ASM Metals HandBook Volume 12 - Fractography
857 pág.

ASM Metals HandBook Volume 12 - Fractography


DisciplinaMetalurgia Mecânica145 materiais1.905 seguidores
Pré-visualização50 páginas
13A, 1982, p 457 
190. S. Dinda and W.R. Warke, Mater. Sci. Eng., Vol 24, 1976, p 199 
191. L.P. Costas, Corrosion, Vol 31, 1975, p 91 
192. A.W. Funkebusch, L.A. Heldt, and D.F. Stein, Metall. Trans. A, Vol 13A, 1982, p 611 
193. A.R.C. Westwood and M.H. Kamdar, Philos. Mag., Vol 8, 1963, p 787 
194. S.P. Lynch, in Hydrogen Effects in Metals I.M. Bernstein and A.W. Thompson, Ed., The Metallurgical 
Society, 1981, p 863 
195. P. Gordon, Metall. Trans. A, Vol 9A, 1978, p 267 
196. K.S. Chan and D.A. Koss, Metall. Trans. A, Vol 14A, 1983, p 1343 
197. G.F. Pittinato, V. Kerlins, A. Phillips, and M.A. Russo, SEM/TEM Fractography Handbook, MCIC-HB-
06, Metals and Ceramics Information Center, 1975, p 214, 606 
198. A. Phillips, V. Kerlins, R.A. Rawe, and B.V. Whiteson, Electron Fractography Handbook, MCIC-HB-08, 
Metals and Ceramics Information Center, 1976, p 3-8 
199. J.R. Klepaczko and A. Solecki, Metall. Trans. A, Vol 15A, 1984, p 901 
201. E. Manin, E. Beckman, and S.A. Finnegan, in Metallurgical Effects at High Strain Rates, R.W. Rohde, 
Ed., Plenum Press, 1973, p 531 
202. S.M. Doraivelu, V. Gopinathan, and V.C. Venkatesh, in Shock Waves and High-Strain-Rate Phenomena in 
Metals, M.A. Meyers and L.E. Murr, Ed., Plenum Press, 1981, p 75 
203. H.C. Rogers and C.V. Shastry, in Shock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers 
and L.E. Murr, Ed., Plenum Press, 1981, p 285 
204. G.L. Moss, in Shock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, Ed., 
Plenum Press, 1981, p 299 
205. T.A.C. Stock and K.R.L. Thompson, Metall. Trans. A, Vol 1A, 1970, p 219 
206. J.F. Velez and G.W. Powell, Wear, Vol 66, 1981, p 367 
207. A.L. Wingrove, Metall. Trans. A, Vol 4A, 1973, p 1829 
208. P.W. Leech, Metall. Trans. A, Vol 16A, 1985, p 1900 
209. P.J. Wray, Metall. Trans. A, Vol 15A, 1984, p 2059 
210. J.J. Lewandowsky and A.W. Thompson, Metall. Trans. A, Vol 17A, 1986, p 461 
211. H. Kwon and C.H. Kim, Metall. Trans. A, Vol 17A, 1986, p 1173 
212. A. Phillips, V. Kerlins, R.A. Rawe, and B.V. Whiteson, Electron Fractography Handbook, MCIC-HB-08, 
Metals and Ceramics Information Center, 1976, p 3-5 
213. T. Takasugi and D.P. Pope, Metall. Trans. A, Vol 13A, 1982, p 1471 
214. W.J. Mills, Metall. Trans. A, Vol 11A, 1980, p 1039 
215. D.M. Bowden and E.A. Starke, Jr., Metall. Trans. A, Vol 15A, 1984, p 1687 
216. H.G. Nelson, in Effect of Hydrogen on Behavior of Materials, A.W. Thompson and I.M. Bernstein, Ed., 
The Metallurgical Society, 1976, p 603 
217. G. Schuster and C. Altstetter, Metall. Trans. A, Vol 14A, 1983, p 2085 
218. H.J. Cialone and J.H. Holbrook, Metall. Trans. A, Vol 16A, 1985, p 115 
219. R.J. Walter and W.T. Chandler, in Effect of Hydrogen on Behavior of Materials, A.W. Thompson and I.M. 
Bernstein, Ed., The Metallurgical Society, 1976, p 273 
220. P.K. Liaw, S.J. Hudak, Jr., and J.K. Donald, Metall. Trans. A. Vol 13A, 1982, p 1633 
221. W.G. Clark, Jr., in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, Ed., American Society for 
Metals, 1974, p 149 
222. J.D. Frandsen and H.L. Marcus, Metall. Trans. A, Vol 8A, 1977, p 265 
223. R.D. Pendse and R.O. Ritchie, Metall. Trans. A, Vol 16A, 1985, p 1491 
224. S.C. Chang and J.P. Hirth, Metall. Trans. A. Vol 16A, 1985, p 1417 
225. R.P. Wei, P.S. Pao, R.G. Hart, T.W. Weir, and G.W. Simmons, Metall. Trans. A, Vol 11A, 1980, p 151 
226. R.P. Wei, N.E. Fennelli, K.D. Unangst, and T.T. Shih, AFOSR Final Report IFSM-78-88 (Air Force 
Office of Scientific Research), Lehigh University, 1978 
227. S. Floreen and R.H. Kane, Metall. Trans. A, Vol 10A, 1979, p 1745 
228. S. Floreen and R.H. Kane, Metall. Trans. A, Vol 13A, 1982, p 145 
229. M. Müller, Metall. Trans. A, Vol 13A 1982, p 649 
230. D. Eliezer, D.G. Chakrapani, C.J. Altstetter, and E.N. Pugh, in Hydrogen-Induced Slow Crack Growth in 
Austenitic Stainless Steels, P. Azou, Ed., Second International Congress on Hydrogen in Metals (Paris), 
Pergamon Press, 1977 
231. L.H. Keys, A.J. Bursle, H.R. Kemp, and K.R.L. Thompson, in Hydrogen-Induced Slow Crack Growth in 
Austenitic Stainless Steels, P. Azou, Ed., Second International Congress on Hydrogen in Metals (Paris), 
Pergamon Press, 1977 
232. L.H. Keys, A.J. Bursle, K.R.L. Thompson, I.A. Ward, and P.J. Flower, in Environment-Sensitive Fracture 
of Engineering Materials, Z.A. Foroulis, Ed., The Metallurgical Society, 1979, p 614 
233. H. Ishii. Y. Sakakibara, and R. Ebara, Metall. Trans. A, Vol 13A, 1982, p 1521 
234. I.L.W. Wilson and B.W. Roberts, in Environment-Sensitive Fracture of Engineering Materials, Z.A. 
Foroulis, Ed., The Metallurgical Society, 1979, p 595 
235. E.F. Smith III and D.J. Duquette, Metall. Trans. A, Vol 17A, 1986, p 339 
236. C.M. Ward-Close and C.J. Beevers, Metall. Trans. A, Vol 11A, 1980, p 1007 
237. A. Boateng, J.A. Begley, and R.W. Staehle, Metall. Trans. A, Vol 10A 1979, p 1157 
238. A. Boateng, J.A. Begley, and R.W. Staechle, Metall. Trans. A, Vol 14A, 1983, p 67 
239. R.D. Carter, E.W. Lee, E.A. Starke, Jr., and C.J. Beevers, Metall. Trans. A, Vol 15A, 1984, p 555 
240. M. Peters, A. Gysler, and G. Lütjering, Metall. Trans. A, Vol 15A, 1984, p 1597 
241. D.L. Davidson and J. Lankford, Metall. Trans. A, Vol 15A. 1984, p 1931 
242. K. Sadananda and P. Shahinian, Metall. Trans. A, Vol 11A, 1980, p 267 
243. D.L. Davidson, Acta Metall. Vol 32, 1984, p 707 
244. J. Gayda and R.V. Miner, Metall. Trans. A, Vol 14A, 1983, p 2301 
245. F. Gabrielli and R.M. Pelloux, Metall. Trans. A, Vol 13A, 1982, p 1083 
246. W.J. Mills and L.A. James, Fatigue Eng. Mater. Struct., Vol 3, 1980, p 159 
247. K. Yamaguchi and K. Kanazawa, Metall. Trans. A, Vol 11A, 1980, p 1691 
248. L.H. Burck and J. Weertman, Metall. Trans. A, Vol 7A, 1976, p 257 
249. H. Ishii and J. Weertman, Metall. Trans. A, Vol 2A, 1971, p 3441 
250. R.P. Wei, Int. J. Fract, Mech., Vol 14, 1968, p 159 
251. R.P. Gangloff, Metall. Trans. A, Vol 16A, 1985, p 953 
252. P.K. Liaw and E. Fine, Metall. Trans. A, Vol 12A, 1981, p 1927 
253. P.S. Pao, W. Wei, and R.P. Wei, in Environment-Sensitive Fracture of Engineering Materials, Z.A. 
Foroulis, Ed., The Metallurgical Society, 1979, p 565 
254. D.B. Dawson, Metall. Trans. A, Vol 12A, 1981, p 791 
255. M. Okazaki, I. Hattori, and T. Koizumi, Metall. Trans. A, Vol 15A, 1984, p 1731 
256. M.Y. Nazmy. Metall. Trans. A, Vol 14A, 1983, p 449 
257. W.J. Evans and G.R. Gostelow, Metall. Trans. A, Vol 10A 1979, p 1837 
258. G.S. Was, H.H. Tischner, R.M. Latanision, and R.M. Pelloux, Metall. Trans. A, Vol 12A, 1981, p 1409 
259. A.W. Sommer and D. Eylon, Metall. Trans. A, Vol 14A, 1983, p 2179 
 
Notes cited in this section 
** Adiabatic process is a thermodynamic concept where no heat is gained or lost to the environment. 
 The fatigue crack growth rate is expressed as da/dN, where a is the distance the fatigue crack advances 
during the application of N number of load cycles. When a fatigue striation is formed on each load cycle, 
the fatigue crack growth rate will about equal the striation spacing. 
 The basic J-integral is a fracture mechanism parameter, and in the elastic case, the J-integral is related to 
the strain energy release rate and is a function of K (the range of the stress intensity factor, K) and E 
(elastic modulus). 
Modes of Fracture 
Victor Kerlins, McDonnell Douglas Astronautics Company Austin Phillips, Metallurgical Consultant 
 
Discontinuities Leading to Fracture 
Fracture of a stressed part is often caused by the presence of an internal or a surface discontinuity. The manner in which 
these types of discontinuities cause fracture and affect the features of fracture surfaces will be described and 
fractographically illustrated in this section. 
Discontinuities such as laps, seams, cold shuts, previous cracks, porosity, inclusions, segregation, and unfavorable grain 
flow in forgings often serve as