A maior rede de estudos do Brasil

Grátis
8 pág.
atividade METODOLOGIA E PRÁTICA DE ENSINO DE MATEMÁTICA un 2

Pré-visualização | Página 1 de 3

· Pergunta 1
1 em 1 pontos
	
	
	
	Sá, Freitas e Pires (2017) afirmam que a escola pode auxiliar, por meio de ações educativas, o indivíduo a construir sua cidadania e ter acesso ao mercado de trabalho, oferecendo atividades que proporcionem reflexões críticas, possibilitando que os estudantes transcendam os muros escolares. No entanto, para que isso seja possível, é imprescindível que, dentro desta escola, haja professores bem formados cientes de seu papel na vida dos estudantes e tendo em mente os conhecimentos necessários para o desenvolvimento de um trabalho pedagógico adequado.
 
SÁ, T. S.; FREITAS, L. A. R.; PIRES, A. C. Formação de professores para o ensino de matemática nos anos iniciais do ensino fundamental I. Revista de Pesquisa Interdisciplinar, v. 2, n. 2, 2017.
 
Sobre os saberes docentes é correto afirmar que:
	
	
	
	
		Resposta Selecionada:
	 
o uso de dobraduras se caracteriza como uma forma atraente e motivadora para se ensinar geometria, pois pode-se estimular o pensamento geométrico e a visão espacial das crianças, propiciando uma experiência prazerosa, pois, ao construir as figuras, a matemática se torna mais leve e de mais fácil compreensão;
	Resposta Correta:
	 
o uso de dobraduras se caracteriza como uma forma atraente e motivadora para se ensinar geometria, pois pode-se estimular o pensamento geométrico e a visão espacial das crianças, propiciando uma experiência prazerosa, pois, ao construir as figuras, a matemática se torna mais leve e de mais fácil compreensão;
	Comentário da resposta:
	Resposta correta. Sua resposta está correta! O uso de dobraduras ou origamis se caracteriza como uma forma atraente e motivadora para se ensinar geometria, estimulando o pensamento geométrico e a visão espacial das crianças. Além de possibilitar a exploração de conceitos tanto da geometria plana quanto da espacial.
	
	
	
· Pergunta 2
1 em 1 pontos
	
	
	
	Ventura e Vicente (2010) mostram que o uso de caixas de papelão podem ser uma ferramenta alternativa e concreta para o ensino de geometria tornando o ensino mais atrativo e significativo para o aluno, além de possibilitar a aplicabilidade do conteúdo em sala de aula e na resolução de problemas em situações reais do cotidiano do aluno. Além dos conceitos de geometria plana e espacial, este uso permite desenvolver outros conceitos, como os sistemas de medidas (linear, superfície, volume, capacidade e massa), entre outros.
 
VENTURA, A.; VICENTE, A. O Ensino da Geometria com o Uso das Embalagens. Ciências–Matemática, Especialização: Didática e Metodologia de Ensino. Atuando na Educação Básica do Estado do Paraná. Professor PDE, 2010.
 
Sobre alguns conceitos de geometria, assinale com V as alternativas verdadeiras e com F as alternativas falsas.
 
(  ) Todos os sólidos são formados pela união de figuras planas, as quais podem ser identificadas por meio da planificação.
 
(  ) Um sólido geométrico (geometria espacial) é formado pela união de figuras planas (geometria plana). Uma caixa, em forma de cubo, por exemplo, é formada pela união de oito quadrados.
 
(  ) Ao planificarmos um sólido geométrico, utilizando uma caixa como recurso metodológico, temos acesso a uma série de figuras planas que podemos explorar. Com a planificação de um cilindro, por exemplo, teremos um retângulo e dois círculos.
 
(  ) O uso de caixas como ferramenta metodológica é importante. No entanto, há uma limitação que precisa ser levada em conta: independente do formato de caixa escolhido, sempre poderão ser estudados retângulos e quadrados, ficando de fora todas as outras figuras.
 
Agora, assinale a alternativa que apresenta a sequência correta de respostas.
	
	
	
	
		Resposta Selecionada:
	 
V, F, V, F.
	Resposta Correta:
	 
V, F, V, F.
	Comentário da resposta:
	Resposta correta. Sua resposta está correta! Os sólidos geométricos, estudados na Geometria Espacial, são sempre formados pela união de figuras da Geometria Plana que podem ser identificadas com a planificação. Ao planificarmos um cubo, teremos, por exemplo, seis quadrados, enquanto que com a planificação de um cilindro temos um retângulo e dois circulos.
	
	
	
· Pergunta 3
1 em 1 pontos
	
	
	
	Gardner (1995) ressalta que, embora as múltiplas inteligências sejam, até certo ponto, independentes umas das outras, raramente funcionam isoladamente. Isso acontece porque uma série de habilidades e capacidades são requeridas para resolvermos a maior parte dos problemas de nosso cotidiano. Por exemplo, um construtor precisa ter total acuidade da inteligência espacial combinada com a destreza da inteligência cinestésico-espacial para realizar com sucesso suas construções. Assim, sempre são envolvidas mais de uma habilidade na solução de um problema embora, claro, existam certas predominâncias. Portanto, as inteligências, além de se complementarem, se integram.
 
GARDNER, H. Inteligências Múltiplas: a teoria na prática. Tradução de Maria Adriana Veríssimo Veronese. Porto Alegre: Artes Médicas, 1995.
 
Sobre a complementaridade e integração sobre as múltiplas inteligências, assinale com V as alternativas verdadeiras e com F as alternativas falsas.
 
(  ) Arquitetos, motoristas de táxi e marinheiros são exemplos de profissão cuja inteligência sonora ou musical são predominantes, uma vez que tais profissionais necessitam ter uma noção de espaço apurada.
 
(  ) A inteligência cinestésico-corporal é predominante em profissionais com a capacidade de usar o corpo para expressar ideias e sentimentos, como os esportistas, as bailarinas, os mímicos e os escultores.
 
(  ) Gênios como Mozart, Schubert, Chopin, dentre outros, além de compositores, violinistas e maestros, possuem, sem dúvida, a inteligência intrapessoal predominante dentre as demais.
 
(  ) Por exigir um autoconhecimento aguçado, profissionais como teólogos, psicólogos e filósofos são exemplos de indivíduos cuja inteligência intrapessoal é predominante.
 
Agora, assinale a alternativa que apresenta a sequência correta de respostas.
	
	
	
	
		Resposta Selecionada:
	 
F, V, F, V.
	Resposta Correta:
	 
F, V, F, V.
	Comentário da resposta:
	Resposta correta. Sua resposta está correta! Profissões que necessitam ter uma noção de espaço apurada, como as de taxistas e arquitetos, são desenvolvidas por sujeitos cuja inteligência espacial é predominante. Já esportistas, bailarinas e escultores apresentam grande precisão e habilidade corporal, que estão relacionados à inteligência cinestésico-corporal. A inteligência musical ou sonora é predominante em profissionais desta área, e a inteligência intrapessoal é predominante dentre as demais em profissões relacionadas a um autoconhecimento, como teologia, psicologia e filosofia.
	
	
	
· Pergunta 4
1 em 1 pontos
	
	
	
	Por conta das especificidades de cada uma das inteligências discutidas na teoria de Gardner, há diferentes pesquisas que estudam certas integrações entre as múltiplas inteligências, estabelecendo, assim, complementariedades dentre as mesmas. Tais complementaridades são utilizadas no ensino como “rotas secundárias” com o intuito de se alcançar a “rota principal” de uma determinada inteligência. Quando o professor se depara com uma criança que possui dificuldade para memorizar números, por exemplo, mas possui uma inteligência musical bem desenvolvida, pode-se usar a música como rota secundária para ajudá-la na rota principal, neste caso, a memorização matemática (GASPARI, 2003).
 
GASPARI, L. F. As Inteligências Múltiplas na Educação Infantil: uma análise da prática em uma escola particular de Curitiba. Trabalho de Conclusão de Curso. Faculdade de Ciências Humanas, Letras e Artes da Universidade de Tuiuti do Paraná. Curitiba-PR, 2003.
 
Sobre a complementaridade entre as múltiplas inteligências, é correto afirmar que:
	
	
	
	
		Resposta Selecionada:
	 
a partir da complementaridade entre as múltiplas inteligências, é necessário que o professor desenvolva estratégias que auxiliem os alunos na aprendizagem de conceitos matemáticos de acordo com as especificidades e particularidades