A maior rede de estudos do Brasil

Grátis
8 pág.
Atividade 2 matematica

Pré-visualização | Página 1 de 3

Curso
	GRA0204 METODOLOGIA E PRÁTICA DE ENSINO DE MATEMÁTICA NA ALFABETIZAÇÃO GR2105211 - 202110.ead-15111.01
	Teste
	ATIVIDADE 2 (A2)
	
	
	
	
	Status
	Completada
	Resultado da tentativa
	10 em 10 pontos  
	Tempo decorrido
	35 minutos
	Resultados exibidos
	Respostas enviadas, Respostas corretas, Comentários
· Pergunta 1
1 em 1 pontos
	
	
	
	No período do chamado Movimento da Matemática Moderna o ensino de geometria preocupava-se, segundo Miorim (1998), em introduzir o raciocínio lógico, após um trabalho inicial que buscava, de maneira geral, familiarizar o aluno com as noções básicas sobre figuras geométricas em sua posição fixa ou por meio de seus movimentos. Além disso, os defensores deste movimento apoiavam a inclusão no currículo de abordagens “não euclidianas” para o ensino de Geometria, o que, de alguma forma, pode ter contribuído para que a geometria deixasse de ser uma prioridade no ensino.
 
MIORIM, M. Â. Introdução à história da educação Matemática. São Paulo: Atual, 1998.
 
Sobre o ensino de conhecimentos geométricos na alfabetização, considere as seguintes afirmações:
 
I. O estudo de geometria possibilita que o aluno compreenda e valorize a presença da matemática em diversos elementos da natureza e em várias criações humanas.
 
II. Há pesquisas que mostram que, por conta da complexidade da geometria e de sua pouca aplicabilidade em situações cotidianas, grande parte dos professores não desejam trabalhar tal conteúdo em sala de aula.
 
III. A superação de alguns preconceitos enraizados em sala de aula, como o fato de se considerar que conhecimentos geométricos são muito complexos para crianças menores de 6 anos, pode ser o primeiro passo para que a geometria passe a ser integrada nos conteúdos curriculares da alfabetização e, a partir disso, passe a ser uma das prioridades do ensino.
 
É correto o que se afirma em:
	
	
	
	
		Resposta Selecionada:
	 
I e III;
	Resposta Correta:
	 
I e III;
	Comentário da resposta:
	Resposta correta. Sua resposta está correta! O estudo de geometria possibilita que o aluno identifique e compreenda a presença da matemática em diversas situações cotidianas e a superação de alguns preconceitos presentes em sala de aula (por exemplo, em relação à complexidade dos conhecimentos geométricos) pode possibilitar que estes conteúdos sejam mais explorados no ciclo de alfabetização.
	
	
	
· Pergunta 2
1 em 1 pontos
	
	
	
	A teoria das Inteligências Múltiplas de Howard Gardner não é um modelo pedagógico, mas sim cognitivo, considerando que a teoria não determina que professores tenham que ensinar seus conteúdos de várias maneiras diferentes (correspondentes a cada uma de suas inteligências), o que seria inviável na prática pedagógica de qualquer professor. Assim, o professor, ao planejar uma atividade, não incitará uma ou duas inteligências, pois deverá refletir e organizar o mesmo conteúdo sob diferentes maneiras de aprendê-lo, e umas das formas de fazer isso, baseando-se na teoria das Inteligências Múltiplas, seria por meio do uso de rotas de acesso (TARSO; MORAIS, 2011).
 
TARSO, R.; MORAIS, D. Rotas Alternativas de Aprendizagem: uma ferramenta para o ensino instrumental. Anais do X Encontro de Ciências Cognitivas da Música. Universidade Vale do Rio Verde, 2011.
 
Sobre o uso de rotas de acesso para o estudo de diferentes conhecimentos matemáticos, considere a seguinte colocação:
 
Nas aulas de matemática, há a necessidade de constantemente estar se desenvolvendo um raciocínio científico, __________ e dedutivo, raciocínio este característico da inteligência __________. No entanto, conceitos de geometria, por exemplo, podem ser explorados por meio da construção de maquetes. Tais maquetes serão de fácil elaboração por alunos que possuam, como predominante, a chamada inteligência __________, ou seja, com habilidades para se situar no __________ e efetuar comparações precisas entre o que está sendo representado na maquete.
 
Assinale a alternativa que apresenta os termos que, em ordem, completam adequadamente o excerto acima.
	
	
	
	
		Resposta Selecionada:
	 
indutivo; lógico-matemática; espacial; espaço.
	Resposta Correta:
	 
indutivo; lógico-matemática; espacial; espaço.
	Comentário da resposta:
	Resposta correta. Sua resposta está correta! Conhecimentos matemáticos exigem o desenvolvimento de um raciocínio científico, indutivo e dedutivo, característicos da inteligência lógico-matemática. A construção de maquetes é um exemplo de recurso que permite a exploração de conceitos de geometria e o desenvolvimento das inteligências espacial e lógico-matemática.
	
	
	
· Pergunta 3
1 em 1 pontos
	
	
	
	Ventura e Vicente (2010) mostram que o uso de caixas de papelão podem ser uma ferramenta alternativa e concreta para o ensino de geometria tornando o ensino mais atrativo e significativo para o aluno, além de possibilitar a aplicabilidade do conteúdo em sala de aula e na resolução de problemas em situações reais do cotidiano do aluno. Além dos conceitos de geometria plana e espacial, este uso permite desenvolver outros conceitos, como os sistemas de medidas (linear, superfície, volume, capacidade e massa), entre outros.
 
VENTURA, A.; VICENTE, A. O Ensino da Geometria com o Uso das Embalagens. Ciências–Matemática, Especialização: Didática e Metodologia de Ensino. Atuando na Educação Básica do Estado do Paraná. Professor PDE, 2010.
 
Sobre alguns conceitos de geometria, assinale com V as alternativas verdadeiras e com F as alternativas falsas.
 
(  ) Todos os sólidos são formados pela união de figuras planas, as quais podem ser identificadas por meio da planificação.
 
(  ) Um sólido geométrico (geometria espacial) é formado pela união de figuras planas (geometria plana). Uma caixa, em forma de cubo, por exemplo, é formada pela união de oito quadrados.
 
(  ) Ao planificarmos um sólido geométrico, utilizando uma caixa como recurso metodológico, temos acesso a uma série de figuras planas que podemos explorar. Com a planificação de um cilindro, por exemplo, teremos um retângulo e dois círculos.
 
(  ) O uso de caixas como ferramenta metodológica é importante. No entanto, há uma limitação que precisa ser levada em conta: independente do formato de caixa escolhido, sempre poderão ser estudados retângulos e quadrados, ficando de fora todas as outras figuras.
 
Agora, assinale a alternativa que apresenta a sequência correta de respostas.
	
	
	
	
		Resposta Selecionada:
	 
V, F, V, F.
	Resposta Correta:
	 
V, F, V, F.
	Comentário da resposta:
	Resposta correta. Sua resposta está correta! Os sólidos geométricos, estudados na Geometria Espacial, são sempre formados pela união de figuras da Geometria Plana que podem ser identificadas com a planificação. Ao planificarmos um cubo, teremos, por exemplo, seis quadrados, enquanto que com a planificação de um cilindro temos um retângulo e dois circulos.
	
	
	
· Pergunta 4
1 em 1 pontos
	
	
	
	A geometria é um dos temas fundamentais da matemática e um dos seus objetivos é permitir que o homem compreenda o mundo e dele participe ativamente, visto que possibilita uma interpretação mais completa daquilo que o rodeia. Entretanto, apesar de muito presente em nosso cotidiano, é possível observar certa dificuldade do professor no trabalho com a geometria, principalmente no ciclo de alfabetização, seja pela complexidade dos conteúdos, ou mesmo pela escassez de tempo para se cumprir todo o programa curricular desta etapa da escolarização. De modo geral, o que se percebe é que os professores optam por trabalhar os conteúdos geométricos sempre no final do ano, apresentando-os de forma acelerada e reduzida (SILVA, 2017).
 
SILVA, B. A. C. Geometria no ciclo de alfabetização: um estudo sobre as atitudes dos alunos do ciclo de alfabetização diante da geometria e suas relações com a aprendizagem. Dissertação. Mestrado em Educação para Ciência. UNESP - Bauru, 2017.
 
Sobre o ensino de geometria no ciclo de alfabetização é correto afirmar que:
	
	
	
	
		Resposta Selecionada:
	 
o ensino de geometria no ciclo de alfabetização