Buscar

aula 02

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

- -1
CÁLCULO IV
INTEGRAIS MÚLTIPLAS
- -2
Olá!
1- Reconhecer Mudança de Variáveis na Integral Dupla;
2- Resolver as primeiras integrais duplas com mudança de variável;
3- Reconhecer Integrais Triplas;
4- Reconhecer os tipos de regiões para Integral Tripla.
1 Introdução
Nesta aula, aprenderemos mudança de variáveis na integral dupla, que tem como objetivo facilitar o cálculo de
algumas integrais duplas que não são simples de se calcular diretamente. Este método tem como princípio básico
as mudanças de variáveis que aprendemos, nas disciplinas de Cálculo, vistas anteriormente. Faremos um
paralelo entre as disciplinas de cálculo estudadas anteriormente e continuaremos a trabalhar a
interdisciplinaridade, isto é, no momento em que utilizarmos teorias aprendidas anteriormente para resolução
das integrais duplas ou estender o conhecimento aprendido para chegarmos à resolução de integrais duplas
estaremos colocando em prática a interdisciplinaridade. Continuaremos estendendo o conhecimento para
integrais triplas, seus teoremas, suas propriedades, suas aplicações e seus tipos de regiões.
2 Mudança de ordem de integração
Na aula passada aprendemos os tipos de regiões e vimos como resolver essas integrais, certo?
Agora vamos continuar.
Mostraremos que algumas vezes é necessário mudar a ordem de integração para se resolver uma integral.
Exemplo
A região de integração inicialmente seria:
• x = y , x = 1;
• y = 0, y = 1.
•
•
- -3
Formando geometricamente a figura:
Será equivalente a integrar:
Desta forma podemos resolver a integral.
A primeira integral será:
Comentário
Observe que para a mudança de ordem de integração não afetar o resultado da integral, ela deve satisfazer as
condições do Teorema de Fubine, ou seja, o integrando f(x,y) tem que ser uma função limitada na região de
integração.
3 Mudança de variável nas integrais duplas
Nesta aula, iremos aprender mudança de variável em integrais múltiplas, mais especificamente integrais duplas.
Na disciplina de cálculo, apresentada anteriormente, aprendemos na integração de funções de uma variável, o
método de substituição, agora iremos estender este conhecimento para integral dupla.
No caso de funções de duas variáveis, transformaremos a integral dupla:
- -4
Em outra integral dupla:
Tomemos:
Teorema:
Considere g uma aplicação definida por:
g(u,v) = (x(u,v), y(u,v))
Onde:
x, y são funções de classe C em um subconjunto aberto U 1 ⊂ R .2
Seja W um subconjunto limitado e fechado contido em U tal que:
1) g é injetora em W
2) o determinante Jacobiano da aplicação f,
nunca se anula em w.
Se f e integrável em g(w), então:
- -5
Comentário:
Ainda será válido se:
0 ou g deixar de ser injetora em subconjuntos de W que possam ser descritos por um ponto ou pelo gráfico de
uma função contínua ou por uma união finita de conjuntos destes dois tipos.
A demonstração deste teorema pode ser visto no livro Cálculo diferencial e integral de funções de várias
variáveis.
Fonte: PINTO, Diomara; MORGADO, Maria Candida Ferreira: Cálculo diferencial e integral de funções de várias
variáveis. 3ª ed. Rio de Janeiro: UFRJ, 2005. c. Integrais Múltiplas, p. 173-196.
Agora vamos ver dois casos especiais de mudança de variáveis.
O primeiro caso a ser estudado é o da Mudança de Variável Linear.
Vamos lá?
4 Mudança de variável linear
Consideramos a transformação linear g definida pelas equações:
• x = au + bv;
• y = cu + dv.
Onde:
• a;
• b;
• c;
• d;
•
•
•
•
•
•
- -6
• d;
são constantes reais.
O determinante Jacobiano desta transformação é dado por:
Lembre-se:
EXEMPLO
Antes de passarmos para o outro caso especial de mudança de variáveis, vamos ver um exemplo para entender
melhor o conteúdo que acabamos de estudar. Para isso, clique no link a seguir:
http://estaciodocente.webaula.com.br/cursos/gon436/docs/a2_06_01.pdf
O segundo caso a ser estudado é o da Mudança de Variável Polar.
Vejamos:
Um ponto P com coordenadas retangulares (x,y) tem coordenadas polares (r,θ), onde r é a distância do ponto P à
origem, e θ é o angulo formado pelo eixo positivo dos x e o segmento de reta que liga a origem a P.
As coordenadas retangulares e polares do ponto P estão relacionadas por:
•
http://estaciodocente.webaula.com.br/cursos/gon436/docs/a2_06_01.pdf
- -7
Onde:
r ≥ 0 e ϴ varia em um intervalo da forma (ϴ0, ϴ0 + 2 )π
O determinante do Jacobiano neste caso será:
EXEMPLO
Antes de continuar com seus estudos, veja no link a seguir um exemplo para entender melhor o conteúdo que
acabamos de estudar:
http://estaciodocente.webaula.com.br/cursos/gon436/docs/a2_07_01.pdf
http://estaciodocente.webaula.com.br/cursos/gon436/docs/a2_07_01.pdf
- -8
5 Integral tripla
Você sabia que com o mesmo raciocínio que fizemos em integral dupla, podemos definir integrais triplas através
de somas de Riemann?
Para isto tomemos uma função de três variáveis f(x,y,z).
Seja w = f (x, y, z) uma função real definida e limitada em um paralelepípedo (caixa) retangular R = [a, b] x [c, d] x
[p, q].
Tomemos P , P e P partições regulares de ordem n de [a,b], [c,d] e [p,q] respectivamente.
1 2 3
O produto cartesiano P = P , x P x P subdivide a caixa R em n caixas denotadas por R .
1 2 3
3
ijk
Acertou se você respondeu:
- -9
Definição
Seja w = f(x,y,z) uma função definida e limitada na caixa retangular R.
Se lim S é um número real s que independe da escolha de C em R , n → ∞ chamamos este limite de integraln ijk 
ijk
tripla de f sobre R.
Notação
6 Algumas extensões do conhecimento de integral dupla 
para integral tripla
Agora faremos algumas extensões do conhecimento de integral dupla para integral tripla.
As propriedades de integrais estudadas anteriormente continuam válidas para integrais triplas.
- -10
Funções limitadas cujos conjuntos de descontinuidade podem ser descritos como união finita de gráficos de
funções continuas são integráveis.
Teorema de Fubine
Se z= f(x,y,z) é continua em R = { (x,y,z) I a < x < b, c < y < d, p < z < q ), então a integral tripla de f sobre R pode
ser obtida através de integrais iteradas, ou seja:
Observe que podemos fazer seis integrais iteradas para funções de três variáveis, quando trocamos a ordem de
resolução da integral o diferencial da variável independente muda junto, ou seja, o dx está amarrado ao limite a <
x < b, e dy está amarrado a c < y < d, e dz está amarrado a p < z < q.
Além disto, ainda será válida a afirmação de que se f é descontínua apenas em uma região finita de gráficos de
funções contínuas.
Tipo de Regiões
Classifica-se o tipo de região se pudermos descrever por:
- -11
Lembre-se: z = f e z=f
1 2
Lembre-se: y=g e y=g
1 2
- -12
Lembre-se: x=h e e x=h .
1 2
- -13
7 Algumas Aplicações
1ª - Se f(x,y,z) = 1 para todo (x,y,z) em W, então a integral estará representando o volume de W.
2ª - Se f(x,y,z) é a função que fornece a densidade, isto é, representa a massa por unidade de volume em cada
ponto (x,y,z) em W, então a massa de W é dada pela integral tripla.
A seguir veremos um exemplo.
Exemplo
Calcule o volume do sólido w limitado pelas superfícies:
z = 9 - x ;2
z = 4 - y;
Y = 0;
Y = 4.
- -14
O que vem na próxima aula
Na próxima aula, você vai estudar:
• Mudança de Variável Cilíndrica na Integral Tripla;
• Mudança de Variável Esférica na Integral Tripla.
CONCLUSÃO
Nesta aula, você:
• Reconheceu a mudança de variáveis nas integrais duplas;
• Verificou a importância da interdisciplinaridade;
• Utilizou o conhecimento dos cálculos anteriores;
• Resolveu integrais duplas com mudança de variável;
• Partiu do conhecimento anterior da disciplina de cálculo para fazer uma extensão ao conteúdo 
aprendido nesta aula;
• Acrescentou ao seu conhecimento as integrais triplas;
• Verificou como o Teorema de Fubini continua valendo para integrais triplas;
• Analisou os tipos de regiões que serão utilizados nas integrais triplas.
•
•
•
•
•
•
•
•
•
•
	Olá!
	1 Introdução
	2 Mudança de ordem de integração
	3 Mudança devariável nas integrais duplas
	4 Mudança de variável linear
	5 Integral tripla
	6 Algumas extensões do conhecimento de integral dupla para integral tripla
	7 Algumas Aplicações
	O que vem na próxima aula
	CONCLUSÃO

Outros materiais