Prévia do material em texto
1. Construa a tabela verdade para a seguinte proposição: P:(p ∨ (~p ∨ q) ∧ ~(q ∧ r)) P Q R ~P V Q Q ^ R P V (~P V Q) (P V (~P V Q) ^ ~(Q ^ R)) V V V V V V F V V F V F V V V F V F F V V V F F F F V V F V V V V V F F V F V F V V F F V V F V V F F F V F V V 2. Sejam as proposições atômicas p, q, r quaisquer. Construa as tabelas-verdade para as seguintes proposições moleculares, e responda se é uma Tautologia ou Contradição, ou nem uma coisa nem outra. a) (p ∧ (q → r)) → (q → (p ∧ r)) P Q R Q → R P ∧ R p ∧ (q → r) Q → (P ∧ R) (P ∧ (Q → R)) → (Q → (P ∧ R)) V V V V V V V V V V F F F F V F V F V V V V F V V F F V F V V V F V V V F F V F F V F F F F V F F F V V F F V F F F F V F F V F Contingência b) ((p ∨ q) → r) → ((p → r) ∨ (q → r)) P Q R P V Q P → R Q → R (P V Q) → R (P → R) V (Q → R) ((P V Q) → R)) → ((P → R) V (Q → R)) V V V V V V V V V V V F V F F F F V V F V V V V V V V V F F V F V F V V F V V V V V V V V F V F V V F F V V F F V F V V V V V F F F F V V V V V Tautologia c) ((p ∧ q ∧ r) ↔ (~p ∨ ~q ∨ ~r) d) ((p ⊻ q) → p) ∧ (q ⊻ (p ∨ q)) P Q R D V V V V V V V F V V F V V V F F V F V V V F V F V F F V V F F F F V V V F V V F F V F V F V F F F F V V F F V F F F F V F F F F 3. Mostre se as expressões P1 e P2 são equivalentes logicamente. 𝑃1:(𝑠→(𝑝∧~𝑟))∧((𝑝→(𝑟∨𝑞))∨𝑠) 𝑃2:(𝑝∧𝑞∧~𝑟∧𝑠)∨~(𝑝∨𝑠) 𝑃1:(𝑠→(𝑝∧~𝑟))∧((𝑝→(𝑟∨𝑞))∨𝑠) p q r s P1 = ( s -> ( p ^ ~ r ) ) ^ ( ( p -> ( r v q ) ) v s ) = V V V V P1 = ( V -> ( V ^ ~ V ) ) ^ ( ( V -> ( V v V ) ) v V ) = V V V F P1 = ( F -> ( V ^ ~ V ) ) ^ ( ( V -> ( V v V ) ) v F ) = V V F V P1 = ( V -> ( V ^ ~ F ) ) ^ ( ( V -> ( F v V ) ) v V ) = V V F F P1 = ( F -> ( V ^ ~ F ) ) ^ ( ( V -> ( F v V ) ) v F ) = V F V V P1 = ( V -> ( V ^ ~ V ) ) ^ ( ( V -> ( V v F ) ) v V ) = V F V F P1 = ( F -> ( V ^ ~ V ) ) ^ ( ( V -> ( V v F ) ) v F ) = V F F V P1 = ( V -> ( V ^ ~ F ) ) ^ ( ( V -> ( F v F ) ) v V ) = V F F F P1 = ( F -> ( V ^ ~ F ) ) ^ ( ( V -> ( F v F ) ) v F ) = F V V V P1 = ( V -> ( F ^ ~ V ) ) ^ ( ( F -> ( V v V ) ) v V ) = F V V F P1 = ( F -> ( F ^ ~ V ) ) ^ ( ( F -> ( V v V ) ) v F ) = F V F V P1 = ( V -> ( F ^ ~ F ) ) ^ ( ( F -> ( F v V ) ) v V ) = F V F F P1 = ( F -> ( F ^ ~ F ) ) ^ ( ( F -> ( F v V ) ) v F ) = F F V V P1 = ( V -> ( F ^ ~ V ) ) ^ ( ( F -> ( V v F ) ) v V ) = F F V F P1 = ( F -> ( F ^ ~ V ) ) ^ ( ( F -> ( V v F ) ) v F ) = F F F V P1 = ( V -> ( F ^ ~ F ) ) ^ ( ( F -> ( F v F ) ) v V ) = F F F F P1 = ( F -> ( F ^ ~ F ) ) ^ ( ( F -> ( F v F ) ) v F ) = = ( V -> ( V ^ F ) ) ^ ( ( V -> V ) v V ) = = ( F -> ( V ^ F ) ) ^ ( ( V -> V ) v F ) = = ( V -> ( V ^ V ) ) ^ ( ( V -> V ) v V ) = = ( F -> ( V ^ V ) ) ^ ( ( V -> V ) v F ) = = ( V -> ( V ^ F ) ) ^ ( ( V -> V ) v V ) = = ( F -> ( V ^ F ) ) ^ ( ( V -> V ) v F ) = = ( V -> ( V ^ V ) ) ^ ( ( V -> F ) v V ) = = ( F -> ( V ^ V ) ) ^ ( ( V -> F ) v F ) = = ( V -> ( F ^ F ) ) ^ ( ( F -> V ) v V ) = = ( F -> ( F ^ F ) ) ^ ( ( F -> V ) v F ) = = ( V -> ( F ^ V ) ) ^ ( ( F -> V ) v V ) = = ( F -> ( F ^ V ) ) ^ ( ( F -> V ) v F ) = = ( V -> ( F ^ F ) ) ^ ( ( F -> V ) v V ) = = ( F -> ( F ^ F ) ) ^ ( ( F -> V ) v F ) = = ( V -> ( F ^ V ) ) ^ ( ( F -> F ) v V ) = = ( F -> ( F ^ V ) ) ^ ( ( F -> F ) v F ) = = ( V -> F ) ^ ( V v V ) = F ^ V = F = ( F -> F ) ^ ( V v F ) = V ^ V = V = ( V -> V ) ^ ( V v V ) = V ^ V = V = ( F -> V ) ^ ( V v F ) = V ^ V = V = ( V -> F ) ^ ( V v V ) = F ^ V = F = ( F -> F ) ^ ( V v F ) = V ^ V = V = ( V -> V ) ^ ( F v V ) = V ^ V = V = ( F -> V ) ^ ( F v F ) = V ^ F = F = ( V -> F ) ^ ( V v V ) = F ^ V = F = ( F -> F ) ^ ( V v F ) = V ^ V = V = ( V -> F ) ^ ( V v V ) = F ^ V = F = ( F -> F ) ^ ( V v F ) = V ^ V = V = ( V -> F ) ^ ( V v V ) = F ^ V = F = ( F -> F ) ^ ( V v F ) = V ^ V = V = ( V -> F ) ^ ( V v V ) = F ^ V = F = ( F -> F ) ^ ( V v F ) = V ^ V = V = ( F ^ V ) v F = F v F = F = ( F ^ F ) v F = F v F = F = ( V ^ V ) v F = V v F = V = ( V ^ F ) v F = F v F = F = ( F ^ V ) v F = F v F = F = ( F ^ F ) v F = F v F = F = ( F ^ V ) v F = F v F = F = ( F ^ F ) v F = F v F = F = ( F ^ V ) v F = F v F = F = ( F ^ F ) v V = F v V = V = ( F ^ V ) v F = F v F = F = ( F ^ F ) v V = F v V = V = ( F ^ V ) v F = F v F = F = ( F ^ F ) v V = F v V = V = ( F ^ V ) v F = F v F = F = ( F ^ F ) v V = F vV = V p q r s 𝑃1:(𝑠→(𝑝∧~𝑟))∧((𝑝→(𝑟∨𝑞))∨𝑠) p q r s 𝑃2:(𝑝∧𝑞∧~𝑟∧𝑠)∨~(𝑝∨𝑠) V V V V F V V V V F V V V F V V V V F F V V F V V V V F V V V V F F V V V F F F V F V V F V F V V F V F V F V V F V F F V F F V V V F F V F V F F F F V F F F F F V V V F F V V V F F V V F V F V V F V F V F V F F V F V F F V F F V F V F F V F F V V F F F V V F F F V F V F F V F V F F F V F F F F V F F F F F V F F F F V p q r s VERIFICAÇÃO RESPOSTA V V V V igual As proposições P1 e P2 NÃO são equivalentes V V V F diferente V V F V igual V V F F diferente V F V V igual V F V F diferente V F F V diferente V F F F igual F V V V igual F V V F igual F V F V igual F V F F igual F F V V igual F F V F igual F F F V igual F F F F igual