A maior rede de estudos do Brasil

Grátis
122 pág.
artigo engrenagem

Pré-visualização | Página 22 de 22

um Tubo de Aço 
API 5L X–70. Tese de M. Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil. 
 
MENDOZA, R., ALANIS, M., PEREZ, R., ALVAREZ, O., GONZALEZ, C., 
JUAREZ-ISLAS, J. A., 2002, “On the Processing of Fe-C-Mn-Nb Steels to 
Produce Plates for Pipeline with Sour Gas Resistance”, Materials Science and 
Engineering A v. 337, pp. 115 – 120. 
 
NEWMAN, J. A., 2000, The Effects of Load Ratio on Threshold Fatigue Crack Growth 
of Aluminum Alloys. Tese de D. Sc., Faculty of the Virginia Polytechnic Institute 
and State University, Blacksburg, Virginia, USA. 
 
 102
NINH, N. T., WAHAB, M. A., 1995, “The Effect of Residual Stresses and Weld 
Geometry on the Improvement of Fatigue Life”, Journal of Materials 
Processing Technology v. 48, pp. 581 – 588. 
 
OHTA, A., SASAKI, E., NIHEI, M., KOSUGE, M., KANAO, M., INAGAKI, M., 
1982, “Fatigue Crack Propagation Rates and Threshold Stress Intensity Factors 
for Welded Joints of HT80 Steel at Several Stress Ratios”, International Journal 
of Fatigue, pp. 233 – 237. 
 
PARIS, P. C., ERDOGAN, F., 1963, Trans. ASTM v. 85, pp. 528. 
 
PARK, H-B, LEE, B-W, 2000, “Effect of Specimen Thickness on Fatigue Crack 
Growth Rate”, Nuclear Engineering and Design, v. 197, pp. 197 – 203. 
 
RADHAKRISHNAN, V. M., 1984, “A Kink in the Fatigue Crack Growth Curve”, 
International Journal of Fatigue, v. 6, n. 4, pp. 217 – 220. 
 
RADON, J. C., WOODTLY, J., 1984, “Influence of Microstructure on the Cyclic Crack 
Growth in a Low-alloy Steel”, International Journal of Fatigue v. 6, n. 4, pp. 
221 – 228. 
 
RICHARDS, C. E., 1980, ‘Some Guidelines to the Selection of Techniques”. In: The 
Measurement of Crack Length and Shape During Fracture and Fatigue, 
Engineering Materials Advisory Services LTD, pp. 461 – 468. 
 
SADANANDA, K. VASUDEVAN, A. K., HOLTZ, R. L., LEE, E. U., 1999, “Analysis 
of Overload Effects and Related Phenomena”, International Journal of Fatigue 
v. 21, pp. S233 – S246. 
 
SALERNO, G., 2003, Influência da Deformação Média na Previsão de Vida em Fadiga 
de Baixo Ciclo da Liga AA7175–T1, Departamento de Engenharia Mecânica, 
FEI, SP. 
 
 103
SHI, Y. W., CHEN, B. Y., ZHANG, J. X., 1990, “Effects of Welding Residual Stress 
on Fatigue Crack Growth Behavior in Butt Welds of a Pipeline Steel”, 
Engineering Fracture Mechanics v. 36, n. 6, pp. 893 – 902. 
 
SILVA, J. G. A., 2001, Avaliação Comportamental de Juntas Soldadas de um Aço 
Estrutural do Tipo SAC 50 sob Fadiga. Tese de M. Sc., UFOP, Ouro Preto, MG, 
Brasil. 
 
SURESH, S., 1983, “Micromechanisms of Fatigue Crack Growth Retardation 
Following Overloads”, Engineering Fracture Mechanics v. 18, n. 3, pp. 577 – 
593. 
 
TAIER, R., 2002, Análise da Fadiga em Juntas Tubulares de Plataformas Offshore 
Fixas Através de Modelos em Elementos Finitos. Tese de M. Sc., UFOP, Ouro 
Preto, MG, Brasil. 
 
TENG, T. L., FUNG, C. P., CHANG, P. H., 2002, “Effects of Weld Geometry and 
Residual Stresses on Fatigue in Butt-welded Joints”, International Journal of 
Pressure Vessels and Piping v. 79, pp. 467 – 482. 
 
VASUDEVAN, A. K., SADANANDA, K., LOUAT, N., 1994, “A Review of Crack 
Closure, Fatigue Crack Threshold and Related Phenomena”, Materials Science 
and Engineering A v. 188, pp. 1 – 22. 
 
VERMA, B. B., PANDEY, R. K., 1999, “The Effects of Loading Variables on 
Overload Induced Fatigue Crack Growth Retardation Parameters”, Journal of 
Materials Science v. 34, pp. 4867 – 4871. 
 
VOSIKOVSKY, O., 1980, “Effects of Stress Ratio on Fatigue Crack Growth Rates in 
X – 70 Pipeline Steel in Air and Saltwater”, Journal of Testing and Evaluation, 
JTEVA v. 8, n. 2, March, pp. 68 – 73 apud in FURTADO FILHO, J. F., 1990, 
Comportamento à Fadiga de Juntas Soldadas e Marteladas do Aço Estrutural 
BS4360 G 50D em Solução Cloretada sob Proteção Catódica. Tese de M. Sc., 
COPPE/UFRJ, Rio de Janeiro, RJ, Brasil. 
 104
 
VOSIKOVSKI, O., RIVARD, A., 1981, “Growth of Surface Fatigue Cracks in a Steel 
Plate”, International Journal of Fatigue, pp. 111 – 115. 
 
WHEELER, O. E., 1972, “Spectrum Loading and Crack Growth”, Journal of Basic 
Engineering v. 94, n. 1, pp. 181 – 186. 
 
WILKOWSKI, G. M., MAXEY, W. A., 1983, “Review and Applications of the Electric 
Potential Method for Measuring Crack Growth in Specimens, Flawed Pipes and 
Pressure Vessels”, Fracture Mechanics: Fourteen Symposium, ASTM STP 791, 
J. C. Lewis and G. Sines, Eds., American Society for Testing and Materials, pp. 
II-266 – II-294. 
 
WILLENBORG, J., ENGLE, R. M., WOOD, H. A., 1971, “A Crack Growth 
Retardation Model Using an Effective Stress Concept” Air Force Flight Dyn. 
Lab., TM 71 – 1 – FBR. 
 
WOODTLI, J., MUSTER, W., RADON, J. C., 1986, “Residual Strees Effects in a 
Fatigue Crack Growth”, Engineering Fracture Mechanics v. 24, n. 3, pp. 399 – 
412. 
 
XIAOYAN, L., HONGGUAN, Z., XITANG, T., 1996, “A Study of Fatigue Crack 
Growth and Crack Closure in Mechanical Heterogeneous Welded Joints”, 
Engineering Fracture Mechanics v. 45, n. 4, pp. 689 – 697. 
 
ZHANG, J., HE, X. D., DU, S. Y., 2003, “A Simple Engineering Approach in the 
Prediction of the Effect of Stress Ratio on Fatigue Threshold”, International 
Journal of Fatigue v. 25, pp. 935 – 938. 
 
ZHANG, M., YANG, P., TAN, Y., 1999, “Micromechanisms of Fatigue Crack 
Nucleation and Short Crack Growth in a Low Carbon Steel Under Low Cycle 
Impact Fatigue Loading”, International Journal of Fatigue v. 21, pp. 823 – 830. 
 
 105
ZHAO, M. C., YANG, K., SHAN, Y-Y., 2003, “Comparison on Strength and 
Toughness Behaviours of Microalloyed Pipeline Steels with Acicular Ferrite and 
Ultrafine Ferrite”, Materials Letters v. 57, pp. 1496 – 1500. 
 
ZHAO, M. C., YANG, K., SHAN, Y-Y., 2002, “The Effects of Thermo-mechanical 
Control Process on Microstructures and Mechanical Properties of a Commercial 
Pipeline Steel”, Materials Science and Engineering A v. 335, pp. 14 – 20. 
 
 
NORMAS 
BS 6835:1988 – Determination of the Rate of Fatigue Crack Growth in Metallic 
Materials. 
 
ASTM E 8M, 1999 – Standard Test Method for Tension Testing of Metallic Materials. 
 
ASTM E647, 1999 – Standard Test Method for Measurement of Fatigue Crack Growth 
Rates. 
 
ASTM E399, 1999 – Standard Test Method for Plane-Strain Fracture Toughness of 
Metallic Materials. 
 106
APÊNDICE 
 
Tabela 1 – Valores da correção de curvatura da trinca de fadiga 
 * Corpo-de-prova com sobrecarga 
 
REGIÃO R CORPO-DE-PROVA K máx final K máx correção 
DIFERENÇA 
(%) 
cp 1 58,60 65,93 12,5 
cp 2* 66,21 70,24 6,0 
cp 3 64,10 64,14 0,1 
cp 4 54,47 58,10 6,6 
0,1 
cp 5 64,10 68,37 6,6 
cp 1* 93,42 98,48 5,4 
cp 2* 93,42 101,55 8,7 
cp 3 82,13 87,89 7,0 
METAL DE 
BASE 
0,5 
cp 4 95,19 95,24 0,05 
cp 1 58,60 62,13 6,0 
cp 2* 70,82 75,77 7,0 
cp 3 66,18 70,03 5,8 
0,1 
cp 4 73,13 77,01 5,3 
cp 1* 93,42 102,64 9,8 
cp 2* 93,42 100,59 7,6 
cp 3 91,27 96,90 6,1 
METAL DE 
SOLDA 
0,5 
cp 4 93,42 98,95 5,9 
cp 1 56,76 64,50 13,6 
cp 2* 64,10 70,87 10,5 0,1 
cp 3 72,87 76,68 5,2 
cp 1 80,63 93,41 15,8 
cp 2 97,28 101,79 4,6 
ZTA 
0,5 
cp 3* 93,42 106,44 13,9