Buscar

ANÁLISE ESTATÍSTICA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 114 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 114 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 114 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ANÁLISE ESTATÍSTICA
AULA 1:CONCEITOS INTRODUTÓRIO EM ESTATÍSTICA.
APRESENTAÇÃO: Atualmente, qualquer pessoa pode ter acesso a uma enorme
quantidade de informações estatísticas. Os profissionais nas funções gerenciais e
tomadores de decisões necessitam cada vez mais de ter conhecimentos estatísticos, a fim
de entender a informação e usá-la de forma eficaz.
As análises estatísticas dependem de vários fatores como tamanho da amostra, tipo de
dados a serem coletados e do processo de obtenção das informações. Desde a definição
dos objetivos a serem alcançados até a análise dos resultados obtidos o processo
estatístico deve ser bem criterioso e cuidadoso, a fim de que não haja erros grosseiros que
levem a resultados distorcidos.
De uma forma decisiva os métodos estatísticos estão inseridos nas mais diversas áreas de
conhecimentos e nos seus diversos setores, auxiliando nas mais importantes tomadas de
decisões e direcionando muitas melhorias de processos.
Introdução à Análise Estatística:
Atualmente, é fundamental o emprego da Estatística em quase todas as áreas do
conhecimento, todas as vezes que estiverem envolvidas informações na forma de dados
coletados em pesquisas ou de forma experimental.
Com o objetivo de alcançar uma melhoria dos processos tanto nas áreas industriais como
tecnológicas, as ferramentas estatísticas tem alcançado um papel importantíssimo nesse
cenário.
O que modernamente se conhece como Estatística:
Um conjunto de técnicas e métodos de pesquisa que, entre outros tópicos, envolve o
planejamento do experimento a ser realizado, a coleta qualificada dos dados, a
inferência, o processamento, a análise e a disseminação das informações.
Estatística da Área de Gestão
Todo profissional hoje em dia deve estar ciente da importância da Estatística e ter
conhecimento de como utilizá-la, a fim de ter um lugar no mercado de trabalho com a
capacidade de lidar com as realidades atuais extremamente competitivas. Dentre várias
habilidades profissionais, vem crescendo em importância o desenvolvimento do
pensamento estatístico, tendo em vista as necessidades de todas as áreas de
conhecimentos de uma análise mais apurada durante os processos decisórios.
A metodologia estatística está sendo empregada em várias áreas de conhecimento,
tais como nos setores farmacêuticos, médicos e setores industriais diversos,
principalmente para melhoria da área de produção.
Controle de qualidade
Observa-se que o controle de qualidade foi criado como uma necessidade de resolver
problemas na redução de custos, no controle de perdas desnecessárias, na uniformização e
normalização da produção, auxiliando as empresas a controlarem, melhor distribuírem e
maximizarem os seus recursos, tornando-as assim mais competitivas.
Aplicação
Um interessante estudo experimental aplicado à pesquisa médica é o relato do primeiro
ensaio clínico planejado para comprovar a eficácia do AZT (zidovudina) no prolongamento
da vida de aidéticos. Os dados foram publicado por Fischl et al. (1987) e posteriormente
discutidos por Soares & Siqueira (1999, p.176-183).
O experimento considerou essencialmente o acompanhamento de 282 pacientes aidéticos
durante 24 semanas de tratamento, os quais foram aleatoriamente divididos em dois
grupos: o grupo de pacientes tratados com AZT (composto por 145 aidéticos) e o grupo
controle, composto por 137 aidéticos que receberam o placebo. A variável resposta
(desfecho) é a situação do paciente (sobrevivente ou não sobrevivente) após as 24
semanas de tratamento.
Número de sobreviventes e não sobreviventes após 24 semanas de tratamento com
AZT ou Placebo.
Grupo/Situação Vivo Morto Total
AZT 144 1 145
Placebo 121 16 137
ATENÇÃO: A avaliação da eficácia do AZT para o prolongamento da vida de aidéticos
consiste basicamente em comparar as proporções de sobreviventes dos dois grupos. Entre
os indivíduos tratados com AZT, a proporção de sobreviventes e 𝑃 𝐴𝑍𝑇= 0,993, enquanto
que no grupo de pacientes que receberam o placebo é 𝑃 𝑃𝐿𝐴𝐶𝐸𝐵𝑂 = 0,883.
Aparentemente a proporção de sobreviventes é maior no grupo de pacientes tratados com
AZT, mas para estender este resultado para a população, é vital avaliar se as diferenças
observadas não são devidas ao acaso, mediante um teste de hipóteses. Neste problema, a
estratégia de análise adotada foi o teste de homogeneidade de populações, baseado na
estatística (lê-se “qui-quadrado”) de Pearson.
O valor calculado da estatística de teste foi igual a 15,087, cuja probabilidade de
significância associada (𝑃 𝑣𝑎𝑙𝑢𝑒 , em inglês) é inferior a 0,0001. Este resultado evidencia
que a verdadeira proporção de pacientes aidéticos que sobrevivem após 24 semanas é
maior quando são tratados com AZT em relação aos não tratados (isto é, que recebem o
placebo).
Métodos
Método Científico: Há muito tempo que o homem faz descobertas importantes, que
originaram muitos dos conhecimentos atuais. Entretanto muitas dessas descobertas foram
ao acaso, ou em função de uma necessidade da época e muitas dessas descobertas não
seguiram um caminho, roteiro ou um método específico. Contudo hoje em dia os métodos
de observação, estudo e análise fazem parte da maioria dos aumentos de conhecimentos
atuais. Até mesmo os conhecimentos obtidos por descobertas ao acaso são desenvolvidos
com base em métodos específicos, que chamamos de métodos científicos. Os métodos são
as trilhas que nos permite chegar a um objetivo, ou a um determinado resultado, sendo um
conjunto de passos e procedimentos que repetidos fornecem um resultado específico.
Dentre os métodos científicos destacamos o método estatístico e experimental.
Método Experimental: Quando se realiza um experimento e se deseja analisar como se
comportam seus resultados ao se alterar algum dos elementos componentes do
experimento, é necessário manter constante os demais fatores (causas).Quando se usa
este tipo de pesquisa, faz-se uma análise do problema, montam-se as hipóteses
necessárias. A seguir procede-se a uma manipulação das variáveis referentes ao fenômeno
observado, alterando-as da melhor maneira possível. As alterações nas variáveis tanto em
quantidade, quanto em qualidade, permite o estudo das relações de causas e efeitos do
referido fenômeno em análise. Todo esse procedimento experimental permite que se possa
avaliar e controlar os resultados obtidos.
Pontos importantes do método experimental:
● Indicar o objeto de estudo;
● Determinar as variáveis independentes capazes de influenciar o fenômeno em
estudo;
● Identificar as ferramentas de análise, controle e observação dos efeitos, resultantes
da manipulação das variáveis, sobre o objeto.
Método Estatístico: No nosso dia a dia, quando fazemos repetidas observações com
relação a um determinado sistema ou fenômeno específico, verificamos que os resultados
obtidos não são exatamente os mesmos. A esta fato podemos chamar de variabilidade.
Como fazer para que essa variabilidade possa fazer parte da nossa tomada de decisão?
Através da análise estatística, é possível descrever a variabilidade e entender quais a fontes
mais importantes, ou quais as de maior potencial de influência na variabilidade do
fenômeno.
No método estatístico, observando suas várias etapas, podemos considerar que a mais
importante muitas vezes não é a análise de dados. Podemos dizer que a etapa que
necessita de maior atenção e cuidado é o planejamento de como o conjunto de dados será
coletado. Um mau planejamento, ou mesmo uma coleta feita de forma inapropriada pode
acarretar em dados inúteis, de onde não se consegue tirar nenhuma informação ou
qualquer conclusão coerente.
No método estatístico, observando suas várias etapas, podemos considerar que a mais
importante muitas vezes não é a análise de dados. Podemos dizer que a etapa que
necessita de maior atenção e cuidado é o planejamento de como o conjunto de dados será
coletado. Um mau planejamento, ou mesmo uma coleta feita de forma inapropriada pode
acarretar em dados inúteis, de onde não seconsegue tirar nenhuma informação ou
qualquer conclusão coerente.
Abusos da Estatística
Não é de hoje que ocorrem abusos com a Estatística. Assim é que, há cerca de um século, o
estadista Benjamin Disraeli disse:
Há três tipos de mentiras: as mentiras, as mentiras sérias e as estatísticas.
Já se disse também que:
Os números não mentem; mas os mentirosos forjam os números.
E que:
Se torturarmos os dados por bastante tempo, eles acabam por admitir qualquer coisa.
O historiador Andrew Lang disse que algumas pessoas usam a Estatística:
Como um bêbado utiliza um poste de iluminação – para servir de apoio, e não para
iluminar.
Todas essas afirmações se referem aos abusos da Estatística quando os dados são
apresentados de forma enganosa. Eis alguns exemplos das diversas maneiras como os dados
podem ser distorcidos:
● Pequenas Amostras
● Números Imprecisos
● Estimativas por Suposição
● Porcentagens distorcidas
● Cifras Parciais
● Distorções liberadas
● Perguntas Tendenciosas
● Gráficos Enganosos
● Pressão do Pesquisador
● Más amostras
Os motorista mais idosos são mais prudentes que os mais novos?
A American Association of Retired People — AARP (Associação Americana de
Aposentados) alega que os motoristas mais idosos se envolvem em menor número de
acidentes do que os mais jovens. Nos últimos anos, os motoristas com 16-19 anos de idade
causaram cerca de 1,5 milhões de acidentes em comparação com apenas 540.000
causados por motoristas com mais de 70 anos, de forma que a alegação da AARP parece
válida. Acontece, entretanto, que os motoristas mais idosos não dirigem tanto quanto os
mais jovens.
Em lugar de considerar apenas o número de acidentes, devemos examinar também as
taxas de acidentes. Eis as taxas de acidentes por 100 milhões de milhas percorridas: 8,6
para motoristas com idade de 16 a 19 anos; 4,6 para os com idade de 75 a 79 anos; 8,9
para os com idade de 80 a 84 e 20,3 para os motoristas com 85 anos de idade ou mais.
Embora os motoristas mais jovens tenham de fato o maior número de acidentes. os mais
velhos apresentam as mais altas taxas de acidentes.
Texto extraído do livro: TIOLA, Mario E, Introdução à Estatística. 7 ed. Rio de Janeiro: LTC.
1999.
AULA 2: REVISÃO DAS MEDIDAS DE TENDÊNCIA CENTRAL E DE POSIÇÃO
Apresentação
Na aula 1 foram compreendidas as fases do método estatístico como a coleta, crítica,
apuração, apresentação e análise dos dados.
Nesta aula, você aprenderá como as medidas de posição central (média aritmética e
ponderada, mediana e moda) são determinadas e como permitem uma melhor
compreensão dos dados de uma análise estatística. Aprenderá ainda as relações entre
média, moda e mediana. Abordaremos as medidas de ordenamento quartis, decis e
percentis. Veremos, por fim, como calcular as medidas estatísticas em Microsoft Excel.
As medidas de posição central nos apontam a tendência de comportamento dos dados,
enquanto as separatrizes nos auxiliam na decisão de qual a cobertura dos dados
poderemos atingir ou selecionar.
Medidas de Posição Central
Em uma dada distribuição amostral, é possível fazer várias observações, no intuito de
entender o comportamento dos seus valores. Podemos, por exemplo, tentar localizar a
maior concentração de valores de uma determinada distribuição. Entretanto, para que
tenhamos parâmetros de comparação entre as tendências características de cada
distribuição, é necessário introduzir conceitos que se expressem através de números.
Veremos então as medidas de posição 1 . As serem estudadas são as medidas de
tendência central e as separatrizes.
http://estacio.webaula.com.br/cursos/gra256/aula2.html
● Média Aritmética
● Moda
● Mediana
Iremos estudar as separatrizes:
● Quartis
● Decis
● Percentis
Medidas de Tendência Central
As medidas de tendência central são valores que, de maneira condensada, trazem
informações contidas nos dados estatísticos. É um valor que tende a melhor representar um
conjunto de números. Funcionam como um resumo, passando a ideia do comportamento
geral dos dados. Representam um valor central em torno do qual os dados se concentram e
se distribuem, mostrando se essa concentração ocorre no inicio, no meio ou no final da
distribuição, ou até mesmo se estão distribuídos de forma igual ao longo da amplitude
considerada.
Quando esses valores estão associados a uma população, chamamos de parâmetros;
quando estão ligados a uma amostra, são chamados de estatísticas. Como o cálculo dos
parâmetros é feito em cima de todos os números, os parâmetros são valores constantes,
fixos. Já os valores estatísticos são obtidos dos dados selecionados da população, e como
para cada amostra temos dados diferentes, que irão influenciar no cálculo dos valores
estatísticos, esses valores não são fixos.
Média: Para uma distribuição de dados estatísticos a ser analisada, composta por n valores
𝑥 𝑖 , i = 1, 2 ..., n. É interessante, sempre que possível, ordenar os dados de modo que 𝑥 𝑖
seja o menor valor e 𝑥 𝑛 seja o maior valor da relação de valores da distribuição.
Muitas vezes existe uma concentração maior dos dados em torno de um valor; outras vezes
os dados estão equilibradamente distribuídos entre a faixa de valores compreendido pela
amplitude dos dados (Amplitude =𝑥 𝑛 - 𝑥 1 ). Esta informação quanto à distribuição muitas
vezes é importante, sendo calculada através da média aritmética, ou apenas média.
Outro tipo de média, também bastante utilizada, é a média aritmética ponderada. A média
ponderada é muito usada em situações em que os dados são agrupados por frequência, ou
em situações em que os dados possuem importâncias diferentes, sendo representados na
forma de pesos.
Média Aritmética Ponderada: A média aritmética é usada para distribuições simétricas, ou
quase simétricas, ou para distribuições que têm um único pico dominante. É determinada
somando-se todas as observações e dividindo-se pelo número total de observações.
O cálculo da média se dá pela fórmula:
μ =
∑
=1
N
N
=
N
μ =∑xii=1ΝΝ=x1+x2+...+xnN
μ =
∑
=1
n
=
n
μ =∑xii=1nn=x1+x2+...+xnn
͞𝑥 = Média aritmética da amostra (𝜇 é usado para a população);
𝑥 𝑖 = Valor representativo de cada variável de dados (𝑥 1, 𝑥 2 , 𝑥 3 ,..., 𝑥 𝑛 );
n = Número total de itens da amostra (N é usado para a população).
Exemplo: Sabendo-se que a quantidade de garrafas de refrigerante vendidas no mercado,
durante uma semana, foi de 10, 14, 13, 15, 16, 18 e 12 garrafas, temos para a venda média
da semana:
x
=
+15+16+18+12
7
=
98
7
=14
x=10+14+13+15+16+18+127=987=14
Logo...
͞𝑥 = 14 litros
... É a média diária nesta semana.
A média ponderada ( ͞𝑥 𝑤 para amostra e 𝜇 𝑤 para população ) é usada em várias ocasiões
como por exemplo, em situações em que os dados possuem níveis de importância
diferentes dentro do grupo para os diversos dados da distribuição, explicitando essa
importância na forma de peso 𝑤 𝑖.
x
w
=
1
∑
=1
w
=
xw=∑i=1nxiwi∑i=1nwi=x1.w1+x2.w2+...+xn.wnw1+w2+...+wn
Exemplo: Um concurso de três etapas possui peso 2 na primeira etapa, peso 1 na segunda
etapa e peso 3 na terceira etapa. Qual a nota final do candidato que tire 5,9 na primeira, 8,4
na segunda e 6,7 na terceira etapa do concurso?
x
w
=
1
∑
=1
w
=
+8,4.+20,1
+1+3
=
40,3
6
=6,7
Moda: Denominamos moda o valor que ocorre com a maior frequência em uma relação de
dados. Muitas vezes é utilizada por ser a medida de posição de mais rápida visualização.
A moda (Mo) é usada quando temos distribuições extremamente assimétricas, ou nas
situações irregulares em que dois ou mais pontos de concentração de dados são verificados
na série de dados. Ou até mesmo nas situações em que se deseja eliminar os efeitos de
valores extremos que destoam da normalidade da série de valores.
A moda também pode ser designada como valor típico, valor dominante ou norma.
Quanto à classificação modal, um conjunto pode ser considerado unimodal, quando apresenta
apenas uma moda.
Exemplo:
X = (4, 5, 5, 6, 6, 6, 7, 7, 8,8) → Mo = 6
(o valor de maior frequência)
Pode ser considerado bimodal quando possui duas modas.
Exemplo:
X = (1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6) → Mo = 2 e Mo = 4
(os valores de maior frequência)
É considerada plurimodal ou multimodal quando apresenta mais de duas modas.
Exemplo:
X = (1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5) → Mo = 2, Mo = 3 e Mo = 4
(os valores de maior frequência)
Quando todos os valores apresentam a mesma frequência, o conjunto é considerado amodal.
Exemplo:
X = (1, 2, 3, 4, 5, 6)
(não apresenta valor predominante)
Mediana: A mediana é o valor central da distribuição quando os dados estão ordenados de
forma crescente ou decrescente. Normalmente é usada quando se deseja obter o ponto que
divide a distribuição em duas partes iguais, ou quando existem valores extremos que afetam a
média de forma acentuada. Também existe uma tendência a utilizar a mediana quando o valor
a ser analisado ou estudado é salário, ou para informações que possam ser ordenadas de
alguma forma, mas que não possuem valores mensuráveis (cor, nomes etc.).
Exemplo:
1) Considere o conjunto de dados: X = (6, 2, 7, 10, 3, 4, 1, 12). Determine a mediana.
2) Colocar os valores em ordem crescente ou decrescente: X = (1, 2, 3, 4, 6, 7, 10, 12);
3) Determinar a ordem ou a posição do elemento (E) da mediana:
E
n+1
2
=
8+1
2
=4,5
Εn+12=8+12=4,5
4) Localizar a mediana e calcular o seu valor (para o ocaso de n par):
5) Determinar x4,5, sabendo que:
x
4
= 4 e
x
5
= 6 → Med =
2
=
4+6
2
=5
x4= 4 e x5 = 6 → Med = x4+x52=4+62=5
Comparação entre a Média, a Mediana e a Moda
Medida Deposição Vantagens Desvantagens Usar Quando
Média Reflete cada valor
observado na
distribuição
É influenciada por
valores extremos
• Deseja-se a
medida de posição
com a maior
estabilidade;
• Necessita de um
posterior tratamento
algébrico.
Mediana Menos sensível a
valores extremos do
que a Média
Difícil de determinar
para grande
quantidade de
dados
• Deseja-se o ponto
que divide o
conjunto em partes
iguais;
• Há valores
extremos que
afetam de maneira
acentuada e média;
• A variável em
estudo é o salário.
Moda Maior quantidade
de valores
concentrados neste
ponto
Não se presta à
análise Matemática.
Nem sempre a
distribuição possui
moda
• Deseja-se uma
medida rápida e
aproximada da
posição;
• A medida de
posição deve ser o
valor mais típico da
distribuição.
Relação entre a Média, a Mediana e a Moda
Com essas três medidas de posição é possível determinar a assimetria da curva de
distribuição de frequência. A tabela de distribuição de frequências é composta de uma
coluna contendo os valores que compõem a relação de dados e uma coluna com as
correspondentes quantidades que cada valor aparece na relação de dados. As medidas
de assimetria complementam as informações dadas pelas medidas de posição, a fim de
permitir uma melhor compreensão das distribuições de frequências. A mediana se localiza
na posição central da distribuição, devendo estar entre os valores da média e moda e
podendo até mesmo ser igual a ambas.
Nesta situação temos três casos possíveis:
1º caso Média=Mediana=Moda A curva da distribuição é simétrica.
2º caso Média<Mediana<Moda A curva da distribuição tem assimetria negativa
3º caso Média>Mediana>Moda A curva da distribuição tem assimetria positiva
O coeficiente de assimetria pode ser calculado pela fórmula do primeiro coeficiente de
Pearson, tornando mais fácil determinar se a assimetria da distribuição é positiva ou
negativa:
ATENÇÃO: No denominador da fórmula temos um símbolo que representa o desvio padrão
da distribuição. Quando for apresentado o estudo sobre as medidas de dispersão, veremos
mais detalhes sobre o cálculo do desvio padrão e seu significado. No momento podemos
adiantar que terá sempre um valor positivo (ou seja, não é possível ocorrer desvio padrão
negativo). Assim sendo o que vai determinar o sinal da fração é o sinal do numerador.
1º caso Média = Moda → ͞𝑥 - Mo = 0 → Assimétrica nula = Simétrica
2º caso Média < Moda → ͞𝑥 - Mo < 0 → Assimetria negativa
3º caso Média > Moda → ͞𝑥 - Mo > 0 → Assimetria positiva
1º caso a curva é simétrica
2º caso e 3º caso curva da distribuição é assimétrica positiva e negativa.
● Quando a distribuição de frequência é assimétrica à direita da curva, dizemos que a
distribuição tem assimetria positiva;
● Quando a distribuição de frequência é assimétrica à esquerda da curva, dizemos que a
distribuição tem assimetria negativa.
Outro coeficiente de assimetria de Pearson indica se esta é forte ou fraca:
𝐴𝑆 = 3(𝑥 − 𝑀𝑑)
0 < || AS || ≤ 0,15 → Assimetria Fraca
0,15 < || AS || ≤ 1 → Assimetria Moderada
|| AS || > 1 → Assimetria Forte
Quartis:
Dividem a distribuição de frequência depois de ordenados em quatro partes iguais,
contendo a mesma quantidade de elementos. Nesta divisão, o 1° quartil deixa 25%
dos dados abaixo dele; o 2° quartil coincide com a mediana e deixa 50% dos dados
abaixo dele; o 3° quartil deixa 75% dos dados abaixo dele.
A forma de determinação dos quartis é:
Q
i
=
X
(
in
4
+
1
2
)
Qi= Xin4+12
𝑄 𝑖 = determina o elemento que separa o quartil i e o quartil seguinte + 1);
n = número de dados.
Se o índice
(
in
4
+
1
2
)
n4+12
não é um valor inteiro, então se calcula a média entre os dados anterior e posterior
ao determinado.
1º quadril:
Q
1
=
X
(
n
4
+
1
2
)
Q1=Xn4+12
2º quadril:
Q
2
=
X
(
2n
4
+
1
2
)
=
X
(
n
2
+
1
2
)
Q2=X2n4+12=Xn2+12
3º quadril:
Q
3
=
X
(
3n
4
+
1
2
)
Q3=X3n4+12
Decis:
Dividem a distribuição de frequência depois de ordenados em dez partes iguais,
contendo a mesma quantidade de elementos.
Mantendo o raciocínio usado para a determinação dos quartis, a forma de
determinação dos decis é:
D
1
=
X
(
in
10
+
1
2
)
D1=Xin10+12
Se o índice não é um valor inteiro, então se calcula a média entre os dados anterior e
posterior ao determinado.
Percentis: Dividem a distribuição de frequência depois de ordenados em 100 partes
iguais, contendo a mesma quantidade de elementos. Mantendo o raciocínio usado para
a determinação dos quartis, a forma de determinação dos percentis é:
P
1
=
X
(
in
100
+
1
2
)
P1=Xin100+12
Se o índice não é um valor inteiro, então se calcula a média entre os dados anterior e
posterior ao determinado.
Exemplo usando Excel
Determine a média, a moda e a mediana da amostra abaixo, usando a planilha do Excel:
44 48 53 54 56 56
56 57 60 60 62 63
63 63 63 65 66 67
68 68 69 69 70 71
72 74 77 78 80 81
82 85 90 93 95 95
Cálculo da Média:
Utilizando a função média (num1; num2; ...) e marcando a relação de dados para
calcularmos a média, teremos o resultado desejado.
Cálculo da Mediana:
Utilizando a função MED (num1; num2; ...) e marcando a relação de dados para
calcularmos a mediana, teremos o resultado desejado.
Cálculo da Moda:
Utilizando a função MODO (num1; num2; ...) e marcando a relação de dados para
calcularmos a moda, teremos o resultado desejado.
Resposta…
AULA 3: REVISÃO DAS MEDIDAS DE DISPERSÃO
Medidas de Posição Central
Em uma dada distribuição amostral é possível fazer várias observações no intuito de
entender o comportamento dos seus valores. Normalmente as medidas de posição não são
suficientes para dar o comportamento de uma distribuição de dados, sendo necessárias
informações adicionais que permitam uma melhor análise do fenômeno a ser estudado. É
importante levar um ponto em consideração durante a análise dos dados, a dispersão ou
variabilidade. A dispersão ou variabilidade indica a maior ou menor diferença entre os
valores de uma variável, dado da distribuição, e sua medida de posição, normalmente a
média.
Estudaremos as seguintes medidas de dispersão:
1 Amplitude
2 Desvio Médio
3 Variância e desvio padrão
4 Coeficiente de variação
Amplitude
Amplitude Interquadril: Com o objetivo de determinar onde se situam os 50% valores
centrais, pode calcular a Amplitude Interquartil (IQR):
IQR = Q3 – Q1
Amplitude Total: Numa amostra den valores ordenados, onde n é a quantidade total de
dados, definimos como amplitude total (R) a diferença entre os valores máximo (H) e
mínimo (L) da relação.
R = xmáx – xmín = H – L
Exemplo:
Amplitude total: sabendo-se que a quantidade de garrafas de refrigerantes vendidas no
mercado, durante uma semana, foi de 10, 12, 13, 14, 15, 16 e 18 garrafas, temos para a
amplitude total:
● n = 7;
● H = xmáx = x7 = 18;
● L = xmín = x1 = 10
Amplitude total: R = 18 – 10 = 8
Desvio Médio Absoluto
O desvio (di) mede a diferença entre cada valor e a média aritmética. O desvio médio
absoluto (MAD) é obtido dividindo o somatório dos módulos de cada desvio pela quantidade
de dados (n para amostra e N para população).
A amplitude total, pela influência dos valores extremos, que muitas vezes podem não
representar o comportamento da distribuição dos dados, são considerados instáveis.
Os dados podem ser agrupados numa tabela de distribuição de frequência ou numa tabela de
distribuição por classes:
Coeficiente de Variação
O coeficiente de variação mede a homogeneidade dos dados, ou seja, mostra a magnitude
do desvio padrão em relação à média dos dados como porcentagem. Permitindo
caracterizar a dispersão dos dados em função do valor médio. Quanto maior o valor do
coeficiente de variação, menos homogêneo será o conjunto.
Quando é necessário comparar duas amostras com média e desvio padrão diferentes,
podemos comparar os coeficientes de variação. Quanto maior o valor, menor será a
homogeneidade da distribuição, ou seja, apresenta o maior grau de dispersão.
Tomemos os resultados das medidas de altura e pesos de um mesmo grupo de pessoas
tiradas de uma sala de aula.
s
Altura 176 cm 5,0 cm
Peso 69 kg 2,0 kg
A fim de comparar a dispersão das duas relações de medidas, utilizaremos o coeficiente de
dispersão.
Podemos observar que neste grupo de pessoas, a relação de distribuição das alturas apresenta
um menor grau de dispersão do que os pesos.
Usando o Excel
Seja uma distribuição amostral composta de sete números (n), representando o tempo (em
minutos) de execução de uma prova.
X = (85, 86, 88, 88, 91, 94, 104)
Usando as fórmulas prontas do Microsft Excel para determinar a variância e o desvio
padrão da amostra e da população, teremos:
O comando VARP(NUM1;NUM2...) calcula a variância da população, bastando marcar as
células que contêm os dados.
Com o comando VARA(NUM1;NUM2;...) calcula a variância da amostra, bastando marcar as
células que contêm os dados com o mouse, ou indicar o intervalo na função como mostrado no
exemplo.
População: DESVPADP(NUM1;NUM2;...)
Amostra: DESVPAD(NUM1;NUM2;..)
AULA 4: GRÁFICOS ESTATÍSTICOS NO MICROSOFT EXCEL
Inserindo Gráficos no Excel
Para que um gráfico seja inserido no Excel, é necessário que os dados que se deseja
analisar também estejam contidos na planilha.
Vejamos como seria ilustrar graficamente a venda de camisas por cor:
Primeiramente, insira os dados na planilha do Excel, digitando conforme imagem acima.
Após os dados devidamente digitados, selecione o conjunto de dados e utilize o recurso
Gráficos do menu Inserir (mostraremos a seguir).
Clique em Inserir, como mostrado
Para ilustrar, marque a opção gráfico de colunas.
Em seguida, marque a opção gráfico de colunas 2D agrupadas (a primeira opção da
esquerda).
O gráfico deverá ficar desta forma.
Formatando o Gráfico
É preciso formatar o gráfico criado, pois ele não possui informação de cabeçalho, rótulos nos
dados, nome dos eixos etc.
Clicando no gráfico e mantendo-o marcado, veremos na opção Ferramentas de gráfico os três
novos menus. Com a opção Design marcada…
.. Clicando em Alterar tipo de gráfico (primeiro ícone da esquerda), é possível alterar o modelo
do gráfico, escolhendo alguma das opções do lado direito da janela.
Em situações que se deseja alternar os dados do eixo vertical e o eixo horizontal, pode-se
utilizar a opção Alternar linha/coluna (terceiro ícone).
Ou em situações em que é necessário diminuir, ou alterar de alguma forma a entrada de dados
do gráfico, utiliza-se selecionar dados (quarto ícone) e marcam-se com o mouse os dados que
deseja apresentar no gráfico.
Automaticamente esses dados serão colocados na caixa de texto Intervalo de dados do gráfico,
conforme a imagem acima.
Caso queira alterar a forma como o gráfico se apresenta, mudando o layout das colunas, basta
escolher a opção layout de gráfico. Nesta opção, o Excel lhe apresentará 11 tipos de colunas.
Caso queira alterar as cores de fundo, das colunas e o gradiente das cores, basta escolher a
opção Estilos de gráfico, conforme é mostrado na figura. Esta opção torna o gráfico mais
apresentável e com um estilo mais profissional.
Movendo o Gráfico
O gráfico pode ser colocado na mesma planilha onde estão inseridos os dados, ou em uma
planilha diferente, caso não haja espaço para colocá-lo. Para fazer essa escolha, basta clicar na
opção local, ainda na opção design.
Escolhendo a opção Nova planilha, o Excel vai inserir uma planilha com o nome especificado na
caixa de texto e moverá o gráfico para esta planilha criada. Escolhendo a opção Objeto em, o
Excel vai inserir o gráfico em uma das planilhas existentes no arquivo e que estarão listadas na
caixa de opções ao lado da opção escolhida, conforme mostrado na figura. Esta mudança pode
ser desfeita refazendo o processo novamente desde o início.
Menu Layout
O menu Layout possui as seguintes opções:
Seleção Atual
A primeira opção, Seleção atual, permite formatar uma parte do gráfico dentre as opções
relacionadas na caixa, utilizando a janela drop-down.
Como exemplo, vamos alterar o eixo vertical.
Escolha a opção Formatar seleção.
Abrirá a caixa e marcaremos o mínimo como fixo e 0,0 na caixa de texto, o máximo como
fixo e 35 na caixa de texto, conforme a figura.
Gráfico deverá ficar assim. O mínimo deve estar em fixo e 0,0, senão o modo automático
colocará fora do zero. É o que acontece caso coloquemos o máximo em 28. O modo
automático passará o mínimo para -2,0. Após fazer o teste, aperte as teclas <ctrl> + <z> ao
mesmo tempo e o gráfico retornará à situação anterior. Ou refaça o processo e coloque na
situação anterior.
Com a opção Inserir, é possível colocar imagens (figuras e fotos), formas (setas, linhas,
figuras geométricas etc.) ou caixas de texto.
Com a opção Rótulo, é possível inserir e formatar os vários rótulos do gráfico, como rótulo
dos dados, título do gráfico e dos eixos, a legenda e a tabela de dados.
Vamos inserir no gráfico um título com o nome de Vendas por cores.
Na opção Título de gráfico e escolhendo a opção Acima do gráfico, aparecerá a caixa de
texto onde se pode escrever o título desejado. Ao lado, o resultado.
Caso deseje um título melhor elaborado, escolha o item Mais opções de títulos, onde é
possível mesclar várias possibilidades e chegar a um título da forma.
Escolha a opção para inserir título abaixo do eixo horizontal e inclua o texto CORES.
Escolha opção para inserir título do eixo vertical no modo vertical e inclua o texto VENDAS.
Ao lado, o resultado.
A próxima ação será retirar a legenda, pois no caso, ela não vai ajudar. Escolha a opção
Legenda e marque a opção Nenhuma (desativar legenda). O resultado é mostrado ao lado.
Rótulos
As duas seleções seguintes são referentes aos dados que podem ser colocados no gráfico,
opção Rótulo de dados, ou na forma de tabela, opção Tabela de dados.
Tabela de Dados
Rótulo de Dados
Eixos
Continuando nosso exemplo e dando uma breve passada nas opções que ainda faltam:
Selecionando Eixos, é possível alterar os eixos horizontal e vertical. Para o nosso exemplo,
mantenha selecionada a opção do eixo horizontal da esquerda para a direita. No eixo
vertical, escolha a opção Eixo padrão. No caso de necessidade de outras alterações nos
eixos, é possível usar o comando Mais opções de eixo vertical principal, que também vale
para o eixo horizontal.
As linhas de grades em um gráfico têma finalidade de orientar a posição de um valor em
comparação aos outros valores do gráfico, principalmente neste exemplo, se as alturas das
colunas fossem próximas. Quando se utilizam rótulos, as linhas de grades podem ser
alteradas.
Comentário: Em nosso exemplo, utilizaremos para o eixo horizontal as linhas de grades
principais, que são as mais utilizadas. Para o eixo vertical será mantida a opção Nenhuma.
Plano de Fundo, Análise e Propriedades
Plano de Fundo
A opção Plano de fundo não será usada no nosso exemplo, ou seja, não será alterado o
plano de fundo do gráfico.
Análise
A opção Análise é bastante útil quando se deseja identificar a tendência dos
resultados do gráfico para entender o que acontece com os dados, ou para
regressões lineares que são muito usados em estudos estatísticos.
Propriedades
A opção Propriedades permite alterar o nome do gráfico. É útil quando temos mais
de um gráfico em uma mesma planilha e podemos identificar mais facilmente o
gráfico pelo nome
Menu Formatar
As duas seleções seguintes são referentes aos dados que podem ser colocados no gráfico,
opção Rótulo de dados, ou na forma de tabela, opção Tabela de dados.
Seleção Atual
A opção Seleção atual já foi vista.
Estilo de Forma
A opção Estilo de forma permite a formatação da moldura e do fundo do gráfico.
Estilo de WordArt
A opção Estilo de WordArt permite a formatação total da fonte.
Organizar
A opção Organizar é utilizada quando existem outras figuras ou objetos na planilha e é
preciso alternar a visibilidade do objeto, trazendo-o para trás ou para a frente.
Tamanho
A opção Tamanho permite a formatação da largura e altura.
Vamos colocar: Altura, 8 cm e Largura, 13cm.
Resultado
Usamos um exemplo para apresentar os dados de uma tabela. O Excel possui diversas
alternativas que podem ser utilizadas de acordo com o tipo de dados e análise a ser
realizada. Dentre os principais, temos no menu Inserir:
Gráfico de colunas
São muito usados em comparações feitas em períodos diferentes de um mesmo
item, ou diferentes itens em um único período de tempo.
No exemplo anterior, utilizamos o tipo Coluna 2D. Os outros tipos de gráficos têm a
vantagem de que os rótulos dos eixos podem ficar mais visíveis. A opção Colunas
3D 100% empilhadas apresentará o gráfico na forma de porcentagem.
Gráfico de Linhas
Este tipo de gráfico é utilizado para apresentar evoluções temporais de um ou mais itens,
tomando o cuidado de que os intervalos de tempos devem ser iguais. No mesmo gráfico
podem ser colocadas várias séries de dados, que são distinguidas pelas cores das linhas.
Gráfico de Dispersão
Este tipo de gráfico é muito utilizado para analisar a relação entre duas variáveis eu um eixo
xy. Possui os subtipos de apenas marcadores, linhas suaves com marcadores ou apenas
linhas suaves.
Gráfico de Pareto
O Gráfico de Pareto, também chamado de Diagrama de Pareto, é do tipo colunas,
ordenadas na forma decrescente e complementadas com uma linha, indicando a frequência
acumulada. Na verdade, trata-se de um gráfico de colunas e linha em dois eixos. Este
gráfico pode ser usado para dados quantitativos agrupados em classe, ou na forma de
ralação (não agrupados), bem como em dados nominais ou categóricos.
Clique aqui e veja como adaptar o exemplo anterior para utilizarmos o Gráfico de Pareto.
AULA 5: MEDIDAS DE ASSIMETRIA E DE CURTOSE
Medidas de Assimetria
Nas aulas anteriores, vimos a natureza da assimetria, isto é, quando a curva de frequência
se afasta da posição de simetria, sendo simétrica quando a média e a moda coincidem, ou
seja, possuem o mesmo valor.
A curva de uma distribuição simétrica tem por característica que o valor máximo
encontra-se no ponto central da distribuição. Desta forma, os pontos equidistantes do centro
possuem a mesma frequência.
http://estacio.webaula.com.br/cursos/gra256/galeria/aula4/anexo/grafico_pareto.pdf
Quando se faz um levantamento estatístico, dificilmente encontramos, na prática, uma
distribuição simétrica. O que ocorre, em levantamentos de dados reais, são medidas mais
ou menos assimétricas em relação à frequência máxima.
A distribuição assimétrica à esquerda ou negativa ocorre quando o valor da moda é maior
do que a média. Logo, a distribuição assimétrica à direita ou positiva ocorre quando a moda
é menor do que a média.
Desta forma, a diferença entre a moda e a média poderá definir o tipo de assimetria.
Calculando o valor da diferença
x = Mo
x - Mo = 0 → Assimetria nula ou distribuição simétrica.
x = Mo < 0 → Assimetria negativa ou à esquerda.
x - Mo > 0 → Assimetria positiva ou à direita.
Exemplos
Logo, usando a fórmula (x - Mo), tem-se:
Distribuição A:
5 – 5 = 0 → Assimetria nula ou distribuição simétrica.
Distribuição B:
5,375 – 6,6 = – 1,225 → Assimetria negativa ou à esquerda.
Distribuição C:
4,75 – 4,5 = 0,25 → Assimetria positiva ou à direita.
Coeficiente de Assimetria
A fórmula x = Mo não permite fazer comparações entre duas distribuições com relação ao
seu grau de assimetria. Desta forma, o coeficiente de assimetria de Pearson é muito
utilizado para verificar o grau de assimetria das curvas de distribuição, definido como:
Se o resultado for:
0,15</As/<1 Assimetria moderada
/As/>1 Assimetria forte
Considerando o exemplo anterior, os coeficientes de Pearson para as distribuições A, B e C são:
Distribuição A
Distribuição B
Distribuição C
Medida de Curtose
Leptocúrtica: Quando a distribuição apresenta uma curva de frequência com dados mais
concentrados em torno da média do que a curva normal, ela chama-se leptocúrtica.
Mesocúrtica: A curva normal, tomada por base para classificação do achatamento das
distribuições de frequências, recebe o nome de mesocúrtica.
Platicúrtica:Quando a distribuição apresenta uma curva de frequência com dados mais
dispersos em relação à média do que na curva normal, essa distribuição chama-se
platicúrtica.
Coeficiente de Curtose
A fórmula que determina a medida da curtose, isto é, o grau de achatamento da curva, é:
O coeficiente de curtose define o grau de achatamento da curva, da seguinte forma:
A análise conjunta da assimetria e curtose da distribuição de frequências pode fornecer
informações importantes sobre os dados obtidos, que muitas vezes não aparecem na simples
observância dos valores obtidos.
A assimetria nos mostra o quanto a média se desloca para a direita ou para a esquerda,
mostrando, também, como algumas condições impostas sobre a população podem influenciar o
resultado e deslocamento da média.
Atenção: O grau de curtose indica se a distribuição está mais ou menos concentrada, fazendo
com que a curva esteja mais ou menos achatada em relação à curva normal (curva
mesocúrtica), padrão de referência para a classificação do grau de curtose.
AULA 6: PROBABILIDADE
Estatística: A maioria dos assuntos de que trata a Estatística tem uma natureza aleatória ou
probabilística. É esta a importância do estudo dos conhecimentos fundamentais do cálculo da
probabilidade, além de ser fundamental no estudo da Estatística Inferencial ou Indutiva.
Experimento Aleatório
É qualquer processo aleatório capaz de produzir observações e que possa se repetir
indefinidamente no futuro sob as mesmas condições. Um experimento aleatório apresenta
variações nos resultados, o que faz com que seus resultados a priori não sejam
determinados antes que tenham sido realizados. É possível, entretanto, indicar todos os
seus resultados possíveis, ou seja, as suas probabilidades. É na verdade qualquer processo
capaz de gerar um resultado incerto ou casual.
O experimento aleatório apresenta três características, que possibilitam calcularmos uma
probabilidade, são elas:
Característica 1: Cada experimento pode ser repetido indefinidamente sob as mesmas
condições, n vezes (n ∞).
Característica 2: Embora não se possa prever a priori que resultados ocorrerão, pode-se
descrever o conjunto de resultados possíveis.
Característica 3: À medida que se aumenta o númerode repetições, surgirá certa
regularidade dos resultados, isto é, haverá uma estabilidade na ocorrência da frequência
relativa de um particular resultado.
Comentário:Assim, observamos que todo experimento que apresentar resultados diferentes
quando repetido nas mesmas condições iniciais é considerado um experimento aleatório, e
a variabilidade dos seus resultados deve-se ao acaso. A tudo isto liga-se a incerteza, que é
a chance de ocorrência do resultado de interesse.
Temos como exemplo os operários que trabalham no setor de produção de determinada
empresa. Sabe-se que neste setor trabalham oito operários. Um experimento ao acaso
seria escolher de forma aleatória um dos operários. Pode-se considerar como evento de
interesse o sexo do operário escolhido.
Espaço Amostral
Cada experimento aleatório corresponde, normalmente, a inúmeros resultados possíveis.
Chamamos de espaço amostral ou conjunto universo o seu conjunto de possibilidades, isto
é, o conjunto formado por todos os possíveis resultados do experimento, geralmente
denominado S ou Ω (letra grega que se lê: “ômega”). Definimos por n(S) como sendo o
número de elementos do conjunto S, ou seja, o número de resultados possíveis do
experimento.
1 Finito: Número limitado de elementos.
Ex.: S = {1, 2, 3, 4, 5, 6}
2 Infinito: Número ilimitado de elementos, e pode ser subdividido em: Finito e Infinito.
3 Enumerável: Quando os possíveis resultados puderem ser postos em concordância
biunívoca com o conjunto dos números naturais (N) (caso das variáveis aleatórias
discretas).
4 Não Enumerável: Quando os possíveis resultados não puderem ser postos em
concordância biunívoca com o conjunto dos números naturais (caso das variáveis aleatórias
contínuas).
Eventos
Seja um espaço amostral S de um experimento aleatório qualquer, consideramos evento
qualquer subconjunto desse espaço amostral S.
Logo, qualquer que seja E um conjunto de possíveis resultados do experimento, se E ⊂ S,
então E é um evento de S.
Se E = S, chamamos E de evento certo; se E é um conjunto unitário e E ⊂ S, chamamos E de
evento elementar; quando E = ∅, chamamos de evento impossível.
Probabilidade
Seja S o espaço amostral de um experimento aleatório, se todos os elementos de S
possuem a mesma chance de acontecer, então S é um conjunto equiprovável.
Definimos como sendo a probabilidade de um evento A (A ⊂ S) o valor real P(A), tal que:
Onde:
n(A) = número de elementos de A;
n(S) = número de elementos de S.
A probabilidade de um evento certo é igual a 1: P(S) = 1;
A probabilidade de um evento impossível é igual a 0: P(∅) = 0;
A probabilidade de um evento A qualquer (A ⊂ S) é o valor real P(A), tal que: 0 ≤ P(A) ≤ 1;
Seja n(S) = n e A um evento elementar qualquer, onde n(A) = 1, logo a probabilidade de A
será:
O valor de uma probabilidade está dentro do intervalo fechado de números reais que vai de
0 a 1, incluindo as extremidades desse intervalo. A probabilidade pode ser da forma decimal
do tipo 0,70, ou representada na forma de percentagem onde o mesmo número é
multiplicado por 100. Ficando na forma 70%.
Saiba Mais: Quanto mais a probabilidade se aproxima de 1, maior é sua possibilidade
de ocorrer. Quanto mais se aproxima de 0, o evento se torna mais improvável de
ocorrer.
Há três maneiras de estimar ou calcular probabilidades, são elas:
Método Subjetivo: O método subjetivo, que se baseia em estimativas pessoais de
probabilidade ou algum tipo de crença.
Método Empírico: O método empírico, que leva em consideração a frequência relativa de
um determinado evento em cima de um grande número de fatos repetidos.
Método Clássico: No método clássico, o espaço amostral tem resultados igualmente
prováveis. Em geral, utiliza-se este último método para o cálculo de probabilidades.
O que não pode acontecer é confundir “chance” com “probabilidade”, pois existe certa
diferença entre eles. A chance compara a quantidade de resultados possíveis de A com os
resultados possíveis de outro evento (B ou C), enquanto que a probabilidade faz relação
entre os resultados possíveis de A com a quantidade total dos resultados possíveis do
experimento aleatório.
Em uma caixa com 7 bolas brancas, 3 azuis e 4 pretas, a probabilidade de retirar uma bola
branca é:
P (branca) = 𝟕/𝟏𝟒 = 0,5 ou 50%
Enquanto que a chance de retirar uma bola branca é 7:7, ou seja, a chance de retirar uma
bola branca é a mesma de retirar uma bola de outra cor.
Eventos Complementares
Todo evento pode ocorrer ou não. Se um evento possui uma probabilidade p de sucesso e
uma probabilidade de insucesso q, então para esse mesmo evento existe a relação:
p+q=1 → q=1−P
Se P(A) é a probabilidade do evento A, então 𝑃(𝐴 ̅) é a probabilidade do evento não A
(complemento de A), tal que:
Eventos Independentes
Dois eventos são independentes quando o sucesso ou o insucesso de um dos eventos não
afeta a probabilidade de sucesso do outro evento e vice-versa. O resultado obtido por um
evento independe do resultado obtido no outro evento. Neste caso de eventos
independentes, a probabilidade de que os dois eventos se realizem simultaneamente é igual
ao produto das probabilidades de sucesso de cada evento.
Sejam dois eventos A e B, onde P(A) = p1 e P(B) = p2, logo um terceiro evento C, definido
pela ocorrência simultânea dos eventos Ae B, terá probabilidade P(C) = p. E a probabilidade
do evento C será função das probabilidades individuais de A e B, dada por:
p=p1×p2
Outra forma de representar a ocorrência simultânea de dois eventos A e B é P(A ∩ B).
P(A∩B)=P(A)×P(B)
Eventos Mutuamente Exclusivos
Dois ou mais eventos são mutuamente exclusivos quando o sucesso de um evento exclui a
realização do(s) outro(s).
Desta forma, no experimento aleatório de lançamento de um dado, o evento tirar o número
3 e o evento tirar o número 6 são mutuamente exclusivos, uma vez que, ao se realizar um
deles, o outro não se realiza.
Quando se deseja calcular a probabilidade de que um evento ou outro se realize, sendo
estes eventos mutuamente exclusivos, determinamos a soma das probabilidades de
sucesso de cada evento separadamente.
Ou seja: p=p1+p2
No caso do dado a probabilidade do evento de tirar 3 ou 6 é:
AULA 7: DISTRIBUIÇÃO BINOMINAL
Tipos de Variáveis
Existem muitos tipos de variáveis que serão utilizadas em um estudo estatístico. É importante
compreender o conceito matemático de variável. Variável é algo que se refere a um determinado
aspecto do fenômeno que está sendo estudado. Podemos afirmar que a quantidade colhida da
safra anual de soja é uma variável. Representemos essa variável pela letra X.
Essa variável pode assumir diversos valores específicos, em função dos anos de safra, por
exemplo, X1986, X1990 e X1992.
Variáveis Quantitativas:Referem-se a quantidades e podem ser medidas em uma escala
numérica. Exemplos: idade de pessoas, preço de produtos, o peso de recém-nascidos.
As variáveis quantitativas subdividem-se em dois grupos:
Variáveis Quantitativas Discretas:São aquelas que assumem apenas determinados
valores tais como 1, 2, 3, 4, 5, 6, dando saltos de descontinuidade entre seus valores.
Normalmente referem-se a contagens.
Por exemplo: número de vendas mensais em uma loja, número de pessoas por família,
quantidade de internações por hospital.
Variáveis Quantitativas Contínuas: São aquelas cujos valores assumem uma faixa contínua
e não apresentam saltos de descontinuidade.
Exemplos dessas variáveis são:
• O peso de pessoas;
• O consumo mensal de energia elétrica;
• O preço de um produto agrícola.
Referem-se ao conjunto dos números reais ou a um de seus subconjuntos contínuos.
Variáveis Qualitativas
Referem-se a dados não numéricos. Exemplos dessas variáveis são: o sexo das pessoas, a
cor, o grau de instrução.
As variáveis qualitativas subdividem-se também em dois grupos:
Variáveis Qualitativas Ordinais: São aquelas que definem um ordenamento ou uma
hierarquia. Como exemplo, temos o grau de instrução, a classificação de um estudante nocurso de estatística, as posições das 100 empresas mais lucrativas etc.
Variáveis Qualitativas Nominais: Não definem qualquer ordenamento ou hierarquia. Como
exemplos, temos a cor, o sexo, o local de nascimento etc. Dependendo da situação, uma
variável qualitativa pode ser representada (codificada) através do emprego de números (por
exemplo: em sexo, representamos homens como sendo “0” e mulheres como sendo “1”).
Mas no tratamento estatístico dessa variável codificada, não podemos considerá-la como
sendo quantitativa. Ela continua sendo uma variável qualitativa (pois o é em sua essência e
natureza), apesar de sua codificação numérica, que tem como finalidade uma maior
finalidade de tabulação de resultados.
Variável Aleatória
função variável aleatória. Costuma-se definir a função variável aleatória por uma letra
maiúscula e seus valores por letras minúsculas.
Seja S o espaço amostral relativo ao “lançamento simultâneo de duas moedas”, logo S =
{(Ca, Ca), (Ca, Co), (Co, Ca), (Co, Co)}. Se X representa “o número de caras” que
aparecem, temos que a cada ponto amostral podemos associar um número para X, de
acordo com a tabela.
Números de Acidentes Frequências
(Ca,Ca) 2
(Ca,Co) 1
(Co,Ca) 1
(Co,Co) 0
No decorrer do experimento, a probabilidade p do sucesso e a probabilidade q (q = 1 – p) do
insucesso manter-se-ão constantes.
Com a distribuição binomial, podemos determinar a probabilidade de se obter k sucessos em n
tentativas.
A função para tal é:
f(x)=P(x=k)=(nk)pk.qn−k
Distribuição de Probabilidade
Suponha uma distribuição de frequências relativas ao número de acidentes diários em um
estacionamento
Números de Acidentes Frequências
0 22
1 5
2 2
3 1
∑ = 30
Em um dia, a probabilidade de:
É possível, então, escrever a tabela de probabilidade:
Números de Acidentes Frequências
0 0,73
1 0,17
2 0,07
3 0,03
∑= 1
Seja X uma variável aleatória que pode assumir os valores x1, x2, x3,..., xn. A cada valor
de xi correspondem pontos do espaço amostral. Para cada valor de xi fica associada uma
probabilidade pi de ocorrência (sucesso) de tais pontos no espaço amostral. Desta forma,
temos que:
∑Pi = 1
Os valores x1, x2, x3,..., xn e seus correspondentes p1, p2, p3,..., pn definem uma
distribuição de probabilidade.
Vejamos novamente a tabela do espaço amostral relativo ao “lançamento simultâneo de
duas moedas”, incluindo uma coluna de probabilidade de X (o número de caras).
Temos então:
Números de Acidentes Frequências P(X)
(Ca,Ca) 2 1/2 x 1/2 = 1/4
(Ca, Co) 1
(Co,Ca) 1
(Co,Co) 0 1/2 x 1/2 = 1/4
Ao definir a distribuição de probabilidade, estabelecemos uma relação unívoca entre os
valores da variável aleatória X e os valores da variável P (probabilidade). Nessa
correspondência temos os valores xi (i = 1, 2, 3, .., n) formando o domínio da função e os
valores pi (i = 1, 2, 3, .., n) formando o seu conjunto imagem.
Desta forma definimos a função probabilidade, representada por:
f(x)=P(x = xi)
A função P(x = xi) determina a distribuição de probabilidade da variável aleatória X.
Tomando como exemplo o lançamento de um dado, onde a variável X é definida por “pontos
de um dado” e podendo tomar os valores 1, 2, 3, 4, 5 e 6.
Sabendo que a cada um destes valores está associada apenas uma probabilidade de
realização e que P(xi) = 1, fica definida uma função, da qual resulta a tabela de distribuição
de probabilidade.
(X) P(X)
6 1/6
5 1/6
4 1/6
3 1/6
2 1/6
1 1/6
∑ = 1
Distribuição Binomial
A distribuição binomial é um prolongamento da distribuição de Bernoulli, devendo ser
aplicada em problemas nos quais um experimento é realizado um número de vezes
preestabelecido. Cada uma destas repetições é denominada prova ou experimento.
Vamos considerar um experimento aleatório que tenha as seguintes características:
O experimento deve ser repetido nas mesmas condições, um número finito de vezes, ou
seja, considerar n tentativas;
As provas repetidas devem ser independentes, isto é, o resultado de uma não deve afetar
os resultados das demais;
Cada tentativa admite apenas dois resultados: sucesso e insucesso, com as mesmas
probabilidades de ocorrer;
No decorrer do experimento, a probabilidade p do sucesso e a probabilidade q (q = 1 – p)
do insucesso manter-se-ão constantes.
Em geral resolveremos problemas do tipo: determinar em n tentativas a possibilidade de se
obterem k sucessos. O experimento “obtenção de caras em cinco lançamentos sucessivos
e independentes de uma moeda” satisfaz essas condições.
Atenção: É importante entender que, na realização de um experimento qualquer em uma
única tentativa, se a probabilidade de realização de um evento (sucesso) é p, a
probabilidade de não realização desse mesmo evento (insucesso) é 1 – p = q.
Suponhamos que realizemos o mesmo experimento n vezes, em tentativas
sucessivas e independentes. A probabilidade de que um evento se realize k vezes
nos experimentos realizados é dada pela função:
f(x)=P(x =k)=(nk)pk.qn−k
Em um dia, a probabilidade de:
(X = k) é a probabilidade de que o evento se realize k vezes em n provas;
p é a probabilidade de que o evento se realize em uma só prova – sucesso;
q é a probabilidade de que o evento não se realize no decurso dessa prova – insucesso;
(nk)(nk) é o coeficiente binomial de n sobre k, igual a n!k!(n−k)!
É importante lembrar que o sinal “!” representa a função fatorial, logo 5! representa o
produto da sequência de 1 a 5. 5! = 5.4.3.2
Essa função, denominada lei binomial, define a distribuição binomial. O nome binomial vem
do fato de (nk)p.qn−k (nk)pk.qn-k ser o termo geral do desenvolvimento do binômio de
Newton.
A distribuição binomial é uma distribuição de probabilidade utilizada em experimentos onde
é possível ter dois tipos de resultados: sucesso ou fracasso.
AULA 8: DISTRIBUIÇÃO NORMAL E GRÁFICOS DE DISPERSÃO
Determinando a variável
Diversos tipos de variáveis são utilizadas em um estudo estatístico. É importante entender o
conceito matemático de uma variável.
Chamamos variável aquilo que se refere a um determinado aspecto do fenômeno que está
sendo estudado.
Exemplo: Podemos afirmar que a quantidade colhida da safra anual de soja é uma variável.
Representemos essa variável pela letra X. Essa variável pode assumir diversos valores
específicos, em função dos anos de safra, como por exemplo, X1986, X1990 e X1992.
Esses valores que a variável assume em determinados anos não são a própria variável,
mas valores assumidos por ela para determinados objetos, ou pessoas da amostra ou da
população. Se uma amostra tiver 50 indivíduos, podemos referir-nos a X como sendo a
variável nota de estatística e a X30 como a nota de um indivíduo particular, no caso o
trigésimo.
Distribuição normal
Entre as distribuições teóricas de variável aleatória contínua, podemos considerar a distribuição
normal como uma das mais empregadas.
A observação cuidadosa mostrou que a ideia de que distribuição normal não correspondia à
realidade de todos os fenômenos da vida real. De fato, não são poucos os casos representados
por distribuições assimétricas (não normais).Mas a distribuição normal tem papel predominante
na Estatística, e os processos de inferência nela baseados possuem vasta aplicação.
Saiba Mais: É comum na literatura encontrarmos letras maiúsculas para a notação de
variáveis e as correspondentes letras minúsculas para referência aos valores
particulares assumidos por essa variável. Porém, neste resumo procuraremos evitar
essa forma de notação.
Gráfico da distribuição normal de frequências
1 A variável aleatória X pode assumir todo e qualquer valor real
2 A representação gráfica da distribuição normal é uma curva em forma de sino, simétrica
em torno da média (x¯), ponto central e de maior frequência (coincidem média, moda e
mediana), que recebe o nome de curva normal ou de Gauss
3 A probabilidade de a variável aleatória X assumir qualquer valor real corresponde à área
total sob a curva, ou seja, a área total entre a curva e o eixo das abscissas,que é igual a 1
5 A densidade de probabilidade é mais alta no meio e diminui gradualmente em direção às
caudas. Logo, as extremidades da curva normal aproximam-se indefinidamente do eixo das
abscissas sem tocá-lo, isto é, a curva normal é assintótica em relação ao eixo das
abscissas
6 Por ser padrão, todos os momentos e coeficientes de assimetria são iguais a zero, e o
coeficiente de curtose é igual a 0,263
7 Como a curva normal é simétrica em torno da média (x¯), a probabilidade de ocorrer um
valor maior que a média é igual à probabilidade de ocorrer um valor menor do que a média,
que são iguais à metade da área, ou seja, 0,5. Dizemos que: P(X >x¯)= P(X <¯x¯)= 0,5
Distribuição normal e variável aleatória
Uma variável aleatória normalmente pode assumir um valor em um determinado intervalo, e o
principal interesse é determinar a probabilidade dessa variável.
Cada distribuição normal possui uma função geradora da curva. O cálculo dessa área necessita
de conhecimentos matemáticos mais específicos.
Esta curva pode ser expressa matematicamente como segue:
Representada graficamente:
Probabilidades
As probabilidades referentes à distribuição normal reduzida estão determinadas em uma
tabela específica, apresentada a seguir, não sendo mais necessário serem calculadas.
Esta tabela fornece a probabilidade de Z tomar qualquer valor entre 0 e determinado valor
de z, tal que:
P (0 < Z ≤ z)
AULA 9: CORRELAÇÃO E REGRESSÃO LINEAR
Correlação e Regressão
Nas aulas anteriores procuramos descrever a distribuição de valores de uma única variável. A
partir desse ponto podemos aprender a calcular as medidas de tendência central, variabilidade e
demais parâmetros. Quando, porém, consideramos observações de duas ou mais variáveis
surge um novo problema, do tipo, como verificar as relações que podem existir entre as variáveis
estudadas. Para esse tipo de análise, as medidas estudadas não são eficientes.
Assim, quando consideramos variáveis como peso e estatura de um grupo de pessoas, uso do
cigarro e incidência de problemas pulmonares, procura-se verificar se existe alguma relação
entre as variáveis de cada um dos pares e qual é essa relação.
Uma vez caracterizada a relação quantitativa, procuramos descrevê-la através de uma função
matemática. A regressão é o instrumento adequado para determinação dos parâmetros dessa
função e medir essa relação. Se todos os valores das variáveis satisfazem exatamente uma
equação, diz-se que elas estão perfeitamente correlacionadas ou que há correlação perfeita
entre elas.
DICA: Quando estão em jogo somente duas variáveis, fala-se em correlação e regressão
simples. Quando se trata de mais de duas variáveis, fala-se em correlação e regressão múltipla.
Correlação
É de conhecimento matemático que a área e o comprimento do lado do quadrado estão
relacionados. Essa é uma relação perfeitamente definida e pode ser expressa por meio de
uma sentença matemática, algumas vezes chamada de relação funcional:
A = ℓ2
Onde A é a área e ℓ é o lado do quadrado.
Vejamos, agora, a relação que existe entre peso e altura das pessoas de um grupo. Fica
claro de essa relação não é a do mesmo tipo e nem tão precisa quanto a anterior.
Uma vez que pessoas de alturas diferentes tenham pesos iguais e, da mesma forma,
pessoas com alturas iguais possuam pesos diferentes. Entretanto, quanto maior a altura,
maior o peso. Neste caso dizemos que peso-altura possui uma relação estatística.
Diagrama de Dispersão
Um exemplo interessante é separar as notas das provas de alunos de uma mesma turma da
faculdade A. vejamos duas disciplinas da área de exatas, por exemplo, matemática e estatística.
Separando uma amostra de notas de 10 alunos escolhidos aleatoriamente, teremos:
NOTAS
ALUNOS MATEMÁTICA ESTATÍSTICA
(xi) (yi)
01 5,0 6,0
02 8,0 9,0
03 7,0 8,0
04 10,0 10,0
05 6,0 5,0
06 7,0 7,0
07 9,0 8,0
08 3,0 4,0
09 8,0 6,0
10 2,0 2,0
Para esboçar um diagrama de dispersão, primeiro traça-se o sistema de eixos cartesianos
ortogonais. Depois se representa uma das variáveis no eixo “x” (horizontal) e a outra no eixo
“y”(vertical). Colocam-se, então os valores das variáveis sobre os respectivos eixos e marca-se
um ponto para cada par de valores.
Esse diagrama nos fornece uma ideia grosseira, porém útil da correlação existente entre as
variáveis.
Correção Linear
De um modo geral, os pontos de uma análise estatística colocados no gráfico cartesiano,
possuem a forma aproximada de uma elipse em diagonal. Logo, quanto mais fina for essa
elipse, mais ela se aproximará de uma reta. Essa reta pode ser chamada de “imagem” da
correlação.
A correlação linear é a aproximação dessa elipse em uma reta que mais se aproxime da maioria
dos pontos dados.
Neste exemplo a “imagem” é uma reta crescente, então é denominada correlação linear positiva.
Correlação Linear Positiva
Os pontos do gráfico têm como “imagem” uma reta crescente.
Correlação Linear Negativa
Os pontos do gráfico têm como “imagem” uma reta decrescente.
Correção Não – Linear
Os pontos do gráfico têm como “imagem” uma curva.
Não há Correlação
Quando os pontos, por sua elevada dispersão, não segue nenhum dos casos
anteriores, dizemos que não há correlação
Coeficiente de Correlação Linear
Dizemos que duas ou mais variáveis expressam a relação de causa e efeito ou se elas
variam concomitantemente, se elas são variáveis consideradas correlacionadas. Nesta
situação é dita que essas variáveis possuem correlação linear, no caso de sua “imagem” ser
uma reta. E o instrumento de medida desta correlação linear é o coeficiente de correlação.
Através do valor deste coeficiente sabemos o grau de intensidade da correlação entre as
duas variáveis, bem como, o sentido dessa correlação (negativo ou positivo).
Utilizaremos o coeficiente de correlação de Pearson, que é dado por:
Onde n é o número de observações, ou seja, o tamanho da amostra. O resultado obtido
para r deve estar no intervalo fechado [– 1, 1].
Podemos concluir que:
Se a correlação entre duas variáveis é perfeita e positiva, então: r = +1
Se a correlação entre duas variáveis é perfeita e positiva, então: r = –1
Se não há correlação entre as variáveis, então: r = 0
Saiba mais: Para que possamos descrever a relação por meio do coeficiente de correlação
de Pearson é fundamental que ela se aproxime da função linear. A maneira prática de
verificar essa linearidade é a inspeção do diagrama de dispersão. Se a elipse apresenta
reentrâncias ou saliências mais acentuadas, provavelmente trata-se da correlação
curvilínea. O r mede a intensidade, ou grau, de um relacionamento linear. Não serve para
medir a intensidade de um relacionamento não-linear.
Em função do coeficiente de correlação é possível concluir a relação entre as variáveis:
0,6 ≤ |r| ≤ 1
É considerada boa a correlação entre as variáveis, é possível tirar conclusões significativas
sobre o comportamento simultâneo das variáveis.
0,3 ≤ |r| < 0,6
A correlação entre as variáveis é relativamente fraca.
0 < |r| < 0,3
A correlação entre as variáveis é muito fraca e não é possível concluir praticamente nada
sobre a relação das variáveis em estudo.
Vamos analisar a correlação das notas de matemática e estatística dos alunos da amostra
selecionada?
Regressão
Todas as vezes que temos duas variáveis com certa correlação e desejamos estudar uma
variável em função da outra, fazemos uma análise de regressão.
O objetivo principal da análise de regressão é realizar a relação entre as duas variáveis, a
partir de um modelo matemático linear, partindo de n observações das mesmas.
A variável sobre a qual desejamos fazer a estimativa é denominada variável dependente e a
outra recebe o nome de variável independente.
Considerando X a variável independente e Y a variável dependente, vamos determinar o
ajustamento da reta obtendo a função definida por:
Y = aX + b
Onde a e b são parâmetros.
Voltando ao exemplo das notas de matemática e estatística, verificamos que existe umacorrelação acentuada entre as variáveis, r = 0,91. Vimos ainda pela forma do diagrama de
dispersão, que se trata de uma correlação retilínea.
Estimativa da equação
Agora a equação de regressão pode ser montada. Lembrando que os parâmetros foram
obtidos através da amostra de dados, logo temos uma estimativa da verdadeira equação de
regressão.
Desta forma representaremos a equação:
Y^ = aX = b
Onde Y^ é o valor estimado de Y.
Elaborando o gráfico
Para que possamos traçar o gráfico da reta, é necessário pelo menos 2 pontos da reta,
logo, basta escolhermos 2 valores para X:
AULA 10: NÚMEROS ÍNDICES
Premissa
Um exemplo simples de números absolutos e relativos pode esclarecer melhor essa ideia.
Imagine uma determinada faculdade que possua os cursos A, B, C, D e E. Uma pesquisa
identifica a quantidade de alunos que trancaram a matrícula no ano anterior.
CURSO ALUNOS TRANCADOS TOTAL
A 90 1.543
B 83 997
C 150 2.352
D 60 717
E 110 1.766
Com a necessidade de comparar os cursos para análise, esta tabela, com números
absolutos, não ajuda muito. Entretanto, ao apresentarmos uma tabela com números
relativos, temos:
CURSO ALUNOS TRANCADOS
A 5,83%
B 8,32%
C 6,38%
D 8,37%
E 6,23%
O que nos permite facilmente verificar que o curso D apresentou o maior índice de alunos que
trancaram a matrícula.
Conceito
É a relação entre dois ou mais estados de uma variável, que está sujeita à variação no
tempo ou no espaço. Ou seja, é a razão entre uma variável numa determinada data e esta
mesma variável em outra data. Esta razão é obtida dividindo o valor da variável na data
desejada pelo valor da variável na data base. O resultado é então multiplicado por 100.
Vejamos a tabela a seguir, que mostra a análise de um estabelecimento de ensino sobre a
quantidade de alunos matriculados no período de 2006 a 2010.
ANOS 2006 2007 2008 2009 2010
MATRICULA
DOS
1050 1160 1230 1440 1580
NÚMERO-ÍN
DICE
100,00 110,5 117,1 137,1 150,5
Observando a tabela, verifica-se que os números-índices mostram a evolução percentual,
permitindo-nos perceber imediatamente a variação relativa sofrida pelo número de alunos
matriculados ao longo do período escolhido.
A tabela mostra um aumento, em relação ao ano de 2006, de 10,5% em 2007; 17,1% em
2008; 37,1% em 2009; e 50,5% em 2010. Observe que, por convenção, o símbolo de
percentagem (%) não é utilizado.
Relativos de preços
Sempre que é necessário analisar a variação no preço, na quantidade ou no valor de um
determinado bem, é possível fazer uso do que chamamos de relativos de preço, de quantidade
ou de valor. Fazemos isso através da variação percentual do item a ser analisado.
Vamos considerar o índice o para representar a data-base e o índice t para representar a época
atual (ou a ser analisada).
Determinando o relativo de preços, temos:
po: preço na época-base | pt: preço na época atual
A fórmula é determinada a partir de uma regra de três simples, na qual fazemos o preço na
data-base ser equivalente a 100, como segue:
Elos relativos
Consideramos que os relativos de base móvel formam elos quando cada um deles é
calculado tomando como base a data imediatamente anterior.
Suponha que certo produto tenha apresentado os seguintes preços no período de 2008 a 2011:
R$ 88,00, R$ 110,00, R$ 132,00, R$ 198,00. Vejamos quais são os elos relativos de preços:
Com os resultados, podemos formar a tabela de elos:
ANOS 2008 2009 2010 2011
RELATIVOS 100 125 150 225
Houve um aumento em 2009 de 25% em relação a 2008, de 20% de 2010 em relação a
2009 e 50% de 2011 em relação a 2010.
Relativos em cadeia
Quando desejamos saber o incremento ocorrido, não entre os anos sucessivos, mas entre
todos os períodos e o período-base, que pode ser o primeiro ou qualquer um da lista de
observações.
O relativo em cadeia é o índice de base fixa, sendo usado quando desejamos comparar um
determinado ano, considerado importante ou significativo, com todos os anos anteriores e
consecutivos.
Observando o exercício anterior, podemos formar a tabela dos relativos em cadeia:
ANOS 2008 2009 2010 2011
RELATIVOS 100 125 150 225
O gráfico a seguir mostra a evolução do preço do bem em questão:
Tipos de índice
Índices Agregativos: Até agora, vimos índices utilizados apenas para caracterizar a evolução
do preço de um só bem. No entanto, exige-se um índice que sintetize a variação dos preços de
um conjunto de bens (agregado). Para cumprir essa finalidade, utilizamos o índice agregativo.
Muitas são as formas de determinar os índices agregativos, apesar de os fundamentos básicos
serem constantes. Na verdade, o que varia são os aspectos relacionados com o campo de
aplicação do índice. Um exemplo clássico é o índice de inflação, que considera diversas
variáveis, com pesos distintos.
• Índice agregativo simples: Este índice é calculado a partir da média aritmética dos relativos,
obtendo assim o índice médio dos relativos.
BENS A(m) B(kg) C(I) ∑
RELATIVOS 150 125 160 435
• Índice agregativo ponderado: Este índice é calculado levando em conta a importância
relativa dos bens, enquanto que o índice simples considera todos os índices do agregado em um
mesmo nível. Na prática, sempre temos bens de maior importância do que outros, razão pela
qual devemos considerar os coeficientes de ponderação, atribuindo a cada item a importância
que lhe cabe.
Para o cálculo do índice agregativo ponderado, existem várias fórmulas, como por exemplo, de
Laspeyres, de Paasche, de Fisher etc. Vamos aplicar o método de ponderação considerado um
dos mais usuais na investigação econômica: a fórmula de Laspeyres. A fórmula de Laspeyres ou
método da época-base é obtida ponderando os relativos do preço pelos valores (po . qo) do ano
base.
Índices de preço: Para se construir um índice de preços, independentemente da finalidade,
devemos considerar alguns pontos básicos:
a) Objetivo do índice: o objetivo do índice deve ser definido com bastante precisão, definindo o
que está sendo medido e a que se refere. A partir daí, é possível selecionar os produtos que
comporão o índice.
b) Produtos a serem incluídos: na escolha dos produtos a serem incluídos, deve-se procurar
os mais representativos e importantes, dentre aqueles que integram o setor para o qual o índice
será calculado.
c) Preços a serem incluídos: após identificar o setor para o qual vão ser determinados os
preços (atacado, varejo etc.), deve-se decidir a forma de cotação e como serão coletados os
preços.
d) Fórmula: a fórmula de Laspeyres é a mais usada nos casos de índices de preços, pois
emprega pesos fixos, permitindo a revisão periódica de seus valores. Desta forma, as
comparações podem ser feitas diretamente ou através de elos de relativos.
Índices de custo de vida: O índice de custo de vida, também chamado de índice de preço ao
consumidor, mede a variação de preços de um conjunto de bens e serviços necessários à vida
do consumidor final padrão.
Os principais itens devem ser considerados, tais como: alimentação, vestuário, mobiliário,
habitação, lazer, saúde, higiene, além dos gastos com água, luz, transporte, educação e outros.
As famílias, por meio de pesquisas, determinam a lista de bens e serviços consumidos por elas
e a percentagem de gastos com os respectivos itens. A partir desses dados, é fixado um índice
de preço (Laspeyres) para cada grupo.
Após todos os dados coletados, calcula-se a média aritmética ponderada dos índices de preços
dos grupos, onde os pesos são os valores percentuais dos gastos com cada grupo na despesa
total da família padrão.
Índice de preços ao consumidor: É um índice que reflete os gastos das famílias com renda de
até 8 salários mínimos, onde o chefe da família é assalariado em sua ocupação principal. Os
gastos são agrupados em categorias de consumo de mesma natureza, como alimentação,
habitação, vestuário, higiene, transporte, luz, combustível, educação, recreação e diversos.
A coleta de preços é feita pelo IBGE, em dez regiões metropolitanas. O períodopesquisado é do
dia 16 do mês ao dia 15 do mês seguinte.
IPC da FIPE: FIPE é a Fundação Instituto de Pesquisas Econômicas da USP, que pesquisa o
custo de vida em São Paulo para famílias que possuem renda de dois a seis salários mínimos. A
FIPE compara os preços médios de quatro semanas com as quatro semanas imediatamente
anteriores.
É o índice mais antigo do Brasil e, na opinião de alguns especialistas, é o que melhor mede a
inflação, refletindo a variação dos preços de alimentos, aluguel, vestuário, transporte etc.
Índice de cesta básica: É um índice bimestral usado para a correção do salário mínimo. Tem
uma metodologia semelhante ao do IPC, porém representa os gastos de famílias com renda de
até dois salários mínimos.
Índice geral de preços: É um índice calculado pela Fundação Getúlio Vargas (FGV) através da
média ponderada dos seguintes índices, com seus respectivos pesos: índice de preços por
atacado (60%), índice de custo de vida (30%) e índice de custo da construção civil na cidade do
Rio de Janeiro (10%).
O período de coleta é do 1º ao 30º dia do mês de referência. É o mais usado como indexador de
contratos de longo prazo, públicos e privados.
Deflacionamento de dados
O aumento dos preços tem como consequência uma baixa no poder de compra ou no valor
da moeda, gerando a necessidade de realizar uma manutenção no poder de compra dos
salários.
Assim, embora os salários nominais estejam sempre aumentando, os salários reais podem
diminuir, devido ao aumento do custo de vida (inflação), e, consequentemente, tendo o seu
poder aquisitivo reduzido.
Supondo a situação em que um trabalhador, em 1º de maio de 2011, ganhava X reais por
mês, qual deveria ser seu salário mensal, em 1º de janeiro de 2012, para que ele se
encontrasse em situação equivalente à anterior?
Este é um problema típico de conversão de salário nominal em salário real, de grande
importância quando há inflação.
Desta forma, sabendo-se que um assalariado, em dezembro de 2010, tinha salário de
R$1.071,00 e o índice de preços de dezembro de 2010, com base em novembro, era de
101,24%, calcular qual o valor real do salário em dezembro com base em novembro.
Saiba Mais: Esse procedimento é denominado deflacionamento de salários, e o índice de
preços usado na determinação do salário real é chamado deflator.

Outros materiais