Aula_03

Aula_03


DisciplinaOrganização de Computadores4.195 materiais76.557 seguidores
Pré-visualização2 páginas
*
*
ORGANIZAÇÃO DE COMPUTADORES
SIMONE MARKENSON
Rio de Janeiro, 28 de MAIO de 2011(caixa alta e baixa)
CONTEÚDO DA AULA
*
*
Os números podem ser representados em bases diferentes
As bases 2 e 16 são as mais utilizadas na informática
Saber trabalhar com números binários e seus múltiplos é fundamental e facilitará seu trabalho
Você deve praticar!
E lembrem-se... existem 10 tipos de pessoas no mundo, as que conhecem números binários e as que não conhecem
RESUMO DA AULA 2
*
COM QUE BASE EU VOU?
COMO CONVERTER ENTRE AS BASES?
Decimal \uf0e0 Binário
Decimal \uf0e0 Hexadecimal
Binário \uf0e0 Hexadecimal
Hexadecimal \uf0e0 Binário
*
Decimal \uf0e0 Binário
 REGRA: 1) Realizar divisões sucessivas por 2 enquanto 
 quociente zero
451 |_2_
 1 225 |_2_
	 							
*
*
Decimal \uf0e0 Binário
 REGRA: 1) Realizar divisões sucessivas por 2 enquanto 
 quociente zero
451 |_2_
 1 225 |_2_
	 1 112 |_2_
		 0 56 |_2_
			 							
*
*
Decimal \uf0e0 Binário
 REGRA: 1) Realizar divisões sucessivas por 2 enquanto 
 quociente zero
451 |_2_
 1 225 |_2_
	 1 112 |_2_
		 0 56 |_2_
			 0 28 |_2_
				 0 14 |_2_
					 0 7 |_2_
					 1 3 |_2_ 
						 1 1 |_2_
			 quociente = 0 		 1 0
							
*
*
Decimal \uf0e0 Binário
 REGRA: 2) Os \u201crestos\u201d irão formar o número convertido
451 |_2_
 1 225 |_2_
	 1 112 |_2_
		 0 56 |_2_
			 0 28 |_2_
				 0 14 |_2_
					 0 7 |_2_
					 1 3 |_2_ 
						 1 1 |_2_
			 		 1 0
							
Então:
45110 = 1110000112
*
*
Decimal \uf0e0 Binário
 REGRA: 2) Os \u201crestos\u201d irão formar o número convertido
451 |_2_
 1 225 |_2_
	 1 112 |_2_
		 0 56 |_2_
			 0 28 |_2_
				 0 14 |_2_
					 0 7 |_2_
					 1 3 |_2_ 
						 1 1 |_2_
			 		 1 0
							
Então:
45110 = 1110000112
Provando (Binário => Decimal):
1*28+1*27+1*26+1*21+1*20
256+128+64+2+1 = 451
8 7 6 5 4 3 2 1 0
*
Decimal \uf0e0 Hexadecimal
REGRA: 1) Realizar divisões sucessivas por 16 enquanto 
 quociente zero
451 |_16_
 3 28 |_16_
	 12 1 |_16_
quociente = 0 1 0
		
*
*
Decimal \uf0e0 Hexadecimal
REGRA: 2) Os \u201crestos\u201d irão formar o número convertido
451 |_16_
 3 28 |_16_
	 12 1 |_16_
quociente = 0 1 0
		
Então:
45110 = 1C316
C vale 12
*
*
Decimal \uf0e0 Hexadecimal
REGRA: 2) Os \u201crestos\u201d irão formar o número convertido
451 |_16_
 3 28 |_16_
	 12 1 |_16_
quociente = 0 1 0
		
Então:
45110 = 1C316
C vale 12
Provando (Hexadecimal => Decimal):
1*162+12*161+3*160
256+192+3 = 451
*
Binária \uf0e0 Hexadecimal
Cada quatro bits formam um algarismo hexadecimal...
... pois, lembre-se que 24 = 16
1 1 1 0 0 0 0 1 1 
				 
				 
			
		
	 
*
Binária \uf0e0 Hexadecimal
Cada quatro bits formam um algarismo hexadecimal...
... pois, lembre-se que 24 = 16
1 1 1 0 0 0 0 1 1 
				 
				 
			
		
	 
3
*
Binária \uf0e0 Hexadecimal
Cada quatro bits formam um algarismo hexadecimal...
... pois, lembre-se que 24 = 16
1 1 1 0 0 0 0 1 1 
				 
				 
			
		
	 
3
C
1
*
Hexadecimal \uf0e0 Binário
Cada algarismo é representado por 4 bits...
... pois, lembre-se que 24 = 16
			1	 C	 3
				 
				
	R: 1 1 1 0 0 0 0 1 1
0 0 1 1 
*
Hexadecimal \uf0e0 Binário
Cada algarismo é representado por 4 bits...
... pois, lembre-se que 24 = 16
			1	 C	 3
				 
				
	R: 1 1 1 0 0 0 0 1 1
0 0 1 1 
1 1 0 0
*
Hexadecimal \uf0e0 Binário
Cada algarismo é representado por 4 bits...
... pois, lembre-se que 24 = 16
			1	 C	 3
				 
				
	R: 1 1 1 0 0 0 0 1 1
0 0 1 1 
1 1 0 0
1
*
E OS NÚMEROS NEGATIVOS?
SINAL e MAGNITUDE		
-10 = 1 1010	
sinal
magnitude
 Um bit reservado para sinal
 Duas representações para o ZERO
*
Complemento a 1		
-10 = 1 0 1 0 1
Diferença entre cada algarismo do número e o maior algarismo possível na base
Para a base 2 o maior algarismo é o 1 e, para este caso, equivale a inverter todos os dígitos
Para n bits metade das combinações representa números positivos e a outra metade números negativos
Duas representações para o ZERO
E OS NÚMEROS NEGATIVOS?
1010 invertido
sinal
*
Complemento a 2		
-10 = 1 0 1 1 0
Obtido a partir do complemento a 1 de um número binário, somando-se 1
Para n bits metade das combinações representa números positivos e a outra metade números negativos
Uma única representação para o ZERO
Representação mais utilizada
E OS NÚMEROS NEGATIVOS?
sinal
0101 +1
*
Dois números positivos, representados por seis bits (n=6):
10 = (001010)2 e 7 = (000111)2
Soma:	10 + 7	\uf0e8		001010
				 +	000111
					010001 \uf0e8 17
Subtração:	10 \u2013 7 \uf0e8 ?
			7 \u2013 10 \uf0e8 ?
SOMANDO E SUBTRAINDO
*
			 SM		 C1		 C2
	-7		 100111	 111000	 111001
	-10		 101010	 110101	 110110
A operação depende da forma de representação do número negativo
SOMANDO E SUBTRAINDO
*
SINAL E MAGNITUDE
Registra o sinal do maior número e subtrai a magnitude
	 0 01010	(10)
 1 00111	(-7)
 0 00011	(3)
	Lembre-se que para subtrair 1 de 0 é preciso \u201cpedir emprestado\u201d
SOMANDO E SUBTRAINDO
*
COMPLEMENTO A 1
Efetua a soma bit a bit (inclusive sinal)
\u201cvai um\u201d para fora do número é somado ao resultado
Se não houver \u201cvai um\u201d para fora do número, o resultado é negativo e deve ser complementado (mantendo o sinal)
		
 1 11	 \u201cvai um\u201d
	001010	(10)
 + 111000	(-7)
 000010	
 +1
 000011	(3)
	 111 \u201cvai um\u201d
	110101	(-10)
 + 000111	(7)
 111100	
	 
 100011	(-3)
SOMANDO E SUBTRAINDO
*
COMPLEMENTO A 1
Efetua a soma bit a bit (inclusive sinal)
\u201cvai um\u201d para fora do número é somado ao resultado
Se não houver \u201cvai um\u201d para fora do número, o resultado é negativo e deve ser complementado (mantendo o sinal)
		
 1 11	 \u201cvai um\u201d
	001010	(10)
 + 111000	(-7)
 000010	
 + 1
 000011	(3)
	 111 \u201cvai um\u201d
	110101	(-10)
 + 000111	(7)
 111100	
	 
 100011	(-3)
SOMANDO E SUBTRAINDO
*
COMPLEMENTO A 1
Efetua a soma bit a bit (inclusive sinal)
\u201cvai um\u201d para fora do número é somado ao resultado
Se não houver \u201cvai um\u201d para fora do número, o resultado é negativo e deve ser complementado (mantendo o sinal)
		
 1 11	 \u201cvai um\u201d
	001010	(10)
 + 111000	(-7)
 000010	
 + 1
 000011	(3)
	 111 \u201cvai um\u201d
	110101	(-10)
 + 000111	(7)
 111100	
	 
 100011	(-3)
SOMANDO E SUBTRAINDO
*
COMPLEMENTO A 1
Efetua a soma bit a bit (inclusive sinal)
\u201cvai um\u201d para fora do número é somado ao resultado
Se não houver \u201cvai um\u201d para fora do número, o resultado é negativo e deve ser complementado (mantendo o sinal)
		
 1 11	 \u201cvai um\u201d
	001010	(10)
 + 111000	(-7)
 000010	
 + 1
 000011	(3)
	 111 \u201cvai um\u201d
	110101	(-10)
 + 000111	(7)
 111100	
	 
 100011	(-3)
SOMANDO E SUBTRAINDO
*
COMPLEMENTO A 2
Efetua a soma bit a bit (inclusive sinal)
\u201cvai um\u201d para fora do número indica resultado positivo
Se não houver \u201cvai um\u201d para fora do número, o resultado é negativo e deve ser complementado (mantendo o sinal)
		
 1 11	 \u201cvai um\u201d
	001010	(10)
 + 111001	(-7)
 000011	
	
 000011	(3)
	 11 \u201cvai um\u201d
	110110	(-10)
 + 000111	(7)
 111101	
 100010 + 1
 100011	(-3)	
SOMANDO E SUBTRAINDO
*
COMPLEMENTO A 2
Efetua a soma bit a bit (inclusive sinal)
\u201cvai um\u201d para fora do número indica resultado positivo
Se não houver \u201cvai um\u201d para fora do número, o resultado é negativo e deve ser complementado (mantendo o sinal)