração da perspectiva do 
investimento consiste na análise dos ganhos oferecidos pela decisão. 
 
Para melhor análise, é importante considerar o momento em que ocorrem as receitas 
e os gastos e trazê-los para o mesmo período, por meio de um fluxo de caixa 
descontado. 
 
A seguir são apresentados os principais parâmetros associados a uma análise 
econômico-financeira de um projeto, que auxiliam na tomada de decisões financeiras. 
 
Payback é uma ferramenta de grande uso no mundo dos negócios para auxiliar nas 
tomadas de decisões, decorrente do seu fácil entendimento e aplicabilidade. O tempo 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 42 
necessário para recuperar o investimento é geralmente medido pelo pagamento de 
volta ou payback, uma palavra que vem do inglês. 
 
Payback é definido como o período de tempo necessário para recuperar o capital 
investido, ou seja, é o período de tempo necessário para que os lucros de um 
investimento consigam cobrir o capital empregado. 
 
Este método consiste em apurar o tempo necessário para que um investimento cubra 
os dispêndios iniciais. Existe um tempo para recuperar o que foi investido e somente 
depois que o valor dos lucros se equipararem ao investimento inicial é que se pode 
afirmar que tal empreendimento está tendo retorno. 
 
UNIDADE 8. Avaliação Econômica em Projetos – Parte II 
 
De acordo com as avaliações econômicas de projetos energéticos no atual cenário 
brasileiro, deve ser utilizada a Teoria de Opções Reais (TOR), para o detalhamento 
do projeto de integração no cenário da viabilidade econômico-financeira, face à 
aleatoriedade dos parâmetros envolvidos, o que causa incertezas. 
 
O método do VPL vem sofrendo críticas por ignorar opções implícitas em projetos 
(abandono, estratégia de crescimento e espera por melhores condições – timing de 
investimento, por exemplo), levando a erros significativos quanto à incerteza e/ou 
flexibilidades que são relevantes no projeto. 
 
Na Teoria de Opções Reais, é considerada a natureza estocástica da evolução dos 
preços (ou de qualquer outra variável do modelo), com um modelo estocástico, 
enquanto no método do VPL, o preço para calcular a receita é o preço atual do 
mercado, uma sequência, ou um valor esperado do preço na data em que o projeto 
iniciará a sua operação. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 43 
Quando aplicada a projetos de investimentos, a TOR integra estratégia e finanças, 
considerando analiticamente as flexibilidades gerenciais e as opções implícitas nos 
projetos. 
 
O princípio de neutralidade ao risco é uma boa ferramenta por permitir a superação 
de dois problemas de importância presentes nas técnicas tradicionais do VPL, que são: 
• Determinação da taxa de desconto; e 
• Estimativa das probabilidades dos diversos cenários futuros. 
 
A regra de decisão pelo valor crítico é derivada de um processo de otimização sob 
incerteza, sendo os dois métodos mais usados a seguir relembrados, que dão 
resultados equivalentes: 
• Contingent claims; e 
• Programação dinâmica. 
 
Para isso, é necessário utilizar técnicas mais sofisticadas da teoria de probabilidade e 
técnicas de otimização dinâmica sob incerteza, nas quais a Teoria das Opções Reais 
possui sofisticadas ferramentas matemáticas, que consideram as flexibilidades 
gerenciais existentes nas oportunidades de investimento. 
 
Isto representa uma evolução na metodologia de análise de projetos para diversas 
aplicações em vários segmentos industriais, inclusive no segmento cloro-soda e 
projetos a serem desenvolvidos no Setor Elétrico Brasileiro. 
 
A seguir, faremos uma avaliação econômica através de um estudo de caso. 
 
Vamos, agora, fazer uma avaliação de um sistema de célula a combustível utilizando 
o hidrogênio obtido como subproduto de uma planta de cloro-soda, utilizando-se para 
issoas duas metodologias: 
• O tradicional fluxo de caixa descontado (VPL); e 
A Teoria das Opções Reais (TOR). 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 44 
A proposta a ser avaliada refere-se a uma modelagem, porém apresenta parâmetros 
possíveis com os que poderão ser praticados nas duas empresas brasileiras do 
segmento cloro-soda que, gentilmente, nos forneceram dados operacionais. 
 
Os seguintes parâmetros serão utilizados como dados de entrada para as células: 
• Potência instalada/célula – 0,20 MW; 
• Custo de investimento “aceitável” e Pilhas a combustível – R$20,6 
milhões; 
• Custo de operação e manutenção – 0,01US$/KWh = (0,01US$/KWh) 
(15.200 KW x 8.760h/ano) (1,7R$/US$) = 2.263.584,00R$/ano; 
• Preço do projeto – consumo de energia evitado (energia elétrica que deixará 
de ser comprada devido à geração de eletricidade oriunda do sistema da célula 
a combustível) = R$10,0 milhões; 
• Vida útil do equipamento – 12/20 anos; 
• Taxa de desconto – 10 a 12% ao ano; 
• Impostos – 14% II, 5% IPI e 17% ICMS, aproximadamente. 
 
A integração de sistemas de célula a combustível com plantas que produzem 
hidrogênio, como a do segmento cloro-soda, representa uma solução para atingir 
concomitantemente as metas de ampliar a competitividade industrial e de contribuir 
para a política de redução de emissões de gases poluentes. 
 
Os fabricantes internacionais, e de certa forma os nacionais, de sistemas de célula a 
combustível, estão dedicando muita importância para esses projetos de integração e 
realizando importantes pesquisas. Estas pesquisas estão focadas nos custos relativos 
ao ciclo de vida, nas corretas aplicações e em padrões de segurança, além da 
implementação de projetos de demonstração em parceria com empresas do segmento 
cloro-soda e fundos de investimento interessados em P&D. 
 
No Brasil, acordos específicos de trocas de informações entre as universidades e 
fabricantes nacionais estão sendo programados para que assuntos de domínio público 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 45 
sejam publicados e as empresas do segmento sejam preservadas no que diz respeito 
aos seus interesses comerciais. 
 
De acordo com os temas até o momento apresentados, exemplificaremos um modelo 
de viabilidade econômica por meio de um estudo de caso no seguimento cervejeiro. 
 
Em uma pequena central, a biomassa com turbina a vapor pode ser representada por: 
 
 
 
Modo de Funcionamento 
 
O princípio de funcionamento de uma pequena central a vapor consiste na queima de 
combustível (por exemplo biomassa) num forno. 
 
A energia calorífica resultante da queima é utilizada para aquecer a caldeira. Na 
caldeira, a água é convertida em vapor saturado de alta pressão a uma temperatura 
superior à temperatura de saturação (sobreaquecimento). 
 
Este vapor é expandido em uma turbina de vários andares (é frequente pelo menos 
um reaquecimento intermédio), sendo finalmente rejeitado (a baixa pressão) para um 
condensador de vácuo, onde se processa a condensação do vapor. 
 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 46 
Finalmente, o condensado é bombeado de novo para a caldeira (eventualmente com 
um pré-aquecimento, designado regeneração), para reinício do ciclo. 
 
Nos sistemas de cogeração, não deve ser usado o tipo de turbina que acabou de 
se descrever, chamada turbina de condensação, pois este equipamento está 
dimensionado para otimizar o rendimento da conversão elétrica. 
 
Assim, é mais adequado usar, em sistemas de cogeração, as chamadas turbinas de 
contrapressão (ou de não condensação). Nas turbinas de contrapressão, o fluxo 
de vapor exausto que abandona a turbina é enviado diretamente para o processo 
industrial em condições próximas das que são requeridas. 
 
O termo contrapressão refere-se ao fato de o vapor ser rejeitado a pressões da ordem 
de grandeza da pressão atmosférica, superiores. Portanto, ao vácuo do condensador 
(pressão da ordem das centésimas de bar). 
 
A utilização do vapor a uma pressão relativamente elevada prejudica sensivelmente o 
rendimento elétrico, mas melhora o rendimento térmico, pois as características do 
vapor são normalmente mais adequadas aos fins a que se destina. 
 
A turbina de extração é um misto das duas anteriores: 
• Uma parte do vapor é enviada para o processo industrial, a uma pressão 
intermédia; e 
• O remanescente é condensado no condensador. 
 
Podemos observar os diferentes módulos de uma turbina a vapor que aproveita os 
diferentes níveis de pressão. 
 
Módulos de uma Turbina a Vapor 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 47 
 
 
Após uma pesquisa exaustiva, conseguiu-se encontrar no “IEEE” e no “Direct Science” 
diagramas de blocos que traduzem o processo/comportamento de uma turbina a 
vapor. 
 
No entanto, os modelos obtidos através da nossa pesquisa não contêm valores 
concretos das constantes. Estes valores dependem de inúmeros fatores, como, por 
exemplo, do tipo de combustível usado, tipo de turbina usado (potência), entre outros. 
 
Estes valores são do conhecimento exclusivo dos fabricantes e/ou técnicos 
especializados na área. 
 
Modelo de diagrama de controle de turbina 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 48 
 
Diagrama de Blocos de Controle da Pressão 
 
Diagrama de blocos da potência gerado com intuito de facilitar a análise dos 
diagramas, recorrendo ao software “MATLAB”. Foram esquematizados os dois 
modelos, restando apenas ao utilizador final introduzir o valor das constantes 
desconhecidas. 
 
Os subsistemas “By pass” e “Intercept valve” foram integrados de forma a 
posteriormente poderem ser modelizados. Neste momento, apresentam 
comportamentos lineares, isto é a entrada corresponde à saída. 
 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 49 
 
Após esta importante contextualização, vamos à análise de viabilidade econômica. 
Neste exercício, pretende-se que sejam calculados os gastos anuais com a energia em 
uma indústria (componente petrolífera e componente eléctrica). 
 
Tendo em conta a tabela de preço e consumo eléctrico fornecido no enunciado, 
calculou-se o gasto com eletricidade por mês, já quanto ao gasto em recursos 
petrolíferos, sabendo-se o consumo de fuelóleo necessário para o suprimento de calor 
e sabendo-se o preço por kg, calculou-se o encargo financeiro com o mesmo. 
 
Partindo do pressuposto que o consumo é constante todos os meses, Foram 
calculados os encargos financeiros anuais. 
 
Gastos com Energia Mês Ano 
Custos com Eletricidade 39.818€ 477.816€ 
Custos com Gás Natural 27.750€ 333.000€ 
 
É possível estimar um custo do vapor, ou seja, o dinheiro necessário para se obter um 
kg de vapor recorrendo à expressão: 
 
Custo do Vapor = Encargos com fuelóleo anuais_____ 
 Consumo de vapor por hora *365*24 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 50 
 
Tendo em conta que o consumo de vapor por hora foi fornecido no enunciado 
(8000kg/h), chegamos assim a um Custo Vapor 0.0048 €/kg. 
 
De modo a podermos colocar as duas energias utilizadas no mesmo patamar e assim 
analisá-las comparativamente, calculamos o valor de toneladas equivalente de 
petróleo (TEP) correspondente às duas energias. 
 
Utilizaram-se os valores base de conversão: 
• Para o fuelóleo: 0.969 TEP/ton; 
• Para a energia eléctrica: 0.00029 TEP/kWh. 
 
Multiplicando esses fatores de conversão pelas quantidades consumidas de cada fonte 
de energia, obteve-se: 
• Para o fuelóleo: 872,1 TEP;• Para a energia eléctrica: 1646 TEP. 
 
Dividindo os valores obtidos para custos anuais de cada uma das energias pelos valores 
energéticos em TEP, chegou-se aos valores: 
• Para o fuelóleo: 381,84 €/TEP; 
• Para a energia elétrica: 290 €/TEP. 
 
Analisando os resultados finais, podemos concluir que a energia 
proveniente do fuelóleo fica mais dispendiosa do que a energia elétrica. 
 
REFERÊNCIAS BIBLIOGRÁFICAS 
 
ANDREOS, R. Estudo de viabilidade técnico-econômica de pequenas centrais 
de cogeração a gás natural no setor terciário do estado de São Paulo. São 
Paulo: Universidade de São Paulo, 2013. 
 
 
 
AVALIAÇÃO ECONÔMICA EM PROJETOS RENOVÁVEIS 51 
BOYLE, Godfrey. Renewable Energy - Power for a Sustainable Future. São Paulo: 
Editora Oxford, 2004. 
 
BRASIL. Agência Nacional De Energia Elétrica (ANEEL). Resolução Normativa N° 
235, de 2006. Brasília, 2006. 
 
_____. Agência Nacional De Energia Elétrica (ANEEL). Resolução Normativa N° 
482 de 2012. Brasília, 2012. 
 
_____. Agência Nacional De Energia Elétrica (ANEEL). Banco de Informações de 
Geração - BIG. Agência Nacional de Energia Elétrica, 2015. 
 
_____. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). 
Resolução N° 16, de 17 de Junho de 2008. Brasília, 2008. 
 
DONIZETI, Clementino Luiz. A Conservação de Energia por meio da Cogeração 
de Energia Elétrica. São Paulo: Editora Érica, 2001. 
 
GOMES NETO, Emílio Hoffmann. Hidrogênio – Evoluir sem Poluir. Brasil H2 Fuel Cell 
Energy, 2005. 
 
REIS, Lineu Bélico dos Reis. Geração de Energia Elétrica. São Paulo: Editora 
Manole, 2003. 
 
SANTOS, Afonso Henriques Moreira. Conservação de Energia – Eficiência 
Energética de Instalações e Equipamentos. Itajubá: Editora da EFEI, 2001.

Outros materiais