A maior rede de estudos do Brasil

Grátis
14 pág.
Tutorial: Etapas da Carcinogênese

Pré-visualização | Página 5 de 7

estroma adjacente. Em resumo, a EMT se dá entre um fenótipo menos migratório, epitelial, para um mais migratório, fibroblástico. Como comentado anteriormente, a perda funcional de E-caderina é importante na dissolução das junções aderentes. Isso pode ser ocasionado por diversos fatores de transcrição e microRNAs que reprimem diretamente os níveis de E-caderina. Além disso, a EMT envolve a aquisição de fatores de motilidade e/ou dispersão que interagem com receptores específicos, muitos com atividade de tirosino-quinase, não só atuando na transição de fenótipos como também agindo como fatores de crescimento (membros da família de EGF e seus receptores, c-met e receptores de EGF). É necessária também a modificação da matriz extracelular mediada por moléculas da superfamília das integrinas e a ação das metaloproteinases para que ocorra um “afrouxamento” do tecido, e assim, permitir a passagem das células metastáticas. Uma das primeiras barreiras que devem ser quebradas é a perda da membrana basal dando acesso ao estroma onde estão localizados os vasos sanguíneos. Essa perda é devida à proteólise ativa efetuada por metaloproteinases da matriz (MMPs) e enzimas que degradam os polissacarídeos complexos como os glicosaminoglicanos (hialuronidases, heparanases e condroitinases). No tecido normal, a atividade das MMPs é cuidadosamente controlada por mecanismos transcricionais e pós-traducionais. No entanto, as células tumorais interferem no controle da atividade das MMPs, aumentado suas funções de degradação da membrana basal, promoção da invasão e proliferação das células cancerosas. Uma vez que as células tumorais conseguem ultrapassar a membrana basal, elas se inserem no estroma. Esse torna-se mais “reativo” e adquire vários atributos do estroma de tecidos em cicatrização de feridas ou de ambientes cronicamente inflamados. As células invasoras encontram fibroblastos e miofibroblastos, células endoteliais, adipócitos e várias células derivadas da medula óssea como células-tronco mesenquimais, macrófagos e outras células imunes. Estas células do estroma são capazes de realçar ainda mais o fenótipo agressivo das células tumorais através de vários tipos de sinais (a invasividade do câncer de mama pode ser estimulada pela secreção de interleucina-6 [IL-6] pelos adipócitos, linfócitos T CD4+ promovem a invasão desse tipo tumoral ao estimular a produção de EGFR pelos macrófagos associados ao tumor). Assim, as células tumorais estimulam a formação de um estroma inflamado e este retribui reforçando o fenótipo maligno das células neoplásicas. É evidente que a entrada das células neoplásicas no estroma adjacente fornece múltipas oportunidades para as células acessarem diretamente a circulação sistêmica e, desse modo, disseminarem-se para locais distantes.
INTRAVASÃO 
A intravasão envolve a entrada das células tumorais na luz dos vasos sanguíneos e/ou linfáticos. Embora a disseminação linfática das células tumorais seja rotineiramente observada em tumores humanos e represente um importante marcador prognóstico para a progressão da doença, a disseminação pela circulação sanguínea representa o principal mecanismo metastático. A intravasão pode ser facilitada por alterações moleculares que permitem que as células tumorais atravessem o pericito e a barreira de células endoteliais que formam as paredes de vasos (a citocina TGF-β aumenta a intravasão do câncer de mama). As células tumorais estimulam a formação de novos vasos sanguíneos dentro de seu microambiente pelo processo denominado angiogênese. Em contraste com os vasos sanguíneos presentes em tecidos normais, a neovascularização gerada pelas células neoplásicas é tortuosa, com tendência para vazamentos e em estado de contínua reconfiguração. As interações fracas entre as células endoteliais adjacentes que formam a microvasculatura tumoral facilitam a intravasão. A principal molécula envolvida é o VEGF. Uma vez que as células tumorais intravasaram com êxito para a luz dos vasos sanguíneos podem, através da circulação, disseminar para qualquer parte do hospedeiro. Mas as células tumorais circulantes precisam sobreviver a uma variedade de tensões para chegar a órgãos distantes, como privação da adesão dependente de integrinas presentes nos componentes de matriz extracelular, normalmente essencial para sobrevivência celular. Na ausência dessa ancoragem, as células epiteliais normalmente sofrem morte por anoikis. Ainda não sabemos quanto tempo as células cancerosas permanecem na circulação. Alguns estimam que seu tempo de permanência em pacientes de câncer de mama pode ser de várias horas. No entanto, devido ao tamanho das células tumorais (20-30 µm) e ao diâmetro dos vasos capilares (8 µm), provavelmente a grande maioria das CTCs ficam presas em vários leitos capilares durante sua primeira passagem através da circulação. Portanto, é possível que muitas células tumorais passem apenas breves períodos de tempo na corrente sanguínea, escapando da circulação muito antes que os alarmes de anoikis sejam disparados. Além das tensões impostas pelo desprendimento da ECM, as CTCs devem superar os danos causados pelo shear stress e pelas interações com as células do sistema imune. Convenientemente, as células tumorais parecem evitar essas duas ameaças através de um mecanismo único que depende da formação de êmbolos relativamente grandes em interações com as plaquetas no sangue. Dessa forma, as células tumorais “revestidas” por plaquetas são mais eficientes em persistir dentro da circulação até aderirem nos distantes órgãos-alvo. Uma vez alojadas na microvasculatura dos órgãos distantes, as CTCs podem apresentar crescimento intraluminal e formar microcolônias que eventualmente rompem as paredes ao redor dos vasos, ocorrendo formação tumoral em contato direto com o parênquima do tecido. As células cancerosas podem também extravasar pelo endotélio vascular para o parênquima do tecido, em um processo inverso da etapa anterior de intravasão, porém distinto mecanicamente. Embora a intravasão possa ser promovida por células presentes no estroma do tumor primário, tais como os macrófagos associados ao tumor, a etapa de extravasamento não é favorecida por essas células. Os macrófagos que residem nos tumores primários são fenotipicamente distintos daqueles presentes nos locais de formação das metástases. Além disso, a neovascularização formada nos tumores primários é tortuosa e possui vazamentos, enquanto os vasos dos sítios de metástases tendem a ser altamente funcionais e apresentar baixa permeabilidade intrínseca.
EXTRAVASÃO 
As características específicas do microambiente do sítio metastático podem influenciar o destino das células tumorais circulantes. Com o intuito de superar as barreiras físicas dos tecidos com baixa permeabilidade intrínseca, os tumores primários são capazes de secretar fatores que perturbam esses microambientes e induzem um aumento da permeabilidade vascular mesmo antes da chegada das CTCs (a secreção das proteínas angiopoietinas dos tipos 4 e 2, bem como dos fatores EREG, COX-2, MMP-1, fator de crescimento placentário e VEGF). Para iniciar a formação das micrometástases, as CTCs devem sobreviver no parênquima do tecido em que se encontram. O microambiente desse tecido difere do local de formação do tumor primário em relação aos tipos de células presentes no estroma, os constituintes da ECM, fatores de crescimento e citocinas disponíveis e até mesmo a arquitetura tecidual. As células tumorais revertem esses problemas através do estabelecimento de um nicho pré-metastático. Ao mesmo tempo, as células cancerosas disseminadas devem utilizar programas autônomos a fim de se adaptar às exigências impostas pelos tecidos invadidos. A sobrevivência das células tumorais no microambiente do tecido invadido não garante o sucesso na proliferação e na formação das metástases macroscópicas. Parece que a grande maioria das células tumorais disseminadas sofre atritos lentos durante semanas ou meses e persiste como microcolônias em um estado de aparente dormência, mantendo a viabilidade