artigo engrenagem
122 pág.

artigo engrenagem

Disciplina:METALURGIA MECÂNICA73 materiais1.437 seguidores
Pré-visualização22 páginas
um Tubo de Aço

API 5L X–70. Tese de M. Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.

MENDOZA, R., ALANIS, M., PEREZ, R., ALVAREZ, O., GONZALEZ, C.,

JUAREZ-ISLAS, J. A., 2002, “On the Processing of Fe-C-Mn-Nb Steels to

Produce Plates for Pipeline with Sour Gas Resistance”, Materials Science and

Engineering A v. 337, pp. 115 – 120.

NEWMAN, J. A., 2000, The Effects of Load Ratio on Threshold Fatigue Crack Growth

of Aluminum Alloys. Tese de D. Sc., Faculty of the Virginia Polytechnic Institute

and State University, Blacksburg, Virginia, USA.

 102

NINH, N. T., WAHAB, M. A., 1995, “The Effect of Residual Stresses and Weld

Geometry on the Improvement of Fatigue Life”, Journal of Materials

Processing Technology v. 48, pp. 581 – 588.

OHTA, A., SASAKI, E., NIHEI, M., KOSUGE, M., KANAO, M., INAGAKI, M.,

1982, “Fatigue Crack Propagation Rates and Threshold Stress Intensity Factors

for Welded Joints of HT80 Steel at Several Stress Ratios”, International Journal

of Fatigue, pp. 233 – 237.

PARIS, P. C., ERDOGAN, F., 1963, Trans. ASTM v. 85, pp. 528.

PARK, H-B, LEE, B-W, 2000, “Effect of Specimen Thickness on Fatigue Crack

Growth Rate”, Nuclear Engineering and Design, v. 197, pp. 197 – 203.

RADHAKRISHNAN, V. M., 1984, “A Kink in the Fatigue Crack Growth Curve”,

International Journal of Fatigue, v. 6, n. 4, pp. 217 – 220.

RADON, J. C., WOODTLY, J., 1984, “Influence of Microstructure on the Cyclic Crack

Growth in a Low-alloy Steel”, International Journal of Fatigue v. 6, n. 4, pp.

221 – 228.

RICHARDS, C. E., 1980, ‘Some Guidelines to the Selection of Techniques”. In: The

Measurement of Crack Length and Shape During Fracture and Fatigue,

Engineering Materials Advisory Services LTD, pp. 461 – 468.

SADANANDA, K. VASUDEVAN, A. K., HOLTZ, R. L., LEE, E. U., 1999, “Analysis

of Overload Effects and Related Phenomena”, International Journal of Fatigue

v. 21, pp. S233 – S246.

SALERNO, G., 2003, Influência da Deformação Média na Previsão de Vida em Fadiga

de Baixo Ciclo da Liga AA7175–T1, Departamento de Engenharia Mecânica,

FEI, SP.

 103

SHI, Y. W., CHEN, B. Y., ZHANG, J. X., 1990, “Effects of Welding Residual Stress

on Fatigue Crack Growth Behavior in Butt Welds of a Pipeline Steel”,

Engineering Fracture Mechanics v. 36, n. 6, pp. 893 – 902.

SILVA, J. G. A., 2001, Avaliação Comportamental de Juntas Soldadas de um Aço

Estrutural do Tipo SAC 50 sob Fadiga. Tese de M. Sc., UFOP, Ouro Preto, MG,

Brasil.

SURESH, S., 1983, “Micromechanisms of Fatigue Crack Growth Retardation

Following Overloads”, Engineering Fracture Mechanics v. 18, n. 3, pp. 577 –

593.

TAIER, R., 2002, Análise da Fadiga em Juntas Tubulares de Plataformas Offshore

Fixas Através de Modelos em Elementos Finitos. Tese de M. Sc., UFOP, Ouro

Preto, MG, Brasil.

TENG, T. L., FUNG, C. P., CHANG, P. H., 2002, “Effects of Weld Geometry and

Residual Stresses on Fatigue in Butt-welded Joints”, International Journal of

Pressure Vessels and Piping v. 79, pp. 467 – 482.

VASUDEVAN, A. K., SADANANDA, K., LOUAT, N., 1994, “A Review of Crack

Closure, Fatigue Crack Threshold and Related Phenomena”, Materials Science

and Engineering A v. 188, pp. 1 – 22.

VERMA, B. B., PANDEY, R. K., 1999, “The Effects of Loading Variables on

Overload Induced Fatigue Crack Growth Retardation Parameters”, Journal of

Materials Science v. 34, pp. 4867 – 4871.

VOSIKOVSKY, O., 1980, “Effects of Stress Ratio on Fatigue Crack Growth Rates in

X – 70 Pipeline Steel in Air and Saltwater”, Journal of Testing and Evaluation,

JTEVA v. 8, n. 2, March, pp. 68 – 73 apud in FURTADO FILHO, J. F., 1990,

Comportamento à Fadiga de Juntas Soldadas e Marteladas do Aço Estrutural

BS4360 G 50D em Solução Cloretada sob Proteção Catódica. Tese de M. Sc.,

COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.

 104

VOSIKOVSKI, O., RIVARD, A., 1981, “Growth of Surface Fatigue Cracks in a Steel

Plate”, International Journal of Fatigue, pp. 111 – 115.

WHEELER, O. E., 1972, “Spectrum Loading and Crack Growth”, Journal of Basic

Engineering v. 94, n. 1, pp. 181 – 186.

WILKOWSKI, G. M., MAXEY, W. A., 1983, “Review and Applications of the Electric

Potential Method for Measuring Crack Growth in Specimens, Flawed Pipes and

Pressure Vessels”, Fracture Mechanics: Fourteen Symposium, ASTM STP 791,

J. C. Lewis and G. Sines, Eds., American Society for Testing and Materials, pp.

II-266 – II-294.

WILLENBORG, J., ENGLE, R. M., WOOD, H. A., 1971, “A Crack Growth

Retardation Model Using an Effective Stress Concept” Air Force Flight Dyn.

Lab., TM 71 – 1 – FBR.

WOODTLI, J., MUSTER, W., RADON, J. C., 1986, “Residual Strees Effects in a

Fatigue Crack Growth”, Engineering Fracture Mechanics v. 24, n. 3, pp. 399 –

412.

XIAOYAN, L., HONGGUAN, Z., XITANG, T., 1996, “A Study of Fatigue Crack

Growth and Crack Closure in Mechanical Heterogeneous Welded Joints”,

Engineering Fracture Mechanics v. 45, n. 4, pp. 689 – 697.

ZHANG, J., HE, X. D., DU, S. Y., 2003, “A Simple Engineering Approach in the

Prediction of the Effect of Stress Ratio on Fatigue Threshold”, International

Journal of Fatigue v. 25, pp. 935 – 938.

ZHANG, M., YANG, P., TAN, Y., 1999, “Micromechanisms of Fatigue Crack

Nucleation and Short Crack Growth in a Low Carbon Steel Under Low Cycle

Impact Fatigue Loading”, International Journal of Fatigue v. 21, pp. 823 – 830.

 105

ZHAO, M. C., YANG, K., SHAN, Y-Y., 2003, “Comparison on Strength and

Toughness Behaviours of Microalloyed Pipeline Steels with Acicular Ferrite and

Ultrafine Ferrite”, Materials Letters v. 57, pp. 1496 – 1500.

ZHAO, M. C., YANG, K., SHAN, Y-Y., 2002, “The Effects of Thermo-mechanical

Control Process on Microstructures and Mechanical Properties of a Commercial

Pipeline Steel”, Materials Science and Engineering A v. 335, pp. 14 – 20.

NORMAS

BS 6835:1988 – Determination of the Rate of Fatigue Crack Growth in Metallic

Materials.

ASTM E 8M, 1999 – Standard Test Method for Tension Testing of Metallic Materials.

ASTM E647, 1999 – Standard Test Method for Measurement of Fatigue Crack Growth

Rates.

ASTM E399, 1999 – Standard Test Method for Plane-Strain Fracture Toughness of

Metallic Materials.

 106

APÊNDICE

Tabela 1 – Valores da correção de curvatura da trinca de fadiga

 * Corpo-de-prova com sobrecarga

REGIÃO R CORPO-DE-PROVA K máx final K máx correção
DIFERENÇA

(%)
cp 1 58,60 65,93 12,5

cp 2* 66,21 70,24 6,0

cp 3 64,10 64,14 0,1

cp 4 54,47 58,10 6,6

0,1

cp 5 64,10 68,37 6,6

cp 1* 93,42 98,48 5,4

cp 2* 93,42 101,55 8,7

cp 3 82,13 87,89 7,0

METAL DE
BASE

0,5

cp 4 95,19 95,24 0,05

cp 1 58,60 62,13 6,0

cp 2* 70,82 75,77 7,0

cp 3 66,18 70,03 5,8
0,1

cp 4 73,13 77,01 5,3

cp 1* 93,42 102,64 9,8

cp 2* 93,42 100,59 7,6

cp 3 91,27 96,90 6,1

METAL DE
SOLDA

0,5

cp 4 93,42 98,95 5,9

cp 1 56,76 64,50 13,6

cp 2* 64,10 70,87 10,5 0,1

cp 3 72,87 76,68 5,2

cp 1 80,63 93,41 15,8

cp 2 97,28 101,79 4,6

ZTA

0,5

cp 3* 93,42 106,44 13,9