artigo engrenagem
122 pág.

artigo engrenagem


DisciplinaMetalurgia Mecânica151 materiais1.917 seguidores
Pré-visualização22 páginas
um Tubo de Aço 
API 5L X\u201370. Tese de M. Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil. 
 
MENDOZA, R., ALANIS, M., PEREZ, R., ALVAREZ, O., GONZALEZ, C., 
JUAREZ-ISLAS, J. A., 2002, \u201cOn the Processing of Fe-C-Mn-Nb Steels to 
Produce Plates for Pipeline with Sour Gas Resistance\u201d, Materials Science and 
Engineering A v. 337, pp. 115 \u2013 120. 
 
NEWMAN, J. A., 2000, The Effects of Load Ratio on Threshold Fatigue Crack Growth 
of Aluminum Alloys. Tese de D. Sc., Faculty of the Virginia Polytechnic Institute 
and State University, Blacksburg, Virginia, USA. 
 
 102
NINH, N. T., WAHAB, M. A., 1995, \u201cThe Effect of Residual Stresses and Weld 
Geometry on the Improvement of Fatigue Life\u201d, Journal of Materials 
Processing Technology v. 48, pp. 581 \u2013 588. 
 
OHTA, A., SASAKI, E., NIHEI, M., KOSUGE, M., KANAO, M., INAGAKI, M., 
1982, \u201cFatigue Crack Propagation Rates and Threshold Stress Intensity Factors 
for Welded Joints of HT80 Steel at Several Stress Ratios\u201d, International Journal 
of Fatigue, pp. 233 \u2013 237. 
 
PARIS, P. C., ERDOGAN, F., 1963, Trans. ASTM v. 85, pp. 528. 
 
PARK, H-B, LEE, B-W, 2000, \u201cEffect of Specimen Thickness on Fatigue Crack 
Growth Rate\u201d, Nuclear Engineering and Design, v. 197, pp. 197 \u2013 203. 
 
RADHAKRISHNAN, V. M., 1984, \u201cA Kink in the Fatigue Crack Growth Curve\u201d, 
International Journal of Fatigue, v. 6, n. 4, pp. 217 \u2013 220. 
 
RADON, J. C., WOODTLY, J., 1984, \u201cInfluence of Microstructure on the Cyclic Crack 
Growth in a Low-alloy Steel\u201d, International Journal of Fatigue v. 6, n. 4, pp. 
221 \u2013 228. 
 
RICHARDS, C. E., 1980, \u2018Some Guidelines to the Selection of Techniques\u201d. In: The 
Measurement of Crack Length and Shape During Fracture and Fatigue, 
Engineering Materials Advisory Services LTD, pp. 461 \u2013 468. 
 
SADANANDA, K. VASUDEVAN, A. K., HOLTZ, R. L., LEE, E. U., 1999, \u201cAnalysis 
of Overload Effects and Related Phenomena\u201d, International Journal of Fatigue 
v. 21, pp. S233 \u2013 S246. 
 
SALERNO, G., 2003, Influência da Deformação Média na Previsão de Vida em Fadiga 
de Baixo Ciclo da Liga AA7175\u2013T1, Departamento de Engenharia Mecânica, 
FEI, SP. 
 
 103
SHI, Y. W., CHEN, B. Y., ZHANG, J. X., 1990, \u201cEffects of Welding Residual Stress 
on Fatigue Crack Growth Behavior in Butt Welds of a Pipeline Steel\u201d, 
Engineering Fracture Mechanics v. 36, n. 6, pp. 893 \u2013 902. 
 
SILVA, J. G. A., 2001, Avaliação Comportamental de Juntas Soldadas de um Aço 
Estrutural do Tipo SAC 50 sob Fadiga. Tese de M. Sc., UFOP, Ouro Preto, MG, 
Brasil. 
 
SURESH, S., 1983, \u201cMicromechanisms of Fatigue Crack Growth Retardation 
Following Overloads\u201d, Engineering Fracture Mechanics v. 18, n. 3, pp. 577 \u2013 
593. 
 
TAIER, R., 2002, Análise da Fadiga em Juntas Tubulares de Plataformas Offshore 
Fixas Através de Modelos em Elementos Finitos. Tese de M. Sc., UFOP, Ouro 
Preto, MG, Brasil. 
 
TENG, T. L., FUNG, C. P., CHANG, P. H., 2002, \u201cEffects of Weld Geometry and 
Residual Stresses on Fatigue in Butt-welded Joints\u201d, International Journal of 
Pressure Vessels and Piping v. 79, pp. 467 \u2013 482. 
 
VASUDEVAN, A. K., SADANANDA, K., LOUAT, N., 1994, \u201cA Review of Crack 
Closure, Fatigue Crack Threshold and Related Phenomena\u201d, Materials Science 
and Engineering A v. 188, pp. 1 \u2013 22. 
 
VERMA, B. B., PANDEY, R. K., 1999, \u201cThe Effects of Loading Variables on 
Overload Induced Fatigue Crack Growth Retardation Parameters\u201d, Journal of 
Materials Science v. 34, pp. 4867 \u2013 4871. 
 
VOSIKOVSKY, O., 1980, \u201cEffects of Stress Ratio on Fatigue Crack Growth Rates in 
X \u2013 70 Pipeline Steel in Air and Saltwater\u201d, Journal of Testing and Evaluation, 
JTEVA v. 8, n. 2, March, pp. 68 \u2013 73 apud in FURTADO FILHO, J. F., 1990, 
Comportamento à Fadiga de Juntas Soldadas e Marteladas do Aço Estrutural 
BS4360 G 50D em Solução Cloretada sob Proteção Catódica. Tese de M. Sc., 
COPPE/UFRJ, Rio de Janeiro, RJ, Brasil. 
 104
 
VOSIKOVSKI, O., RIVARD, A., 1981, \u201cGrowth of Surface Fatigue Cracks in a Steel 
Plate\u201d, International Journal of Fatigue, pp. 111 \u2013 115. 
 
WHEELER, O. E., 1972, \u201cSpectrum Loading and Crack Growth\u201d, Journal of Basic 
Engineering v. 94, n. 1, pp. 181 \u2013 186. 
 
WILKOWSKI, G. M., MAXEY, W. A., 1983, \u201cReview and Applications of the Electric 
Potential Method for Measuring Crack Growth in Specimens, Flawed Pipes and 
Pressure Vessels\u201d, Fracture Mechanics: Fourteen Symposium, ASTM STP 791, 
J. C. Lewis and G. Sines, Eds., American Society for Testing and Materials, pp. 
II-266 \u2013 II-294. 
 
WILLENBORG, J., ENGLE, R. M., WOOD, H. A., 1971, \u201cA Crack Growth 
Retardation Model Using an Effective Stress Concept\u201d Air Force Flight Dyn. 
Lab., TM 71 \u2013 1 \u2013 FBR. 
 
WOODTLI, J., MUSTER, W., RADON, J. C., 1986, \u201cResidual Strees Effects in a 
Fatigue Crack Growth\u201d, Engineering Fracture Mechanics v. 24, n. 3, pp. 399 \u2013 
412. 
 
XIAOYAN, L., HONGGUAN, Z., XITANG, T., 1996, \u201cA Study of Fatigue Crack 
Growth and Crack Closure in Mechanical Heterogeneous Welded Joints\u201d, 
Engineering Fracture Mechanics v. 45, n. 4, pp. 689 \u2013 697. 
 
ZHANG, J., HE, X. D., DU, S. Y., 2003, \u201cA Simple Engineering Approach in the 
Prediction of the Effect of Stress Ratio on Fatigue Threshold\u201d, International 
Journal of Fatigue v. 25, pp. 935 \u2013 938. 
 
ZHANG, M., YANG, P., TAN, Y., 1999, \u201cMicromechanisms of Fatigue Crack 
Nucleation and Short Crack Growth in a Low Carbon Steel Under Low Cycle 
Impact Fatigue Loading\u201d, International Journal of Fatigue v. 21, pp. 823 \u2013 830. 
 
 105
ZHAO, M. C., YANG, K., SHAN, Y-Y., 2003, \u201cComparison on Strength and 
Toughness Behaviours of Microalloyed Pipeline Steels with Acicular Ferrite and 
Ultrafine Ferrite\u201d, Materials Letters v. 57, pp. 1496 \u2013 1500. 
 
ZHAO, M. C., YANG, K., SHAN, Y-Y., 2002, \u201cThe Effects of Thermo-mechanical 
Control Process on Microstructures and Mechanical Properties of a Commercial 
Pipeline Steel\u201d, Materials Science and Engineering A v. 335, pp. 14 \u2013 20. 
 
 
NORMAS 
BS 6835:1988 \u2013 Determination of the Rate of Fatigue Crack Growth in Metallic 
Materials. 
 
ASTM E 8M, 1999 \u2013 Standard Test Method for Tension Testing of Metallic Materials. 
 
ASTM E647, 1999 \u2013 Standard Test Method for Measurement of Fatigue Crack Growth 
Rates. 
 
ASTM E399, 1999 \u2013 Standard Test Method for Plane-Strain Fracture Toughness of 
Metallic Materials. 
 106
APÊNDICE 
 
Tabela 1 \u2013 Valores da correção de curvatura da trinca de fadiga 
 * Corpo-de-prova com sobrecarga 
 
REGIÃO R CORPO-DE-PROVA K máx final K máx correção 
DIFERENÇA 
(%) 
cp 1 58,60 65,93 12,5 
cp 2* 66,21 70,24 6,0 
cp 3 64,10 64,14 0,1 
cp 4 54,47 58,10 6,6 
0,1 
cp 5 64,10 68,37 6,6 
cp 1* 93,42 98,48 5,4 
cp 2* 93,42 101,55 8,7 
cp 3 82,13 87,89 7,0 
METAL DE 
BASE 
0,5 
cp 4 95,19 95,24 0,05 
cp 1 58,60 62,13 6,0 
cp 2* 70,82 75,77 7,0 
cp 3 66,18 70,03 5,8 
0,1 
cp 4 73,13 77,01 5,3 
cp 1* 93,42 102,64 9,8 
cp 2* 93,42 100,59 7,6 
cp 3 91,27 96,90 6,1 
METAL DE 
SOLDA 
0,5 
cp 4 93,42 98,95 5,9 
cp 1 56,76 64,50 13,6 
cp 2* 64,10 70,87 10,5 0,1 
cp 3 72,87 76,68 5,2 
cp 1 80,63 93,41 15,8 
cp 2 97,28 101,79 4,6 
ZTA 
0,5 
cp 3* 93,42 106,44 13,9