Buscar

teoria das estruturas mecânicas ED

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Impresso por Thais, CPF 452.684.388-16 para uso pessoal e privado. Este material pode ser protegido por direitos autorais e não pode
ser reproduzido ou repassado para terceiros. 13/05/2020 09:50:17
Conteudo3 
 Ex1- A 
 A Aplicação do diagrama de força cortante, através da formu la = Tensão = V.Ms/I.B O 
 momento estático é obtido pela 
 formula MS= Area . H médio = (0,250x0,02)x,15 = 9x103 
 substituindo na formu la anterior comos dados = 10,6MPA 
 
 Ex2- D 
 τ = V*Q/b*I 
 V = 80KN 
 I = 301,3*10^-6 m^-4 
 Q1 = ʃy dA = b*y²/2 (com y variando de 0,15 a 0), LOGO: 0,02*(0,15²/2) 
 Q1 = 2,25*10^-4 m³ 
 Q2 = ʃy dA = b *y²/2 (com y variando d e 0 ,17 a 0,15), LOGO: 
 0,25*(0,17²/2 – 0,15²/2) 
 Q2 = 8*10^-4 m³ 
 Qtotal = Q1 + Q2 = (2,25*10^-4) + (8*10 ^-4) 
 Qtotal = 1,025*10^-3 m³ 
 τ = ((80*10^3)*(1,025* 10^-3)) / ((0,02)*(301,3*10^-6)) 
 τ = 13,6 Mpa 
 
 Ex3- E 
 V = 80 [KN] 
 I = 301,3*10^-6 [m ^4] 
 Q1 = A 1*yc1 =(0,25*0,02)*(0,16) 
 Q1 = 8*10^-4 [m ^3] 
 Q2 = A 2*yc2 = (0,02*(0,15 y))*(y + 0,5(0,15 y)) – –
 Q2 = 2,25*10^-4 – 0,01*y^2 [m ̂ 3] 
 Qtotal = 1,025*10^- 0,01*y^2 [m ^3] 3 –
 A FORÇA CORTANTE RESULTANTE É A INTEGRAL DA TENSÃO DE 
 CISALHAMENTO EM RELAÇÃOÀ ÁREA 
Vr = ʃ τ dA; e 
 τ = V*Q/b*I 
 τ = ((13,6*10^6) – (132,76*10^6*(y^2) Pa 
 INTEGRANDO EM RALAÇÃ O A y: 
 Vr = 20*10^3*(13,6y (132,76*y^3)/3) –
 COM O MESMO VARIANDO DE 0,15 Á -0,15 
 Vr ~ 80KN 
 
 Exe -4 
 V = 80 [KN] 
 I = 301,3*10^-6 [m ^4] 
 Qflange = A*yc 
 A = b*x = 0,02*xm^2 ; yc = 0,16m 
 Qflange = 0,02x*0,16 
 Qflange = 3,2*10^ -3x m̂ 3 
 A FORÇA CORTANTE RESULTANTE É A INTEGRA L DA TE NSÃO DE 
 CISALHAMENTO EM RELA ÇÃO À ÁREA 
 Vr = ʃ τ dA; e 
 τ = V*Q/b*I 
 τ = (80*10^3*3,2*10^ -3x)/(0, 02*301,3*10^ -6) 
 τ = 42,48257x Pa 
 INTEGRANDO EM RE LA ÇÃO A x TOMANDO A FLANGE SUPERIOR 
 ESQUERDA COMO BA SE 
 Vr = (42,48257*x̂ 2)/2 
 COM VALOR DE x VARIAN DO EN TRE 0 E 0,115m 
 Vr = 5,63 KN 
 
 Ex5- a 
 A é zero , não força resultante devido a fluxo de cisalhamento. 
 
Impresso por Thais, CPF 452.684.388-16 para uso pessoal e privado. Este material pode ser protegido por direitos autorais e não pode
ser reproduzido ou repassado para terceiros. 13/05/2020 09:50:17
 Ex8- b 
 Calculo do momento de inercia da viga (BH³/12bh ³/12) = 3,755x10-5 , depois calcular 
 as força que a carga distribuida influencia na viga = 30KN ,depois,calcular o MS = 
 10x104aplicar as formula tensão = V.MS/BI = 30X10X104/ 0,25X3,755X-5 = 3,2 MPA 
 Ex9- a 
 Ao Efetuar o calculo do momento de inercia = BH3/12 bh³/12 = 3,755x10 -5 , calculo 
 do MS para viga invertida 10x104, aplicar na formu la tensão = VMS/bI = 
 30x10³x10x104/0,23x3,755x10-5=3,6 mpa 
 
 
 
 Conteudo5 
 
 Ex4- B 
 e = 3b² x tf / h x tw + 6b x tf => (3(29²) x 5)) / ((87 x 5) + (6x29)5)) => 12615/1305 ≅
 9,666 x 3 29mm. ≅
 Centro de torção = 29mm. (Mu ltipliquei por 3, porque o desenho apresenta base (a) e 
 altura (a) iguais; possui também espessura (t) constante; e três aberturas simétricas entre 
 a alma e o flange). 
 Ex5 -c 
 e = 3bh² (b+2a) - 8ba³ / h² (h + 6b + 6a) + 4a² (2a - 3h) => ((3x70)(100²) x (70+80) - 
 (8x70)(40³)) / (100²(100+420+240) + 4(40²) x ( -300)) => (279,16 x 10^6) / (6,192 x 80 
 10^6) 45,09 aprox. 48,8. ≅
 
 
Ex6 -d 
 Para este exercício teremos que divid ir a peça em duas (2), no caso seria uma viga “E” e 
 uma viga “T”, aplicando a formu la para a viga “E” onde b=90 mm ; h=180 mm ; tw = tf 
 = 6 mm achamos uma distância de e= 33,75 mm 
 Para viga T onde b=120mm; h=90mm; tf=tw=6mm. Achamos uma distância e de 53,33 
 mm , subtraindo-se as duas distâncias, encontramos = 19 mm 
 
 Ex7- e 
 Sabemos que a base da figura é 203mm , para acharmos a altura da peça, teremos que 
 usar a relação trigonométrica de seno = cat. Op. / hip. Nesse caso sabemos que o ângulo 
 é de 45°, acharemos a hipotenusa da peça com valor de 287,085mm , assim aplicamos o 
 teorema de Pitágoras e acharemos a altura da peça, que é aproximadamente 203mm. 
 Para acharmos a distância “e”, basta substituirmos os valores na fórmula: e= 3 x b² x tf / 
 h x tw + 6 x b x tf , onde tf=tw=2mm , encontraremos o valor de “e” = 87mm 
 Como é uma cantoneira é de abas iguais, sabendo que a mes ma distância “e” é de 87 
 mm estará atuando na parte inferior da viga, portanto subtraindo-se as duas distâncias, 
 encontraremos uma d istância igual a zero (0). 
 
 Ex8- d 
 E = ( 15,5 x 23 x 4 ) + ( 2 x 23 x 4 ) / ( 23 x 4 ) x 2 
 E = 8m,75 m 
 
 Conteudo 4 
 Ex=1 
 
 I= b.h^3/12 
 I= 240.160^3/12 2.(100.80^3/12) –
 I= 73386666,67 mm^4 
 B= 40 mm 
 Q= considerando somente on de a viga é colad a. 
 Q= (100 + 100 + 40). ( 40). (60) 
 Q= 576000 mm^3 
 V= b.I.τ/Q 
 V= (40. 73386666,67. 0,35)/576000 
Impresso por Thais, CPF 452.684.388-16 para uso pessoal e privado. Este material pode ser protegido por direitos autorais e não pode
ser reproduzido ou repassado para terceiros. 13/05/2020 09:50:17
 V= 1,783 kN. 
 Conforme f eito em sa la d e aula, nenhuma das alternativas tem a r esposta que cheg amos. 
 Ex2- D 
 Primeiro passo é calcular a força qu e é execida sobre o parafuso ,tensão = F/A , então F= t ensão x área 
 do parafuso = 60x10 6 x 0,0 7²xpi = 9,23k n / 2 pois a força e stá sendo influenciad a pela 02 lad os do 
 parafuso = 4,61 kn , d epois calcula -se o I BxH²/12 b xh³/12 = 3,846x1 0- – 6 
 Sabendo q a formu la S = FxI/V MS, isolando o V = FxI/M SxS , substitu indo os valor V= 5,50k n 
 
 EX- 3 
 Q = 250 * 10-3 * 20 * 10-3 * 1 60 * 10-3 
 Q = 8 * 10-4 m3 
 I = (250 * 10-3 * (2 40 * 10-3)3 / 12) 2 * (115 * 10-3 * (300 * 10-3)3 / 12) –
 I = 3,013 * 10-4 m4 
 VMÁX = 10 kN 
 F = VMAX * QCHAPA / I 
 F = 10 * 8 * 10-4 / 3,013 * 10- 4 
 F = 26,55 kN/m 
 N°CORDÕES = 4/ (15 0 * 10-3) 
 N°CORDÕES = 26,67 
 FCORDÃO = F * L / (2 * N °CORDÕES) 
 FCORDÃO = 26,55 * 4 / ( 2 * 26,67) 
 FCORDÃO = 2 kN 
 τCORDÃO = 105 kN/m2 
 τCORDÃO = FCORD ÃO / ACORDÃ O 
 105 = 2 / (15 * 10-3 * L) 
 L = 2 / (105 * 15 * 10 -3) 
 L = 1,33 * 10-3 m 
 L = 1,33 mm 
 Conforme f eito em sa la d e aula , nenhuma d as alternativas tem a resposta que ch egamos. 
 
 Ex4- C 
 ICHAPA = b * h³ / 12 
 ICHAPA = 260 * 15³ / 1 2 
 ICHAPA = 96817500 m m2 
 I = 2 * (IU + ICHAPA) 
 I = 2 * (78259700 + 968175 00) 
 I = 350154400 mm4 
 I = 350,15 * 10-6 m4 
 QCHAPA = 0,26 * 15 * 10-3 * 157,5 * 10 -3 
 QCHAPA = 6,1425 * 10 -4 m3 
 Vmáx= 62,5 kN 
 F = Vmáx * QCHAPA / I 
 F = 62,5 * 6,1425 * 10- 4 / 350,15 * 10- 6 
 F = 109,64 kN/m 
 FTOTAL = F * 2,5 
 FTOTAL = 109,64 * 2,5 
 FTOTAL = 274,1 Kn 
 n = FTOTAL / (2 * 47) 
 n = 274,1 / (2 * 47) 
 n = 2,92 
 d = 2,5 / 2,92 
 d = 0,85 m 
 d = 850 mm 
 Conforme f eito em sa la d e aula, nenhuma das alternativas tem a resposta que cheg amos. 
 
 Ex5 -a 
 Primeiro passo é calcular a força qu e é execida sobre o parafuso , tensão = F/A , entã o F= tensão x á rea 
 do parafuso = 60x10 6 x 0,0 7²xpi = 9,23k n / 2 pois a força e stá sendo influenciad a pela 02 lad os do 
 parafuso = 4,61 kn , depois calcula -se o I BxH²/12 b xh³/12 = 3,846x1 0- – 6 
 Sabendo q a formu la S = FxI/VMS, isoland o o V = FxI/M SxS , substituindo os valor V= 4 ,50kn 
Impresso por Thais, CPF 452.684.388-16 para uso pessoal e privado. Este material pode ser protegido por direitos autorais e não pode
ser reproduzido ou repassado para terceiros. 13/05/2020 09:50:17
 
 
 Ex6- D 
 Ms= (25x203)x41,5 Ms= 210.612,5 mm3 V=5x ;V=5.6=30KN I=37.10^6 mm4 I= 2 x 
 37.10^6 It= 74.10^6 mm4 f= Ms x V / It f= 210,6.10^3 x 30.10^3 / 74.10^6 f= 85,4 
 N/mm 
 T=F/A ; F=TxA F = 40 x (3,14 x 7,5^2) F =7,06.10^3 N S=2xF / f S= 2 x 7,06.10^3 / 
 85,4 = 165mm 
 
 
 Ex7- A 
 Ms= (20x100)x50 
 Ms= 100.000 mm3 
 V=27 KN 
 I=(120x120^3 /12) (80x80^3 /12) –
 I= 13.866.667 mm4 
 f= Ms x V / It 
 f= 100.10^3 x 27.10^3 / 13,86.10^6 
 f= 194,8 N/mm 
 T=F/A ; F=TxA 
 F = 88 x (3,14 x r^2) 
 S=2xF / f 
 50= 2 x 88 x (3,14 x r^2) / 194,8 
 r^2= 17,62 
 r= 4,19mm 
 D= 7,4mm 
 Ex8- D 
 Calculo do momento de inercia = BXH³/12 BXH³/12 = (0,21X,28³)/12 (0,18-,2³)12 – –
 = 2,64X10-4 
 MS = (0,18X0,04)0,12 = 8,64X10- 4 
 S= 2FXI/VMS = 2X800X2,64X10-4 /10,5X10 3 X 8,64 X -4 = S= 0,046M = 46MM 10 
 
 
 Conteudo 6 
 
 Ex1- C 
 I1 = d4 * π / 32 
 I1 = 104 * π / 32 
 I1 = 981,74 mm4 
 I2 = d4 * π / 32 
 I2 = 164 * π / 32 
 I2 = 6433,98 mm4 
 N1 = π2 * E * I1 / L2 
 N1 = π2 * 206 * 103 * 981,74 / 6002 
 N1 = 5544,48 N 
 N2 = π2 * E * I2 / L2 
 N2 = π2 * 206 * 103 * 6433,98 / 9952 
 N2 = 13212,97 N 
 ƩFY = – P – N2 * SEN 67,56 ° = 0 
 P = – 0,92 * N2 
 P = – 0,92 * 13212,97 
 P = – 12155,93 N (o sinal n egativo mo stra que a b arra 2 sofre compre ssão) 
 ƩFX = – N1 + N2 * CO S 67,56° = 0 
 N1 = 0,38 * N2 
 P = – N1 / 0,41 
 P = – 5544,48 / 0,41 
 P = – 13523,12 N (o sinal n egativo mo stra que a b arra 1 sof re 
 compressão) 
 Segurança igual a 3 
 P = 12155,93 / 3 
Impresso por Thais, CPF 452.684.388-16 para uso pessoal e privado. Este material pode ser protegido por direitos autorais e não pode
ser reproduzido ou repassado para terceiros. 13/05/2020 09:50:17
 P = 4051,97 N 
 P = 4,0 kN 
 Nenhuma d as alt ernativas tem a res posta que chegamos, fize mos confor me o professor nos 
 orientou em sala de aula. 
 
 Ex3- a 
 L= RAIZ² ( 0,46²+0,46²) = 0,65M 
 I = (PI x d4)/64 = (PI X 0,016 ^4)/64 = 3,2169 X 10-9 
 PCR = PI² X E X I/L² = P I²X 206 X 10 9 X 3,2169 X 10 -9 / 0,65² = 15,48 kN , MAIS 
 DEVIDO AO FATOR DE SEGURANÇA = 3 = 15,48/3 = 5,16 KN 
 Ex3- D 
 EMx : -N1* sen45º + N 2*sen74º = 0 
 Emy : -N1*cos45º - N2*cos74º -P = 0 
 -N1*0,7 + N2*0,96 = 0 
 -N1*0, 7 – N2*0,27 - P = 0 
 -N2*0,27 N2*0,96 P = 0 – –
 N2 = -P/1,23 
 N1 = N2*0,96/0,7 = ( -P/1,23)*(0,96/0,7 ) 
 N2= -0,813P e N1= - 1,115P 
 Pcr1 = ((π^3)* (200*10^6 )*(10 ^ -4))/ (32*(4,24^2)) = 1077,95 kN 
 Pcr2 = ((π^3)* (200*1 0^6)*(10 ^ -4))/ (32*(10,88 ^2)) = 163,71 kN 
 Coef. de segurança = 2 
 Pcr = Pcr2/2 = 81,5 
 P= 81,85/0,813 = 100kN 
 Conforme f eito em sa la d e aula co m o professor, nenh uma das alternativas te m a resposta que 
 chegamos. 
 
 Ex4- a 
 Dados: 
 P=20 KN 
 E=200GPa 
 L=2m 
 N=4 
 Sabendo que n ível de segurança é igual a 4, temos que a for ça: 
 P=20*4 
 P=80KN 
 Conhecendo a formu la de “ P”, temos: 
 P=π²*E*I/L² 
 I=P*L²/E* π² 
 Ficando: 
 I=80000*2²/200*10^9 * π² 
 I=1,6211389*10^-7 m ^4 
 I=162113,89 mm^4 
 Momento de Inercia pa ra carregamento de 2 0 KN com m od ulo de segurança igu al a 4. 
 Agora basta calcu la r o m omento d e inércia co m a s dim ensões das alternati vas, e fazend o 
 isto 
 o valor mais próximo que che gamos foi 
 utilizando as dimensões 51 x 51 x 9,5: 
 I = IX1 + A 1y1`2 + Ix2 + A 2y2`2 
 I = (51 * 9,53) / 12 + 484,5 * 11,442 + (9,5 * 41,53) / 12 + 3 94,25 * 9,312 
 I = 157807,24 mm^4 
 
 Ex5- E 
 I = 2 * (I1 + I2) 
 I = 2 * (121765,4 + 320 20,7) * 10-12 
 I = 3,076 * 10-7 m4 
 P = π2 * E * I / L2 
 P = π2 * 206 * 106 * 3,076 * 10 -7 / 2,752 
 P = 82,7 kN 
 Como o coeficiente de s egurança é 2, t emos: 
Impresso por Thais, CPF 452.684.388-16 para uso pessoal e privado. Este material pode ser protegido por direitos autorais e não pode
ser reproduzido ou repassado para terceiros. 13/05/2020 09:50:17
 P = 82,7 / 2 
 P = 41,35 kN 
 
 
 Ex6- A 
 I = I1 
 I = 1,217654 * 10-7 m 4 
 P = π2 * E * I / L2 
 P = π2 * 206 * 106 * 1,217 654 * 10-7 / 2,752 
 P = 32,74 kN 
 Como o coeficiente des egurança é 2, t emos: 
 P = 32,74 / 2 
 P = 16,37 kN 
 
 Ex8- D 
 De = 76 mm 
 Di = 70 mm 
 L = 10 m 
 E = 200GPa = 200.10³ MPa 
 I = π/4 (re^4 – ri^4) = π/4 (38^4 – 35^4) = 459073,87 mm4 
 Pcr = (C² x 200.10³ x 459073,87) / (10.10³)² 
 Pcr = 9 KN 
 
 
 Conteudo 7 
 
Ex1 -b 
 σcr = Pcr / A = 300 MPA 
 D = 50 mm .: r = 25 m m 
 A = πr² = πr² = π.25² = 19 63,49 mm² 
 Assim, 300 Mpa = Pcr / 1 963,49 mm² => Pc r = 589048,62 N 
 E = 206 GPa = 206.10³ MPa 
 I = π/4 (r^4) = π/4 (25 ̂ 4) = 306796,16 mm4 
 L² = (π² x 200.10³ x 306796,16) / 58904 8,62 
 L² ≈ 1000 mm 
 
 Ex2- C 
 I = ̂ 2*r^4/4 = ^2 * 25 ^2 / 4 
 I=306,8*10^3 mm4 
 Pcr=^2 * E * I/ L̂ 2 = ^2 * 206* 10^3 * 30 6,8*10^3 / 1000 ^2 
 Pcr= 623,8KN 
 
 
 Ex3- c 
 Pcr x=^2 * E * I x/ kL x^2 = ̂2 * 70*10^3 * 61,3*10^6 / (10*10^3)^2 
 Pcr= 424kN 
 Padm = Pcr/FS = 42 4*10^3 / 3 
 Padm= 141kN 
 
 
 Ex4 -B 
 I = (π / 64) * (D4 – d4 ) 
 I = (π / 64) * (0,14 – 0,0844) 
 I = 2,5 * 10-6 m4 
 E = 70 * 106 kPa 
 N = 4,3 
 Pcr = (π2 * E * I) / (L2 * N ) 
 BARRA AB: 
 L = 3 
 PcrAB = (π2 * E * I) / (L2 * N) 
Impresso por Thais, CPF 452.684.388-16 para uso pessoal e privado. Este material pode ser protegido por direitos autorais e não pode
ser reproduzido ou repassado para terceiros. 13/05/2020 09:50:17
 PcrAB = (π2 * 70 * 106 * 2,5 * 10-6) / ( 32 * 4,3) 
 PcrAB = 45 kN 
 BARRA BC: 
 PcrBC = (π2 * E * I) / (L 2 
 * N) 
 PcrBC = (π2 * 70 * 106 * 2,5 * 10-6 ) / (42 * 4,3) 
 PcrBC = 25 kN 
 Consideramos a carga co m 90 kN, a o invés de 9 kN. 
 A barra A B, p or a carga P estar po sicionada de maneira si métrica devido 
 ao apoio C, sofrerá uma compressão constan te de 4 5 kN, independ ente da altura “h”. 
 Já a barra BC tem compre ssão variando d e acordo com a altu ra “h”. Porta nto para sabermos o valor 
 de “h” devemos resolv er a estática do 
 problema: 
 PcrBC = (SENἀ * 0,5 * P ) / COSἀ 
 ἀ = TAN-1 (PcrBC / (0, 5 * P)) 
 ἀ = TAN-1 (25 / (0,5 * 9 0)) 
 ἀ = 29° 
 h = CO / TANἀ 
 h = 2 / TAN29° 
 h = 3,6 m 
 Ex5- a 
 P = PCR 
 P = α . ΔT . E . A 
 PCR = (4 π2 . I . E ) / L2 
 α . ΔT . E . A = (4 π2 . I . E ) / L2 
 ΔT = (4 π2 . I . E ) / L2 . α . E . A 
 logo: 
 ΔT = (4 π2 . ( π . 304 / 64 )) / ( 14002 . 1,1x10 5 . ( π . 302 / 4 )) - 
 ΔT = 102,95°C 
 Ex5- c 
 P = PCR 
 P = α . ΔT . E . A 
 PCR = (4 π2 . I . E ) / L2 
 α . ΔT . E . A = (4 π2 . I . E ) / L2 
 ΔT = (4 π2 . I . E ) / L2 . α . E . A 
 logo: 
 ΔT = (4 π2 . ( π . 204 / 64 )) / ( 1,2102 . 1,1x10 5 . ( π . 202 / 4 )) - 
 ΔT = 62,3°C 
 Ex7- b 
 Ix = Ix' + A .d2 
 Ix = 4 x ( 50 . 9,29 . 2,132 ) 
 Ix = 368,6 cm4 
 PCRADM = ( π2 . I . E ) / 4 . L2 
 PCRADM = ( π2 . 70x105 . 368,6 ) / ( 4 . 2002 ) 
 PCRADM = 159,16 KN 
 PCR = PCRADM x FS 
 PCR = 159,16 x 2 
 PCR = 318,32 Kn 
 Padm = Pcr/FS = 42 4*10^3 / 3 
 Padm= 141kN 
 
 
 Ex4 -B 
 I = (π / 64) * (D4 – d4 ) 
 I = (π / 64) * (0,14 – 0,0844) 
 I = 2,5 * 10-6 m4 
 E = 70 * 106 kPa 
 N = 4,3 
 Pcr = (π2 * E * I) / (L2 * N ) 
 BARRA AB: 
Impresso por Thais, CPF 452.684.388-16 para uso pessoal e privado. Este material pode ser protegido por direitos autorais e não pode
ser reproduzido ou repassado para terceiros. 13/05/2020 09:50:17
 L = 3 
 PcrAB = (π2 * E * I) / (L2 * N) 
 PcrAB = (π2 * 70 * 106 * 2,5 * 10-6) / ( 32 * 4,3) 
 PcrAB = 45 kN 
 BARRA BC: 
 PcrBC = (π2 * E * I) / (L 2 
 * N) 
 PcrBC = (π2 * 70 * 106 * 2,5 * 10-6 ) / (42 * 4,3) 
 PcrBC = 25 kN 
 Consideramos a carga co m 90 kN, a o invés de 9 kN. 
 A barra A B, p or a carga P estar po sicionada de maneira si métrica devido 
 ao apoio C, sofrerá uma compressão constan te de 4 5 kN, independ ente da altura “h”. 
 Já a barra BC tem compre ssão variando d e acordo com a altu ra “h”. Porta nto para sabermos o valor 
 de “h” devemos resolv er a estática do 
 problema: 
 PcrBC = (SENἀ * 0,5 * P ) / COSἀ 
 ἀ = TAN-1 (PcrBC / (0, 5 * P)) 
 ἀ = TAN-1 (25 / (0,5 * 9 0)) 
 ἀ = 29° 
 h = CO / TANἀ 
 h = 2 / TAN29° 
 h = 3,6 m 
 Ex5- a 
 P = PCR 
 P = α . ΔT . E . A 
 PCR = (4 π2 . I . E ) / L2 
 α . ΔT . E . A = (4 π2 . I . E ) / L2 
 ΔT = (4 π2 . I . E ) / L2 . α . E . A 
 logo: 
 ΔT = (4 π2 . ( π . 304 / 64 )) / ( 14002 . 1,1x10 5 . ( π . 302 / 4 )) - 
 ΔT = 102,95°C 
 Ex5- c 
 P = PCR 
 P = α . ΔT . E . A 
 PCR = (4 π2 . I . E ) / L2 
 α . ΔT . E . A = (4 π2 . I . E ) / L2 
 ΔT = (4 π2 . I . E ) / L2 . α . E . A 
 logo: 
 ΔT = (4 π2 . ( π . 204 / 64 )) / ( 1,2102 . 1,1x10 5 . ( π . 202 / 4 )) - 
 ΔT = 62,3°C 
 Ex7- b 
 Ix = Ix' + A .d2 
 Ix = 4 x ( 50 . 9,29 . 2,132 ) 
 Ix = 368,6 cm4 
 PCRADM = ( π2 . I . E ) / 4 . L2 
 PCRADM = ( π2 . 70x105 . 368,6 ) / ( 4 . 2002 ) 
 PCRADM = 159,16 KN 
 PCR = PCRADM x FS 
 PCR = 159,16 x 2 
 PCR = 318,32 Kn 
 
 Conteudo 8 
 
 ex1- c 
 P = π2 * E * I / (L2* N) 
 P = π2 * E * π * d4/ (L2* N * 32) 
 d = ((P * L2 * N * 32) / (π3 * E))1/4 
 d = ((10 * 0,52 * 2 * 32) / (π3 * 200 * 106))1/4 
 d = 0,0126 m 
 d = 12,6 mm 
Impresso por Thais, CPF 452.684.388-16 para uso pessoal e privado. Este material pode ser protegido por direitos autorais e não pode
ser reproduzido ou repassado para terceiros. 13/05/2020 09:50:17
 Nenhuma d as alternativas tem a resposta que chegamos, fizemos 
 conforme o professor nos orientou em sala de aula. 
 
 
 Ex2- D 
 É necessário realizar o somatório de forças em X e em Y, depois calcular o momento de 
 inércia , e no final a carga crit ica aplicada que não faça flambar deve ser divid ida pelo 
 coeficiente de segurança. 
 I=pid^4/64 
 Pad=Pcr/K=181 KN 
 
 
 ex3- a 
 P = π2 * E * I / (L2 * N) 
 P = π2 * E * π * d4 / (L2 * N * 32) 
 P = π3 * 200 * 106 * 0,012 4 / (0,32 * 2 * 32) 
 P = 22,32 Kn 
 Nenhuma d as alt ernativas tem a respo sta que chegamo s, calculo conforme o p rofessor nos 
 orientou em sala de aula.Ex5- c 
 Pcr = (π^2* E*I) / (L̂ 2 ) * N 
 h =1,5*b 
 Pcr = 20 kN 
 E = 70*10^6 kPa 
 I = (b*h^3) / 12 
 L = 350mm =0,35m 
 N = 2 
 Logo: 
 20 = (π^2 * 70*10^6 * b*(1,5 *b) ̂ 3) / ( 0,35^2 * 2 * 12) 
 b = ((0,35^2 * 2 * 12 * 2 0) / ( π^2 * 70 *10^6 * 1,5 ^3)) ^ ( 1/4) 
 b= 0,0126m= 12,60m m 
 h= 1,5 * 12,60 
 h= 18,90mm 
 Portanto a á rea da seção é: 
 A=12,60 * 18,90 
 A=238,14mm^2 
 Conforme teoria vista em au la utilizamos a fórmu la da carga crít ica. 
 Nenhuma das alternativas corresponde ao valor encontrado . 
 
 Ex6- C 
 P = PCR 
 P = α . ΔT . E . A 
 PCR = (4 π2 . I . E ) / L2 
 α . ΔT . E . A = (4 π2 . I . E ) / L2 
 ΔT = (4 π2 . I . E ) / L2 . α . E . A 
 logo: 
 ΔT = (4 π2 . ( π . 304 / 64 )) / ( 1,22 . 1,1x10-5 . ( π . 302 / 4 )) 
 ΔT = 62° 
 
 Ex7- a 
 Metodo de aprimoração de Tetmajer 
 λ = ( L / r ) = √ ( π . E / σfl ) 
 λ = √ (π2 . 200x103 / 240 ) 
 λ = 90 
 Aproximado de 95. 
 
 Ex8- B 
 AÇO ST37 
 σ = P/A P = σ*A 
Impresso por Thais, CPF 452.684.388-16 para uso pessoal e privado. Este material pode ser protegido por direitos autorais e não pode
ser reproduzido ou repassado para terceiros. 13/05/2020 09:50:17
 σfl = σc – σpl/λlim²)*λ² λ = KL/R R = ²√I/A I = π*d^4/32 (σc - 
 I = π*12^4/32 I = 2035,75 mm^4 A = π*r^4 
 A = π*6^4 A = 113,2 mm² R = ²√2035,75/113,2 
 R = 4,24 mm λ = 1*300/4,24 λ = 70,75 Para aço ST37: λlim = 105 σfl = 240 – (240- 
 200/105²)*70,75² 
 σfl = 221,8 MPa σadm = σfl/Fs σadm = 221,8/2 σadm = 110,9 MPa 
 P = σ*A P = 110,9*113,1 P = 12400 N ou 12,4 KN 
 
 Conteudo 9 
 
 Ex1 -a 
 Para a seção que se encontra no meio do vão da barra, a flecha máxima é determinada 
 através de Pa/24EI*(4a²-3L²) 
 
 Ex4- E 
 O ponto ocorre no meio do vão 
 V = 5q . L4 / 384 . E . I 
 
 Ex5- D 
 ( L3 / 48 . E . I ) . (2P-5P) = ( - 3PL3 / 48EI ) = ( - P L3 / 16EI ) 
 
 Ex8- B 
 Calculando a área: 
 A=π.r² 
 A=π.25²=1963,5 mm² 
 Calculado o I: 
 I = π r4 / 4 
 I=306796,15 mm4 
 Substituindo na formula: 
 σ = PCR / A 
 Pcr=589KN 
 Substituindo na formula: 
 PCR = ( π2 . I . E ) / L2 ---- L= 1029mm ou 1m. 
 
 
 Conteudo 10 P 
 
 Ex2- e 
 Força real 
 ∫M.Mdx=[(30x3/2 x 2/3 (3 ))]=90 
 d_r=(∫M.Mdx)/(E x I) =90 /(E x I) 
 
 Força aplicada extre midade livre 
 ∫M.Mdx=[(((5xF_el x5)/2 x 1 /3 ( -5))]=- 20,8333xF _el 
 d_el=(∫M.Mdx)/(E x I) = (-20,8 33xF_el)/(E x I) 
 
 Deslocamento igual a zero 
 d_el+d_r=0 
 (20,833xF_el)/(E x I) =90/(E x I) 
 F_el=90/20,833=4,320 k N 
 
 Ex3- a 
 Deslocamento “u ” Sendo o produto EI constante n a barrra, a expressão do desloca mento será: 
 u=(∫M.Md x)/(E x I) 
 Caso barra de carregamento e momento fletor M : 
 Vamos definir o esforço un itário ad imensional, que deverá, no caso barra d e carregamento, 
 ser aplicado sozinho na estrutura: 
 - Queremos o desloca mento da ext remidade livr e (extremidad e sem ligação a apoio ou barra) 
 aplicamos o esforço u nitário na extremidade l ivre. 
 - Queremos a translação vertica l da seçã o o esforço unitá rio a ser aplicado na extremidade éuma força

Outros materiais