Buscar

CARDIOLOGIA 02 - Eletrocardiograma COMPLETO

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 4, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 5, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 7, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 8, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 10, do total de 35 páginas

Prévia do material em texto

Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
1
MED RESUMOS
NETTO, Arlindo Ugulino.
CARDIOLOGIA
ELETROCARDIOGRAMA
(Professor Jorge Fonseca e Mario Toscano)
O eletrocardiograma (ECG) € um exame m€dico na rea de 
cardiologia onde € feito o registro da varia‚ƒo dos potenciais el€tricos 
gerados pela atividade el€trica do cora‚ƒo, garantida pelo 
automatismo card„aco. Representa, em outras palavras, um valioso 
registro do funcionamento da atividade el€trica card„aca.
O aparelho que registra o eletrocardiograma € o 
eletrocardiógrafo. A informa‚ƒo registrada no ECG representa os 
impulsos do cora‚ƒo (isto €, o potencial elétrico das c€lulas 
card„acas). Estes potenciais sƒo gerados a partir da despolariza‚ƒo e 
repolariza‚ƒo das c€lulas card„acas. Normalmente, a atividade 
el€trica card„aca se inicia no nodo sinusal (c€lulas auto-r„tmicas) que 
induz a despolariza‚ƒo dos trios e dos ventr„culos. Esse registro 
mostra a varia‚ƒo do potencial el€trico no tempo, que gera uma 
imagem linear, em ondas. 
 Onda P: representa a despolariza‚ƒo atrial. A fibrilação atrial representam um defeito na contra‚ƒo do trio que 
pode ser registrada por essa onda.
 Inervalo PR: retardo do impulso nervoso no n…do atrioventricular
 QRS: despolariza‚ƒo dos ventr„culos. 
 Onda T: repolariza‚ƒo dos ventr„culos.
Estas ondas seguem um padrƒo r„tmico, tendo denomina‚ƒo particular. Qualquer altera‚ƒo no ciclo card„aco 
ser convertida em uma anomalia nas ondas no eletrocardi…grafo. Para que isto fosse visto, foi necessrio criar as 
chamadas linhas de derivações, baseadas na padroniza‚ƒo das posi‚†es de eletrodos na pele do paciente a ser 
avaliado.
HISTRICO E EVOLU‚ƒO DO ELETROCARDIOGRAMA
 Augustus Waller (1887): obteu os primeiros registros da atividade 
el€trica do cora‚ƒo usando eletrosc…pio capilar com eletrodos precordiais.
 Willeim Einthoven (1903): fez uso de galvan‡metro e cria‚ƒo do 
eletrocardiograma moderno (com deriva‚†es bipolares). Por€m, sua 
in€rcia e o tempo necessrio na corre‚ƒo matemtica das curvas exigiam 
aperfei‚oamentos. Por isso, Einthoven dedicou-se ao estudo do 
galvan‡metro de bobina de Ader e calculou que as caracter„sticas do 
aparelho melhorariam o seu desempenho para o objetivo visado. O 
galvan‡metro de corda, criado por ele possu„a uma superioridade t€cnica 
incontestvel sobre o aparelho elaborado por Ader. Einthoven passou a 
usar as trˆs deriva‚†es hoje ainda empregadas como padrƒo. Apesar de 
seu aparelho ter o inconveniente do peso e tamanho, prosseguiu seus 
estudos. Einthoven estudou a influˆncia dos movimentos respirat…rios e 
das mudan‚as de posi‚ƒo do corpo sobre o ECG. Esses trabalhos 
levaram-no ‰ concep‚ƒo do chamado esquema do triŠngulo equiltero: 
obteve deriva‚†es bipolares dos membros (I, II e III) usando eletrodos 
perif€ricos, em que o cora‚ƒo estaria no centro desse triangulo. Seu 
‹ltimo aperfei‚oamento do aparelho foi a cria‚ƒo do galvan‡metro de 
corda de vcuo, com o qual levou ao mximo a sensibilidade do 
instrumento. Em 23 de outubro de 1924 foi-lhe concedido o Prˆmio Nobel 
de Fisiologia e Medicina daquele ano, por sua descoberta do mecanismo 
do ECG. Foi dada por ele a nomenclatura das ondas P, QRS e T.
 Wilson (1934): desenvolveu a central terminal de potencial zero e as 
deriva‚†es unipolares (deriva‚oes V).
 American Heart Association – Cardiac Society of Great Britain and 
Ireland (1938): realizou a padroniza‚ƒo das deriva‚†es precordiais V1-6.
 Kossan e Johnson (1935): descobriu as deriva‚†es VR, VL e VF.
 Golberger (1942): desenvolveu as deriva‚†es aVR, aVL e aVF.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
2
NO‚„ES AN…TOMO-FISIOLGICAS DO CORA‚ƒO
POTENCIAL ELÉTRICO CELULAR CARDÍACO
No músculo cardíaco, o potencial de ação é provocado pela abertura de dois tipos de 
canais: (1) os mesmos canais rápidos de sódio, como no músculo estriado esquelético, e (2) outra 
população, inteiramente diferente, de canais lentos de cálcio (canais cálcio-sódio). Essa segunda 
população, tem uma abertura mais lenta e, o que é mais importante, permanecem abertos por 
vários décimos de segundo. Durante esse tempo, grande quantidade de íons cálcio e sódio flui, por 
esses canais, para o interior da fibra muscular cardíaca, o que mantém o período prolongado de 
despolarização, causando o potencial de Platô do potencial de ação.
Em resumo, na despolarização, ocorre a abertura de canais rápidos de sódio, associado à 
abertura dos canais lentos de cálcio. O influxo de cálcio inicia após o fechamento dos canais de 
sódio e perdura por 0,2 a 0,3 segundos. Este influxo de cálcio inibe a abertura dos canais de 
potássio retardando a repolarização por 0,2 a 0,3 segundos, que é o tempo de duração do Platô. 
Após este tempo, os canais lentos de cálcio se fecham e a repolarização procede normalmente, 
através do efluxo de íons potássio. A membrana não se repolariza imediatamente após a 
despolarização, permanecendo a despolarização em um platô por alguns milissegundos, antes que 
se inicie a repolarização (Músculo atrial  platô de 0.2 s; Músculo ventricular  platô 0.3 s). 
O potencial de platô regula a contração cardíaca fazendo com que os átrios se contraiam 
antes que os ventrículos. O platô, em resumo, é responsável por:
 Aumentar a duração do tempo da contração muscular de 3 a 15 vezes mais do que no 
músculo esquelético.
 Permitir que os átrios se contraiam antes da contração dos ventrículos.
 Manter uma assincronia entre a sístole atrial e a sístole ventricular
Fases do potencial de ação.
 Fase 0: Fase inicial de rápida despolarização. Representa a abertura dos 
canais rápidos de Na+ com grande influxo para o interior da célula. É 
representada por uma linha vertical ascendente.
 Fase 1: É uma pequena e rápida repolarização. Representa o 
fechamento dos canais rápidos de Na+ e abertura do canais lentos de K+ 
com um efluxo de K+ para o exterior da célula. É representada por uma 
pequena linha vertical descendente.
 Fase 2: Representa a abertura dos canais lentos de Ca+ com grande 
influxo de Ca+ para o interior da célula. Representada por uma linha 
horizontal representando a duração da contração muscular (Platô). 
Ocorre durante a fase do platô um efluxo lento de K+ para o exterior da 
célula. Mesmo com a reserva de cálcio existente no retículo 
sarcoplasmático, a concentração muscular cardíaca necessita de uma 
demanda de cálcio extracelular a mais, que é transportada pelos túbulos 
T.
 Fase 3: Início da Fase de repolarização. Representa a abertura dos 
canais lentos de K+ com grande efluxo de K+ para o exterior da célula. 
Restabelece a diferença de potencial elétrico.
 Fase 4: Fase final da repolarização. Retorno ao potencial negativo de 
repouso, onde as concentrações iônicas são restabelecidas.
FISIOLOGIA DO MÚSCULO CARDÍACO
O coração é formado por três tipos principais de musculo cardíaco: músculo atrial, músculo ventricular e fibras 
musculares especializadas excitat†rias e condutoras. 
O musculo do tipo atrial e ventricular contraem-se de forma muito semelhante à do 
musculo esquelético, exceto que a velocidade de contração é bem maior. A fibra muscular cardíaca 
corresponde à célula do músculo cardíaco, que esta dividido nas seguintes camadas (de fora para 
dentro): epimísio, perimísio e endomísio. Ela é uma fibra estriada devido à organização dos 
miofilamentos (actina e miosina), sendo separadas uma das outras por discos intercalados (GAP 
Juncion), que se originam de invaginações da membrana da fibra. As fibras musculares organizam-
se como treliças, em que as fibras se dividem e se recombinam. A membrana celular une-se uma 
as outras formando junções abertas, que permitem a passagem de íons de uma célula para a outra 
com facilidade.
O músculo cardíaco é formado por muitas células individuais conectadas em série, 
formando umsincício atrial e ventricular. O potencial de ação se propaga de uma célula para outra 
com facilidade, através dos discos intercalados.
Por outro lado, as fibras excitatórias e condutoras contraem-se muito fracamente, pois 
apresentam poucas fibrilas contráteis de miosina (são as chamadas células P, que servem apenas 
para conduzir estúmulos); porém, exibem ritmicidade e velocidade de condução variável, formando 
um sistema excitatório que controla a ritmicidade da contração cardíaca, formando um sistema 
excitatório (sistema de condução) que controla a ritmicidade da contração cardíaca.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
3
Este sistema de condu‚ƒo card„aca € formado pelo nó sinusal ou 
sinuatrial (o chamado marca-passo natural do cora‚ƒo), feixes internodais 
(localizados entre os dois nodos princiais do cora‚ƒo, sendo responsveis ainda 
pela excita‚ƒo atrial), nó atrioventricular (tem a importante fun‚ƒo de retardar o 
impulso el€trico que nele chega para que os ventr„culos se encham de sangue e se 
esvaziem em tempos diferentes com rela‚ƒo aos trios), feixe de His (que conduz 
o potencial el€trico para toda a musculatura ventricular) e as fibras de Purkinje 
(ramifica‚†es do feixe de His responsveis por distribuir de forma uniforme os 
impulsos el€tricos nas paredes ventriculares). Conhecem-se, hoje, trˆs vias gerais 
de condu‚ƒo auricular: os feixes internodais anterior, m€dio e posterior (via de 
Thorel). 
Como veremos logo a seguir, nƒo existe conexƒo direta entre as fibras 
musculares atriais e ventriculares devido ao anel valvar fibroso que isola dos dois 
sinc„cios – a ‹nica forma de passagem de est„mulos se faz pelo n… AV e pelo feixe 
de His.
Emboram sejam estruturalmente semelhantes, existem diferen‚as eletrofisiol…gicas importantes entre as c€lulas que 
comp†em o n… sinusal e a c€lula muscular. 
 As c€lulas do n… AV sƒo consideradas células de resposta rápida que, no repouso, como qualquer c€lula, apresenta seu 
interior negativo (com cerca de -60 mV) e exterior positivo. Quando € excitada, passa a receber grandes concetra‚†es de 
s…dio, que fazem com que o potencial interno da membrana fique cada vez mais positivo; at€ que mais canais de s…dio 
sejam ativados, aumentem o influxo de s…dio e debelem o potencial de a‚ƒo celular, fazendo com que a c€lula se contraia e 
envie o est„mulo nervoso. Neste momento, o potssio come‚a a deixar a c€lula no intuito de negativar a face interna da 
membrana. Isto faz com que a c€lula repolarize. Todo este mecanismo ocorre de forma automtica e rpida, da„ a 
considera‚ƒo de marca-passo card„aco ao n…do sinusal.
 A célula de resposta lenta, por sua vez, que € representada pela fibra muscular card„aca, apresenta um potencial 
intramembranar de -50 mV. Quando excitada, o s…dio faz com que ela despolarize mais facilmente. No momento da 
repolariza‚ƒo, al€m da sa„da do potssio, ocorre a entrada de clcio (por se tratar de uma fibra muscular). Como o clcio € 
um „on positivo, a c€lula mant€m um plat‡ positivo, o que nƒo ocorre nas c€lulas de condu‚ƒo. Portanto, o „on clcio serve 
para manter a repolariza‚ƒo celular e para contra‚ƒo da pr…pria fibra muscular, at€ que o potssio e o clcio deixem a c€lula, 
repolarizando a c€lula muscular por completo.
SINCÍCIO MUSCULAR
Diferentemente de qualquer outro …rgƒo, as fibras que comp†e o cora‚ƒo devem funcionar de maneira uniforme e regulada. 
Dessa maneira, o cora‚ƒo € considerado um sinc„cio, formado por vrias c€lulas musculares card„acas, no qual as c€lulas card„acas 
estƒo inteconectadas de tal modo que, quando uma dessas c€lulas € excitada, o potencial de a‚ƒo se propaga para todas as demais, 
passando de c€lula para c€lula por toda a treli‚a de interconex†es.
Na verdade o cora‚ƒo € formado por dois sinc„cios: o sincício atrial, que forma as paredes dos dois trios, e o sincício 
ventricular, que forma as paredes dos dois ventr„culos. Os trios estƒo separados dos ventr„culos por um tecido fibroso que circunda 
as aberturas das valvas atrioventriculares (AV) entre os trios e os ventr„culos. Quando o impulso € criado no nodo sinuatrial 
(localizado no trio direito), normalmente, ele nƒo € passado diretamente para o sinc„cio ventricular. Ao contrrio, somente sƒo 
conduzidos do sinc„cio atrial para o ventricular por meio de um sistema especializado de condu‚ƒo chamado feixe AV. Essa divisƒo 
permite que os trios se contraiam pouco antes de acontecer a contra‚ƒo ventricular, o que € importante para a eficiˆncia do 
bombeamento card„aco.
ELETROFISIOLOGIA
A c€lula miocrdica em repouso (polarizada) tem elevada concentra‚ƒo de potssio, e apresenta-se negativa em rela‚ƒo ao 
meio externo que tem elevada concentra‚ƒo de s…dio.  medida que se propaga a ativa‚ƒo celular, ocorrem trocas i‡nicas e h uma 
tendˆncia progressiva da c€lula ser positiva, enquanto que o meio extracelular ficar gradativamente negativo. A c€lula totalmente 
despolarizada fica com sua polaridade invertida. A repolariza‚ƒo far com que a c€lula volte ‰s condi‚†es basais.
Uma onda progressiva de despolariza‚ƒo pode ser considerada como onda m…vel de cargas positivas. Assim, quando a onda 
positiva de despolariza‚ƒo move-se em dire‚ƒo a um eletrodo na pele (eletrodo positivo), registra-se no ECG como uma deflexƒo 
positiva (para cima). Por outro lado, quando a onda tiver sentido contrrio, ou seja, quando a onda de despolariza‚ƒo vai se afastando 
do eletrodo, tem-se uma deflexƒo negativa no ECG (Teoria do Dipolo; vide OBS3). Quando nƒo ocorrer nenhuma atividade el€trica, a 
linha fica isoel€trica, ou seja, nem positiva nem negativa.
O n…dulo sinusal localizado no trio direito € a origem do est„mulo de despolariza‚ƒo card„aca. Quando o impulso el€trico se 
difunde em ambos os trios, de forma concˆntrica, em todas as dire‚†es, produz a onda P no ECG. Assim, a onda P representa a 
atividade el€trica sendo captada pelos eletrodos exploradores sensitivos cutŠneos e, ‰ medida que essa onda de despolariza‚ƒo 
passa atrav€s dos trios, produz uma onda de contra‚ƒo atrial.
A seguir, a onda de despolariza‚ƒo dirige-se ao n…dulo atriventricular (AV), onde ocorre uma pausa de 1/10 de segundo, 
antes do impulso estimular verdadeiramente o n…dulo, o que permite que o sangue entre completamente nos ventr„culos. Este 
intervalo no grfico € representado pelo segmento PR.
Ap…s essa pausa, o impulso alcan‚a o n…dulo AV, que € um retransmissor do impulso el€trico para os ventr„culos, atrav€s do 
feixe de His, com seus ramos direito e esquerdo, e das fibras de Purkinje, tendo como consequˆncia a contra‚ƒo dos ventr„culos. 
Essa despolariza‚ƒo forma vrias ondas, chamadas de “complexo QRS”.
Existe uma pausa ap…s o complexo QRS, representado pelo segmento ST, de grande importŠncia na identifica‚ƒo de 
isquemias e, ap…s essa pausa, ocorre a repolariza‚ƒo do ventr„culo e, consequentemente, relaxamento ventricular, formando a onda 
T. A repolariza‚ƒo atrial nƒo tem expressƒo eletrocardiogrfica, pois est mascarada sob a despolariza‚ƒo ventricular que, 
eletricamente, tem uma voltagem maior em rela‚ƒo ‰ outra.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
4
ONDAS DE DESPOLARIZA‚ƒO E DE REPOLARIZA‚ƒO NO ECG
ONDAS DE DESPOLARIZAÇÃO
1. Como vimos, a c€lula encontra-se em repouso quando ela est 
polarizada, em que a face interna de sua membrana apresenta cargas 
negativas e a face externa cargas positivas. O potencial de membrana 
de repouso € perdido quando h um est„mulo, fazendo com que as 
cargas el€tricas se invertam: a c€lula torna-se positiva dentro e negativa 
no exterior. Veja a fibra ao lado (A), em que metade esquerda encontra-
se despolarizada e a metade direita polarizada. A corrente el€trica flui da 
rea despolarizada para a rea polarizada. O eletrodo direito est sobre 
a rea negativa e o eletrodo esquerdo sobre a rea positiva, causando 
uma diferen‚a de potencial.O ECG registra uma onda positiva
afastando-se na linha de base.
2. Quando toda a fibra foi despolarizada (B), os eletrodos direito e esquerdo 
estƒo sobre uma rea negativa, sem DDP, retornando a onda de 
despolariza‚ƒo para a linha de base. O ECG, nesse momento, registra 
uma onda positiva retornando ‰ linha de base. 
ONDAS DE REPOLARIZAÇÃO
1. O potencial de a‚ƒo retornar ao potencial de repouso, tornando a c€lula negativa no interior e positiva no
exterior. Metade direita da fibra (C) fica repolarizada e metade esquerda continua despolarizada. O eletrodo 
direito est sobre uma rea positiva e o eletrodo esquerdo sobre uma rea negativa, causando uma DDP. O 
ECG registra uma onda negativa afastando-se da linha de base.
2. Quando toda a fibra for repolarizada (D), os eletrodos direito e esquerdo estarƒo sobre uma rea positiva, sem 
DDP entre eles, fazendo com que a onda da despolariza‚ƒo retorne ‰ linha de base. O ECG registra, nesse 
momento, uma onda negativa retornando ‰ linha de base.
RELA‚ƒO ENTRE O POTENCIAL DE A‚ƒO MONOF…SICO E AS ONDAS QRS E T
Antes que a contra‚ƒo do m‹sculo possa ocorrer, a despolariza‚ƒo 
deve se propagar pelo m‹sculo, para iniciar os processos qu„micos da 
contra‚ƒo. Por tanto, a onda P ocorre no in„cio da contra‚ƒo dos trios, e o 
complexo QRS ocorre no inicio da contra‚ƒo dos ventr„culos. Os 
ventr„culos permanecem contra„dos durante alguns milissegundos ap…s ter 
percorrido a repolariza‚ƒo, isto €, depois do termino da onda T.
Os trios repolarizam cerca 0,2s ap…s a onda P. Isso ocorre no 
instante preciso que o complexo QRS come‚a a ser registrado no ECG. A 
onda P nƒo € representada no potencial de a‚ƒo monofsico pois a massa 
ventricular e sua atividade el€trica € bem maior que a atrial, a ponto de 
mascar-la.
A onda de repolariza‚ƒo ventricular € a onda T do ECG normal. 
 Fase ascendente do Potencial de A‚ƒo – Despolariza‚ƒo – QRS;
 Fase descendente do Potencial de A‚ƒo – Repolariza‚ƒo –
segmento ST e onda T.
PAPEL DE REGISTRO DO ECG E CALIBRA‚ƒO DO ELETROCARDIGRAFO
Todos os registros do ECG sƒo feitos com linhas de calibra‚ƒo 
apropriadas, no papel de registro. Estas linhas de calibra‚ƒo j estƒo impressas 
no papel. O papel € milimetrado, contendo quadrados pequenos (1mm x 1mm) 
inseridos em quadrados grandes (5mm x 5mm), contendo 25 quadrados 
pequenos cada quadrado grande. Cada mil„metro na horizontal equivale ‰ 0,04s
e cada mil„metro da vertical equivale a 0,1mv.
As linhas verticais de calibra‚ƒo estƒo dispostas de modo que 10 
divis†es pequenas, para cima e para baixo, no eletrocardiograma padrƒo 
representam 1mV com positividade para cima e negatividade para baixo. As 
linhas horizontais no eletrocardiograma sƒo linhas de calibra‚ƒo do tempo.
OBS1: Ao calibrar o aparelho ao papel, € registrado um grfico de padrƒo como representado na figura a cima, de forma 
que ela atinja o espa‚o equivalente a dois quadrados grandes. Isso mostra que o ECG deve ser calibrado em 10 mm (N 
 calibra‚ƒo normal), isto €, 1 mV.
OBS²: A velocidade padrƒo de impressƒo do registro € de 25 mm/s.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
5
REGISTROS DO ELETROCARDIOGRAMA NORMAL
 medida que o impulso el€trico se difunde ao 
longo das fibras musculares card„acas, os eletrodos 
de superf„cie cutŠnea realizam o registro grfico desta
atividade el€trica do cora‚ƒo na forma de ondas, 
complexos (conjunto de vrias ondas), segmentos
(linhas isoel€tricas) e intervalos (conjunto de 
segmentos e ondas).
 Onda P: € devida aos potenciais el€tricos 
gerados durante a despolariza‚ƒo dos trios 
antes de se contrair.
 Intervalo PR: do in„cio da contra‚ƒo atrial ao 
in„cio da contra‚ƒo ventricular (0,12 a 0,20 s).
 Segmento PR: fim da contra‚ƒo atrial ao in„cio 
da contra‚ƒo ventricular. Nƒo se estende at€ 
a onda R, mas at€ a onda Q. Convencionou-
se esta denomina‚ƒo pela simples questƒo da 
existˆncia da onda R em qualquer deriva‚ƒo.
 Complexo QRS: potenciais el€tricos gerados 
na despolariza‚ƒo dos ventr„culos.
 Segmento ST: fim da contra‚ƒo ventricular ao in„cio da repolariza‚ƒo ventricular.
 Onda T: potenciais el€tricos gerados na repolariza‚ƒo dos ventr„culos.
 Intervalo QT: mesma dura‚ƒo da contra‚ƒo ventricular (0,30 a 0,46s).
 Onda U: presente em casos de hipopotassemia, por exemplo.
 Intervalo RR: intervalo entre duas contra‚†es ventriculares. Pode ser chamada de intervalo RR ou Ciclo RR.  o 
intervalo entre duas ondas R. Corresponde a frequˆncia de despolariza‚ƒo ventricular, ou simplesmente 
freq‘ˆncia ventricular.
RELAÇÃO ENTRE A CONTRAÇÃO MUSCULAR E AS ONDAS DO ELETROCARDIOGRAMA
 Onda P – in„cio da contra‚ƒo atrial.
 Complexo QRS – in„cio da contra‚ƒo ventricular
 Onda T – onda de repolariza‚ƒo ventricular (0,20 a 0,35s ap…s o in„cio da despolariza‚ƒo 
ventricular).
 Onda T atrial – 0,15 a 0,20s ap…s a contra‚ƒo atrial (obscurecida pelo QRS).
RELAÇÃO ENTRE O POTENCIAL DE AÇÃO E AS ONDAS QRS E T
 Complexo QRS – aparece no in„cio do PA monofsico (despolariza‚ƒo).
 Onda T – aparece no final do potencial de a‚ƒo monofsico (repolariza‚ƒo).
 Linha isoel€trica – ausˆncia de potencial no ventr„culo totalmente despolarizado e 
totalmente polarizado.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
6
Serƒo definidas e detalhadas agora cada onda, complexo, intervalo e segmento do ECG normal.
ONDA P
A onda P € devida aos potenciais el€tricos gerados durante a despolarização 
dos dois átrios, antes de se contrair. A sua primeira metade representa a despolariza‚ƒo 
do trio direito e a segunda metade, do trio esquerdo. A amplitude da onda P €, em 
m€dia, de 0.25 mV, apresentando um tamanho normal de 2,5mm de altura. 
 Duração: em DII, de 0,08 a 0,10 segundos (2 quadradinhos e meio).
 Morfologia: onda arredonda e monofsica, podendo apresentar pequenos entalhes (depressƒo pr…ximo ao seu 
v€rtice) devido ‰ diferen‚a relativamente normal da contra‚ƒo dos dois trios. Na taquicardia, apresenta-se 
pontiaguda.
 Amplitude: em DII, de 2,5 a 3,0 mm (0,25 a 0,3mV).
 Polaridade: Positiva em DI, DII e DIII. Negativa em aVR.
Como vimos, cada metade da onda P representa um trio. Por esta razƒo, 
algumas patologias envolvendo os trios de forma isolada podem ser facilmente 
detectadas no ECG.
A estenose mitral (redu‚ƒo do diŠmetro da valva atriovetrnciular esquerda) pode 
ser causada pela cardite p…s-estreptoc…cica, como manifesta‚ƒo tardia da febre 
reumtica. Esta condi‚ƒo faz com que se acumule cada vez mais sangue no atrio 
esquerdo, aumentando a sua sobrecarga e, a longo prazo, o seu tamanho. A 
hipertrofia atrial esquerda produz um alongando a onda P no ECG.
A hipertrofia atrial direita pode ocorrer em casos de hipertensƒo pulmonar, que 
reflete na insuficiˆncia ventricular direita e, tardiamente, na insuficiˆncia atrial 
direita, a qual cursa com uma hipertrofia atrial que se mostra, no ECG, na forma 
de uma onda P espiculada na sua primeira metade.
Na estenose aortica, devido ‰ pouca sa„da de sangue do ventr„culo, h um refluxo do mesmo para o trio, o que 
tamb€m aumenta as suas fibras. Isso ocorre por exemplo em pacientes hipertensos (PA maior que 140/90). Nesse 
caso, haver altera‚ƒo tamb€m na onda QRS.
Em casos de comunicação interatrial (CIA) – doen‚a congˆnita em que nƒo h a oclusƒo do forame oval 
embrionrio – a onda P € prolongada devido ao aumento de carga sangu„nea a ser bombeada pelos atrios.
Em resumo, devemos considerar os seguintes parŠmetros da onda P:
 Onda P negativa em DI, DII e/ou DIII representa dextrocardia (cora‚ƒo do lado direito) ou mau posicionamento 
dos eletrodos (causa mais comum).
 Quando o trio direito est crescido (devido a estenose tric‹spide ou estenose pulmonar), faz a onda P crescer 
em amplitude.
 Quando o trio esquerdo est crescido faz com que a onda P cres‚a em dura‚ƒo.
Arlindo UgulinoNetto – CARDIOLOGIA – MEDICINA P6 – 2010.1
7
INTERVALO PR
 o intervalo que corresponde desde o in„cio da onda P at€ in„cio do complexo QRS, ou seja, in„cio da contra‚ƒo 
atrial ao in„cio da contra‚ƒo ventricular. Significa o registro grfico da despolariza‚ƒo de praticamente todo o sistema de 
condu‚ƒo: transmissƒo do impulso desde o n… sinuatrial at€ os ramos do feixe de His e de Purkinje (por se tratar de um 
pequeno contigente de fibras em compara‚ƒo ao m‹sculo card„aco, se mostra na forma de uma linha isoel€trica).
 um indicativo da velocidade de condu‚ƒo entre os trios e os ventr„culos e corresponde ao tempo de condu‚ƒo 
do impulso el€trico desde o n…do atrio-ventricular at€ aos ventr„culos. Este intervalo € necessrio para manter o ritmo 
card„aco necessrio para que os trios e ventr„culos se contraiam em tempos diferentes.
 Duração: de 0,12 a 0,20s (3 a 5 quadradinhos).
o Maior que 0,20s: Bloqueio atrio ventricular de est„mulo de 1’ grau (BAV 1’)
o Menor que 0,12s: S„ndrome de Pr€-excita‚ƒo; S„ndrome de Wolf-Parkinson-White (causada por uma 
fibra que conecta previamente as fibras de condu‚ƒo dos trios com os ventriculos).
A Síndrome de Wolff-Parkinson-White € caracterizada por uma arritmia card„aca causada por um sistema de 
condu‚ƒo el€trico an‡malo, que faz com que os impulsos el€tricos sejam conduzidos ao longo de uma via acess…ria
das aur„culas at€ os ventr„culos, diminuindo o retardo que ocorreria no n… AV.  tambem uma forma de taquicardia, 
formada por uma condu‚ƒo atrioventricular adicional que impede condu‚ƒo normal do est„mulo do trio at€ o n…dulo 
atrioventricular, causando o que chamamos de taquicardia supraventricular. A corre‚ƒo € cir‹rgica, sendo necessria 
a abla‚ƒo deste segmento acess…rio.
O intervalo PR € assim chamado, mesmo nƒo compreendendo a pr…pria onda R (mas sim o in„cio da onda Q), 
pois nem todas as deriva‚†es possuem a onda Q, mas todas possuem a onda R.
SEGMENTO PR
Linha isoel€trica correspondente entre o fim da onda P e o in„cio do complexo QRS, representando o atraso 
normal que acontece quando o est„mulo el€trico do cora‚ƒo alcan‚a o n… AV. Este atraso, como j vimos, € necessrio 
para que haja a contra‚ƒo ventricular logo depois de completada a contra‚ƒo atrial, isto €: para que haja uma harmonia 
de contra‚ƒo entre os dois sinc„cios card„acos. Tem dura‚ƒo m€dia de 0,08s (2 quadradinhos).
COMPLEXO QRS
Complexo, como vimos, € um conjunto de ondas. O complexo QRS consiste na representa‚ƒo grfica da 
despolariza‚ƒo ventricular, ou seja, da contra‚ƒo dos ventr„culos.  maior que a onda P em amplitude pois a massa 
muscular dos ventr„culos € maior que a dos trios. Anormalidades no sistema de condu‚ƒo geram complexos QRS 
alargados e representam situa‚†es de emergˆncia.
 Duração: 0,10 a 0,12 segundos. Maior que 0,12s  Bloqueio de um ramo D ou E do Feixe de His. Nestes 
casos, apresenta entalhes importantes.
 Polaridade: depende da orienta‚ƒo do vetor S“QRS (que representa o vetor de despolariza‚ƒo ventricular). 
Vale salientar que, no complexo QRS, a primeira onda positiva sempre ser a onda R, independente da 
deriva‚ƒo; a primeira onda negativa antes do R € a onda Q; a primeira onda negativa depois de R € a onda S.
 Morfologia normal: de V1 a V6, nesta ondem, a onda R aumenta e a onda S diminui em amplitude (r, rS, rS’, Q, 
qR, qRs).
 Amplitude: baixa voltagem: 5mm; R+S em V2 ≤ 9mm.
A doença de Chagas causa bloqueio atrioventricular total (BAVT), causando um bloqueio no sistema de condu‚ƒo 
do impulso entre o trio e o ventr„culo, alargando o complexo QRS.
Se o complexo QRS estiver alargado, isso representa algum bloqueio no ramo direto ou esquerdo do Feixe de 
His, ou a pr…rpia ausˆncia desse ramo. Isso faz com que o impulso, para ser propagado a todo o ventr„culo, seja 
passado de c€lula em c€lula, a ponto de que o ventr„culo se contraia de forma errada e ineficiente, alargando o 
complexo QRS devido a demora de propaga‚ƒo do impulso a toda a massa muscular. 5% da popula‚ƒo nasce com o 
ramo direito do Feixe de His bloqueado.
A repolariza‚ƒo auricular nƒo costuma ser registrada, pois € encoberta pela despolariza‚ƒo ventricular
(registrada pelo complexo QRS), evento el€trico concomitante e mais potente.
SEGMENTO ST
O segmento ST € a linha isoel€trica que representa o intervalo entre o fim do complexo QRS (Ponto J) e o in„cio 
da onda T. Corresponde ao per„odo entre fim da contra‚ƒo ventricular e o in„cio da repolariza‚ƒo ventricular, sendo 
representada por uma linha isoel€trica.
O desnivelamento do segmento ST € aceitvel em at€ 1 mm; mais do que isso, podemos suspeitar das 
seguintes altera‚†es, que devem ser diferenciadas por meio da cl„nica do paciente ou por marcadores bioqu„micos.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
8
 Altera‚†es primrias da repolariza‚ƒo ventricular: sƒo as altera‚†es causadas por doen‚as coronarianas. Um 
infradesnivelamento nessa linha (mais que 1mm) € sinal de isquemia subendoc€rdica; um supradesnivelamento nessa 
linha € sinal de infarto agudo do miocrdio (isquemia subepic€rdica).
 Altera‚†es secundrias da repolariza‚ƒo ventricular: caracterizada por uma sobrecarga ventricular. A sobrecarga do 
ventr„culo direito ou um bloqueio de ramo pode provocar um infradesnivelamento do segmento ST; j o supradesnivelamento 
€ sugestivo de sobrecarga ventricular esquerda.
ONDA T
Onda arredondada que representa o final da repolariza‚ƒo ventricular, correspondendo, portanto, ao fim do 
segmento ST. O seu parŠmetro mais importante € a morfologia.
 Dura‚o: a medida est inclusa no intervalo QT.
 Morfologia: € arredondada e assim€trica, em que a primeira por‚ƒo € mais lenta.
o Sim€trica, pontiaguda e positiva  hiperpotassemia, isquemia subendocardica.
o Sim€trica, pontiaguda e negativa  isquemia subepicrdica.
 Amplitude: menor do que a amplitude do QRS.
 Polaridade: positiva na maioria das deriva‚†es: DIII, aVR, V1 e em crian‚as: V1, V2 e V3.
INTERVALO QT
In„cio da contra‚ƒo ventricular at€ o fim da repolariza‚ƒo ventricular. Corresponde ao in„cio do complexo QRS 
at€ o fim da onda T. O aumento em dura‚ƒo da onda QT significa aumento da repolariza‚ƒo, o que predisp†e ‰ arritmia.
 Dura‚o: entre o in„cio do QRS e o fim da onda T normal: 0,30 – 0,46 seg. A dura‚ƒo do intervalo QT pode ser 
calculada pela f…rmula de Bazett (QT corrigido): QTcorrigido = QTmedido / √R-R. 
QT > 0,46  S„ndrome do QT longo, morte s‹bita, SMSI.
O prolongamento do intervalo QT (S„ndrome do QT Longo Congˆnita) € um fator de risco para morte s‹bita independentemente 
da idade do paciente, de hist…ria de infarto do miocrdio, da freq‘ˆncia card„aca e de hist…ria de uso de drogas; os pacientes com 
intervalo QTc de > 0,44s tˆm 2 a 3 vezes maior risco de morte s‹bita que aqueles com intervalo QTc < 0,44s. A taxa de 
mortalidade em pacientes com SQTL nƒo tratados varia de 1 a 2% por ano. A incidˆncia de morte s‹bita varia de fam„lia para 
fam„lia como uma fun‚ƒo do gen…tipo.
DERIVA‚„ES ELETROCARDIOGR…FICAS
Na superf„cie do corpo existem diferen‚as de 
potencial consequentes aos fen‡menos el€tricos gerados 
durante a excita‚ƒo card„aca. Estas diferen‚as podem ser 
medidas e registradas. Para isto sƒo utilizados 
galvan‡metros de tipo particular que constituem as 
unidades fundamentais dos eletrocardi…grafos.
Os pontos do corpo a serem explorados sƒo 
ligados ao aparelho de registro por meio de fios 
condutores (eletrodos). Dessa forma, obtˆm-se as 
chamadas deriva„es que podem ser definidas de 
acordo com a posi‚ƒo dos eletrodos. 
A id€ia bsica € observar o cora‚ƒo em diferentes 
Šngulos, ou seja, cada deriva‚ƒo, representada por um 
par de eletrodos (um positivo e um negativo), registra 
uma vista diferente da mesma atividade card„aca. As 
deriva‚†es podem ser definidas de acordo com a posi‚ƒo 
dos eletrodos (chamados eletrodosexploradores) no 
plano frontal (formando as deriva‚†es perif€ricas –
bipolares ou unipolares) e no plano horizontal (formando 
as deriva‚†es precordiais, unipolares).
OBS3: Teoria do Dipolo. O ECG € o registro grfico da proje‚ƒo dos vetores de ativa‚ƒo 
el€trica do cora‚ƒo, em linhas de deriva‚ƒo. Dipolo € o fen‡meno el€trico resultante de 
dois pontos justapostos e de cargas contrrias. Chama-se de dipolo ao conjunto formado 
por duas cargas de mesmo m…dulo, por€m de sinais contrrios, separadas por uma 
distŠncia d. O dipolo como grandeza vetorial apresenta: m…dulo (produto de uma das 
cargas pela distŠncia entre elas), dire‚o (eixo do dipolo, linha unindo os dois p…los) e 
sentido (do p…lo negativo para o p…lo positivo).
O eletrodo positivo do ECG que “olha” para a ponta da seta vetorial (resultante da 
despolariza‚ƒo card„aca) registra uma onda positiva. O eletrodo positivo que “olha” para a 
cauda da seta registra uma onda negativa.
OBS4: O sentido de despolariza‚ƒo do cora‚ƒo se d de cima para baixo e da esquerda para a direita.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
9
Logo, todo ECG € composto por 12 deriva‚†es que permitem uma visƒo tridimensional do potencial de a‚ƒo 
card„aco, de forma que as ondas sejam as mesmas para todas elas. 
Para conseguir estudar o cora‚ƒo de forma tridimensional, devemos dividir as deriva‚†es em dois planos:
 Derivações no Plano Frontal (Derivações de Membros ou Periféricas). Medem a diferen‚a de potencial entre 
os membros (bipolares) ou entre certas partes do corpo e o cora‚ƒo (unipolares). Coloca-se um eletrodo em 
cada bra‚o (direito/esquerdo) e um na perna esquerda, formando um triŠngulo (conhecido como triângulo de 
Einthoven). Na perda direita, coloca-se o fio terra, para estabilizar o tra‚ado. Deslocam-se as trˆs linhas de 
referˆncia, cruzando com precisƒo o t…rax (cora‚ƒo) e obt€m-se uma intersec‚ƒo, formando as deriva‚†es 
bipolares DI, DII e DIII. Em seguida, acrescentam-se outras trˆs linhas de referˆncia nesta intersec‚ƒo, com 
Šngulos de 30’ entre si e obt€m-se as deriva‚†es unipolares dos membros: aVR (direita), aVL (esquerda) e aVF 
(p€). Neste caso, usa-se “eletrodos de presilhas”.
 Derivações no plano horizontal (Derivações precordiais). Tˆm-se, com elas, uma visƒo como em um corte 
transversal do cora‚ƒo. Sƒo as deriva‚†es V1, V2, V3, V4, V5 e V6. Neste caso, usa-se “eletrodos de suc‚ƒo”.
Medem a diferen‚a de potencial entre o t…rax e o centro el€trico do cora‚ƒo (n…dulo AV), e vƒo desde V1 (4’ 
espa‚o intercostal, na linha paraesternal direita) a V6 (5’ espa‚o intercostal, na linha axilar m€dia esquerda). Em 
todas essas deriva‚†es, considera-se positivo o eletrodo explorador colocado nas seis posi‚†es diferentes sobre 
o t…rax, sendo o p…lo negativo situado no dorso do indiv„duo, por meio da proje‚ƒo das deriva‚†es a partir do 
n…dulo AV.
DERIVAÇÕES BIPOLARES DO PLANO FRONTAL 
 DI: bra‚o direito (-) e bra‚o esquerdo (+).
 DII: bra‚o direito (-) e perna esquerda (+).
 DIII: bra‚o esquerdo (-) e perna esquerda (+). 
DERIVAÇÕES UNIPOLARES DO PLANO FRONTAL 
 aVR: eletrodo no bra‚o direito. 
 aVL: eletrodo no bra‚o esquerdo.
 aVF: eletrodo na perna esquerda.
DERIVAÇÕES DO PLANO HORIZONTAL
 V1: 4’ Espa‚o intercostal direito, justaesternal. Avalia o cora‚ƒo direito.
 V2: 4’ Espa‚o intercostal esquerdo, justaesternal. Avalia o cora‚ƒo 
direito.
 V3: Entre V2 e V4. Avalia uma regiƒo intermediria.
 V4: 5’ Espa‚o intercostal esquerdo, na linha hemiclavicular. Avalia uma 
regiƒo intermediria.
 V5: 5’ Espa‚o intercostal esquerdo, na linha axilar anterior. Avalia o 
cora‚ƒo esquerdo.
 V6: 5’ Espa‚o intercostal esquerdo, na linha axilar m€dia. Avalia o 
cora‚ƒo esquerdo.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
10
AN…LISE DOS TRA‚ADOS
As reas mais importantes a serem consideradas depois de obtido o grfico do ECG sƒo: frequˆncia card„aca, 
ritmo card„aco, eixo card„aco (QRS), sobrecarga de cŠmaras card„acas (e hipertrofia) e infarto.
No eletrocardiograma normal, esperamos os seguintes achados:
 ParŠmetros t€cnicos: antes de mais nada, devemos avaliar se os eletrodos estƒo posicionados corretamente. 
Para isso, a onda P deve estar positiva em DI, DII e DIII e negativa em aVR.
 Frequˆncia card„aca: 70 – 100 bpm.
 Ritmo card„aco: sinusal.
 Eixo QRS: entre -30’ e +100’.
 Intervalo PR: 0,12 – 0,20.
 Intervalo QRS: menor que 0,12 s.
 Progressƒo do tamanho da onda R, ao longo das deriva‚†es V1 a V6.
 Intervalo QT: 0,30 – 0,46.
 Ausˆncia de: inversƒo de onda T, altera‚ƒo de segmento ST, Q patol…gica.
DETERMINAÇÃO DA FREQUENCIA CARDÍACA
A frequência cardíaca € o n‹mero de vezes que o cora‚ƒo bate por minuto. O controle da Freq‘ˆncia card„aca 
depende de vrios fatores, entre eles: n„vel de atividade do sistema nervoso aut‡nomo; a‚†es hormonais; 
automaticidade card„aca.
 O cora‚ƒo humano bate entre 60 e 100 vezes por minuto. 
 Quando o n‹mero de batimentos € abaixo de 60 vezes por minuto, excluindo o valor 60, por conven‚ƒo tem-se a 
chamada bradicardia. 
 Quando o n‹mero de batimentos € acima de 100 vezes por minuto, incluindo o 100, por conven‚ƒo tem-se a 
chamada taquicardia.
A medi‚ƒo correta da frequˆncia card„aca por meio do ECG deve ser feita por meio dos seguintes passos:
a) Método Correto: 1500/n’ de quadrados pequenos entre duas ondas R (intervalo RR), sabendo que 1 minuto 
tem 1500 quadrados pequenos (0,04 segundos x 1500 = 60 segundos). 
b)Método Prático: 300/n’ de quadrados grandes entre duas ondas R, sabendo que 1 minuto tem 300 quadrados 
grandes (0,20 x 300 = 60 segundos). 
c) Método por observação das linhas verticais e a onda R: € um modo que se leva em considera‚ƒo as linhas 
escuras verticais que delimitam um lado do quadrado grande e a onda R. Esse m€todo € feito da seguinte forma: 
primeiramente deve-se procurar no eletrocardiograma uma onda R que coincida exatamente na linha vertical 
escura. Achado a linha escura rente a onda 
R, marca-se as linhas escuras adiante delas 
com n‹meros decrescentes: 300 – 150 –
100 – 75 – 60 – 50, que correspondem ao 
n‹mero de batimentos card„acos por 
minuto. Caso a pr…xima onda R coincidir na 
linha vertical escura (como na figura, 50), 
siginfica a frequˆncia card„aca do cora‚ƒo 
no momento do registro (como na figura, 50 
bpm). Caso nƒo haja uma rela‚ƒo direta 
entre a onda R e a linha, faz-se uma 
aproxima‚ƒo.
d)Regra de Três: Cada intervalo RR corresponde a um batimento. Para facilitar o clculo, o papel € composto 
tamb€m de “quadrad†es”, que possuem cinco “quadradinhos” de 1 mm cada. Logo, 5 X 0,04 s = 0,2 s. A onda 
percorre o “quadradƒo” em 0,2 s. Precisamos saber a distŠncia em “quadradinhos” ou “quadrad†es” do intervalo 
RR. Imaginemos uma distŠncia entre o intervalo RR sendo de, aproximadamente, 4 quadrad†es, ou 4 X 0,2 s = 
0,8 s. Se eu sei que um batimento (intervalo RR) gasta 0,8 s, quantos batimentos eu terei em um minuto (60s)? 
1 batimento ---- 0,8 s
x batimentos ---- 60 s
x = 60/0,8 = 75 batimentos
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
11
DETERMINA†‡O DO RITMO CARDˆACO – ARRITMIAS
A determina‚ƒo do ritmo card„aco € fundamental para avaliar se a ativa‚ƒo el€trica das fibras card„acas se faz 
de maneira r„tmica, harm‡nica, ou se acontece na forma de uma arritmia. 
O termo arritmia cardŠaca define uma situa‚ƒo caracterizada por uma altera‚ƒo na frequˆncia, na regularidade 
e no local de origem do est„mulo el€trico ou por um dist‹rbio na condu‚ƒo deste est„mulo (seja ao longo do trio, dos 
ventr„culos ou entre ambos). Qualquer uma destas altera‚†es € responsvel por causar arritmias.
Sabe-se que, o cora‚ƒo € composto por unidades celulares que tˆm a propriedade da excitabilidade. O 
responsvel por comandar todo o funcionamento el€trico do cora‚ƒo € o n… sinuatrial. Contudo, quando hfalhas nesta 
ativa‚ƒo ou na condu‚ƒo do est„mulo el€trico (feita pelas c€lulas card„acas), imediatamente, outros focos de ativa‚ƒo 
surgem na sequˆncia. A origem destes focos segue, logicamente, a sequˆncia do que viria a ser o sentido de condu‚ƒo 
do est„mulo el€trico: primeiramente se formam focos ect…picos atriais, focos funcionais e, finalmente, focos ventriculares.
Para a determina‚ƒo do ritmo card„aco, € fundamental a observa‚ƒo da onda P. Ela define se o ritmo € sinusal 
ou se € consequente a focos ect…picos. Al€m disso, deve-se medir sempre o intervalo PR e o complexo QRS. Apesar de 
o n…dulo sinoatrial ser o marca-passo do cora‚ƒo, qualquer outra rea do sistema de condu‚ƒo ou do miocrdio pode 
assumir o comando, temporariamente ou definitivamente, provocando arritmias.
De um modo geral, temos:
 Ritmo sinusal (regular): caracteriza-se pela existˆncia de uma sequˆncia ritmada de ciclos card„acos entre 60 e 
100 bpm. Isto significa que, no ritmo card„aco normal, h uma constante distŠncia entre ondas semelhantes. 
Para determinar se realmente o ritmo card„aco € sinusal, devemos seguir os passos logo adiante:
1. Avaliar a existˆncia da onda P: esta deve ser arredondada e com frequˆncia de registro regular.
2. Avaliar a existˆncia do complexo QRS: estes devem ser normais, estreitos e com frequˆncia regular.
3. Avaliar a existˆncia de uma correla‚ƒo entre onda P e complexo QRS de 1:1, isto €: deve haver uma 
onda P para cada complexo QRS.
 Arritmias: as arritmias, j definidas, podem ser classificadas em dois grandes grupos: as bradiarritmias e as 
taquiarritmias. As bradiarritmias sƒo arritmias card„acas que se caracterizam por uma tendˆncia a reduzir a 
frequˆncia card„aca. Sƒo comumente causadas por doen‚as do n… sinuatrial e pelas doen‚as do n… trio-
ventricular. As taquiarritmias, por sua vez, fazem com que o cora‚ƒo experimente uma frequˆncia maior. 
Podem ser divididas em taquiarritmias supra-ventriculares (produzidas por dist‹rbios acima dos ventr„culos e do 
n… trio-ventricular; podem ser subdivididas em atriais e trio-nodais) e em taquiarritmias ventriculares (cuja 
origem se d no pr…prio ventr„culo, obtendo um ritmo um pouco mais lento). Quanto as subdivis†es das 
arritmias, podemos destacar quatro grandes grupos que, em resumo, sƒo:
o Ritmo vari€vel: arritmia sinusal, marca-passo migrat…rio e fibrila‚ƒo atrial.
 Arritmia sinusal: verifica-se a existˆncia de ondas P idˆnticas no tra‚ado, demonstrado que o 
in„cio do foco € no trio, precisamente no n…dulo sinusal, por€m em ritmos diferenciados. Pode 
indicar doen‚a coronariana.
 Marca-passo migrat…rio (errante): caracteriza-se por ondas P de forma varivel, demonstrando 
que o in„cio do foco € no trio, por€m nƒo precisamente no n…dulo sinusal.  um ritmo causado 
por diferentes posi‚†es do comando.
 Fibrila‚ƒo atrial: apresenta um desenho todo “arrepiado”, cheio de ondas P min‹sculas, 
causadas pela descarga de focos atriais m‹ltiplos. Nƒo h um impulso que despolarize os trios 
de maneira completa, e somente por acaso de um impulso atravessa o n…dulo AV e de forma 
arr„tmica.
o Batimentos suplementares e pausas: extra-s„stole, batimentos de escape e parada sinusal.
 Extra-s„stole: € uma estimula‚ƒo prematura, proveniente de um foco ect…pico. Pode ser:
e) Extra-s„stole atrial: estimula‚ƒo prematura, proveniente de um foco atrial (nƒo o n…dulo 
sinusal). Produz uma onda P anormal antes do tempo previsto.
f) Extra-s„stole nodal (juncional): estimula‚ƒo prematura, que se origina de uma descarga 
ect…pica no n…dulo AV, de modo que o impulso caminha normalmente para baixo nos 
ramos do feixe de His (nƒo apresenta onda P e o QRS € idˆntico aos demais).
g) Extra-s„stole ventricular (ESV): origina-se de um foco ect…pico ventricular, sem onda P e 
com um QRS diferenciado (aberrante).
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
12
 Batimentos de escape: ocorrem quando o marca-passo principal nƒo consegue produzir est„mulo 
durante um ou mais ciclos, surgindo no ECG uma rea sem ondas. Pode ser um escape atrial, 
nodal ou ventricular.
 Parada sinusal: ocorre quando o marca-passo nƒo envia os est„mulos de comando e, ap…s uma 
pausa, um outro centro de comando assume a atividade com ritmo regular, mas em sua pr…pria 
frequˆncia, geralmente diferente da anterior.
o Ritmos rápidos: taquicardia parox„stica, flutter e fibrila‚ƒo.
 Taquicardia parox„stica: significa frequˆncia card„aca rpida, de in„cio s‹bito, originando-se, 
geralmente, de foco ect…pico. A frequ6encia pode variar de 150 a 250 bpm.
a) Atrial: sequˆncia normal de ondas. Onda P pode nƒo aparecer. 
b) Nodal: originada no n…dulo AV, logo, nƒo h ondas P.
c) Ventricular: semelhante a uma sucessƒo rpida de ESV.
As taquicardias atriais e nodais sƒo chamadas de taquicardias supraventriculares.
 Flutter: taquicardia cuja frequˆncia card„aca encontra-se entre 200 a 300 bpm. Pode ser:
a) Flutter atrial: se origina em um foco atrial ect…pico, com as ondas P apresentam-se em 
sucessƒo rpida, cont„nuas e idˆnticas.
b) Flutter ventricular: € produzido por um ‹nico foco ventricular ect…pico, com aspecto 
sinus…ide regular. O flutter ventricular quase invariavelmente evolui para a fibrila‚ƒo 
ventricular, necessitando de uma desfibrila‚ƒo e ressuscita‚ƒo cardiopulmonar.
 Fibrila‚ƒo: taquicardia acima de 300 bpm. Pode ser:
a) Fibrila‚ƒo atrial: numerosas deflex†es atriais ect…picas dando uma linha de base irregular. 
Nƒo h um impulso que despolarize os trios de maneira completa, e somente por acaso 
um impulso atravessa o n…dulo AV de forma r„tmica.
b) Fibrila‚ƒo ventricular: € causada por muitos focos ect…picos disparados em freq‘ˆncias 
diferentes, produzindo um ritmo ca…tico, irregular (aberrante) e fatal. Isto porque, na 
fibrila‚ƒo ventricular, o cora‚ƒo nƒo € mais capaz de bombear sangue, caracterizando 
uma parada card„aca) – uma condi‚ƒo de emergˆncia extrema.
o Bloqueios cardíacos: bloqueio sinusal, bloqueio trio-ventricular e bloqueio de ramo.
 Bloqueio sinusal (SA): o marca-passo card„aco pra temporariamente por um ou mais ciclos 
completos, mas retoma em seguida sua atividade de estimula‚ƒo.
 Bloqueio de AV (nodal): cria um retardo do impulso (atrial) em n„vel do n…dulo AV, produzindo 
uma pausa maior que a normal para estimula‚ƒo dos ventr„culos. Pode ser:
a) BAV de 1’ grau: caracteriza-se por um intervalo PR maior que 0,2 segundos (equivalente a um 
quadrado grande);
b) BAV de 2’ grau: sƒo necessrios dois ou mais impulsos atriais para estimular a resposta ventricular, 
ou o intervalo PR aumenta progressivamente at€ nƒo haver mais resposta QRS (chamado fen‡meno 
de Wenckebach);
c) BAV de 3’ grau: bloqueio AV total, causando frequˆncias atriais e ventriculares independentes, com 
frequˆncia ventricular, geralmente, entre 20 a 40 bpm.
 Bloqueio de ramo: tem como causa o bloqueio de um dos ramos do feixe de His, seja o direito ou 
o esquerdo. Assim, um ventr„culo se despolariza pouco depois do outro, fazendo com que dois 
QRS se juntem. Neste caso, o QRS € largo e observam-se duas ondas R (R e R’). Determina-se 
o lado bloqueado atrav€s das deriva‚†es V1 e V2 para o lado direito e V5 e V6 para o lado 
esquerdo.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
13
De um modo geral, os dist‹rbios relacionados com as arritmias estƒo localizados nos principais s„tios de 
bloqueio de condu‚ƒo que seguem: n… sinuatrial, n… atrioventricular e no pr…prio feixe de His (seja por bloqueio de um de 
seus ramos ou dos dois – bloqueio completo). As altera‚†es que ocorrem na altura destes s„tios serƒo nossos focos de 
estudo neste momento. 
Bradiarritmias.
As bradiarritmias, por princ„pio, sƒo definidas pela frequˆncia card„aca menor que 60 bpm. Ela € considerada 
fisiol…gica durante o sono (por predom„nio noturno do sistema nervoso parassimptico, tanto a frequˆncia card„acacomo 
a pressƒo arterial sistˆmica diminuem neste per„odo). As causas patol…gicas podem ser classificadas em cardíacas ou 
não-cardíacas.
 Bradiarritmias de etiologia card„aca: sƒo causadas, sobretudo, por infarto agudo do miocrdio (principalmente 
por falˆncia da A. coronria direita, responsvel por irrigar, entre outras estruturas, os dois principais n…s 
card„acos: o n… sinuatrial e o n… atrioventricular), por doen‚a do n… sinusal, etc. De uma forma geral, os 
principais eventos que promovem as bradiarritmias envolvem, fundamentalmente, os n… sunusal e o n… 
atrioventricular.
 Bradiarritmias por causas nƒo-card„acas: hipotireoidismo, hipertensƒo intracraniana, hipotermia, etc.
De uma forma geral, a classifica‚ƒo das bradiarritmias pode ser feita da seguinte maneira:
1. Bradiarritmia sinusal: comum em indiv„duos considerados normais (atletas, por exemplo) ou nas 
seguintes causas: hipersensibilidade do seio carot„deo; disfun‚ƒo do n… sunusal; s„ndrome da 
braditaquicardia.
2. Dist‹rbios da condu‚ƒo do est„mulo card„aco: podem acontecer por Bloqueios do n… atrioventricular 
(BAV) e por Bloqueios intraventricualres (BIV). Os BAV podem ser subdivididos em: BAV de 1’ grau;
BAV de 2’ grau do tipo I, do tipo II ou do tipo 2:1; e BAV de 3’ grau.
1. Bradiarritmia sinusal
O ECG mostra um grfico com ritmo 
sinusal, frequentemente. Contudo, a frequˆncia 
card„aca € menor do que 60. Como j vimos, € 
fisiol…gica durante o sono ou no cora‚ƒo de um 
atleta (considerado normal at€ 40 bpm, 
aproximadamente). Contudo, pode ocorrer tamb€m 
em condi‚†es patol…gicas, tais como: IAM do 
ventr„culo direito (principal causa) e outras diversas 
(idade avan‚ada, drogas, etc.). 
1.1. Doença do nó sinusal
Algumas condi‚†es patol…gicas (principalmente, doen‚as auto-imune) ou idiopticas (como ocorre com 
indiv„duos idosos) podem cursar com edema cr‡nico da regiƒo do n… sinuatrial, causando tal anormalidade card„aca. As 
principais patologias relacionadas com a doen‚a do n… sinusal sƒo:
 Amiloidose
 L‹pus eritematoso sistˆmico
 Esclerodermia
 Insuficiˆncia coronariana
 Pericardite
 Infiltra‚ƒo tumoral
 Doen‚a de Chagas
 Cirurgia card„aca
 Vagal
 Drogas
Nesta condi‚ƒo, ocorre a elimina‚ƒo da onda P ou onda P invertida, de modo que o n… atrio-venticular assume o 
comando da ritmicidade do cora‚ƒo.
1.2. Distúrbios da condução do estímulo cardíaco
Falando agora nƒo de dist‹rbios da produ‚ƒo do est„mulo el€trico do cora‚ƒo no n… sinusal, os dist‹rbios da 
condu‚ƒo do est„mulo card„aco podem acontecer por disfun‚ƒo do n… atrioventricular (Bloqueio do n… atrioventricular ou 
BAV) ou por disfun‚ƒo do feixe de His (Bloqueio intraventricular ou BIV).
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
14
1.2.1. Bloqueio atrioventricular (BAV)
O BAV acontece quando ocorre algum tipo de dificuldade na passagem do est„mulo do n… sinusal para os 
ventr„culos. Consiste em um tipo de bloqueio extremamente frequente, presente em boa dos pacientes idosos (pois com 
a idade, o tecido responsvel por transmitir a condu‚ƒo dos trios para os ventr„culos torna-se mais fibroso, al€m do 
pr…prio retardo fisiológico da condução j existente, que dura em torno de 0,12 – 0,20 segundos).
Podemos classificar as BAV em:
 BAV de 1º grau: o crit€rio para o diagn…stico de BAV 1’ grau € a presen‚a de apenas um retardo na condu‚ƒo 
trio-ventricular maior do que o fisiol…gico (isto €: PR > 0,20 segundos, com manuten‚ƒo das ondas P e QRS). A 
despolariza‚ƒo atrial € seguida de uma despolariza‚ƒo ventricular, por€m a condu‚ƒo € lenta. Nesta condi‚ƒo, 
sempre veremos onda P e complexo QRS; contudo, estarƒo mais afastados do que o normal.
O BAV de 1’ grau nƒo € importante isoladamente, mas pode ser um sinal de cardiopatia isquˆmica, cardite 
reumtica ou intoxica‚ƒo digitlica. 
Para os pacientes h„gidos que apresentam BAV de 1’ grau, devemos prover um acompanhamento regular, 
realizando ECG a cada 6 meses. Se o dist‹rbio de condu‚ƒo progredir (isto €, evoluir para o 2’ grau ou para o 3’ 
grau), ser necessria uma interven‚ƒo m€dica; no entanto, enquanto o BAV se manter estvel, apenas o 
acompanhamento € necessrio. 
 BAV de 2º grau: € caracterizado por uma falha intermitente fazendo com que o impulso nƒo atinja os ventr„culos 
(no ECG, caracteriza-se, portanto, por uma onda P sem QRS). Essa falha pode ocorrer no n… AV ou no feixe de 
His. O BAV de 2’ grau pode ser classificado em Mobitz tipo I (ou tipo Wenckebach), Mobitz tipo II e tipo 2:1.
o Mobitz tipo I (ou fen‡meno de Wenckebach): ocorre um retardo progressivo na passagem do est„mulo do trio para 
o ventr„culo, isto €, o intervalo PR aumenta progressivamente a cada batimento, at€ que haja uma interrup‚ƒo total, 
de modo que uma onda P falha em conduzir o est„mulo aos ventr„culos. Acontece, por exemplo, que o intervalo PR 
se apresenta com dura‚ƒo de 0,26, 0,28 e 0,32, nesta sequˆncia e, entƒo, deixa de existir, visto que o complexo 
QRS nƒo foi formado. A evolu‚ƒo natural desta condi‚ƒo pode culminar na forma‚ƒo de um BAV de 3’ grau.
o Mobitz tipo II: caracterizado por uma sequˆncia normal e constante de transmissƒo do impulso que, de repente, € 
interrompida (€ neste momento que o QRS deixa de existir). Em outras palavras, a maioria dos batimentos originada 
no n… sinuatrial € normalmente conduzida, mas ocasionalmente, uma onda P nƒo € seguida por um complexo QRS. 
Diferentemente do BAV de 2’ grau tipo I, nƒo ocorre aumento progressivo do intervalo PR: no Mobitz tipo II, os 
intervalos PR se apresentam com a mesma dura‚ƒo e, de repente, deixa de existir pela nƒo-forma‚ƒo de um 
complexo QRS. Tamb€m pode evoluir para um bloqueio complexo e, por esta razƒo, deve ser criteriosamente 
acompanhado para evitar esta evolu‚ƒo, que pode complicar com arritmias graves (taquiarritmias, inclusive) e 
s„ndrome de Stokes-Adams (tontura, s„ncope por qualquer esfor‚o e queda).
o BAV tipo 2:1: caracterizado por ondas P alternadas que nƒo sƒo conduzidas aos ventr„culos, tra‚ando um grfico 
caracter„stico: P-QRS-P—P-QRS-P—P-QRS-P, na razƒo de 2 ondas P para cada complexo QRS. O n… AV que 
apresenta tal bloqueio apresenta instabilidade muito grande, de forma que pode evoluir para um bloqueio total. Por 
esta razƒo, deve ser criteriosamente avaliado e acompanhado.
 BAV de 3º grau (BAV Total): nenhuma onda P passa ou nƒo tem sincronia alguma com o complexo QRS. Em 
outras palavras, caracteriza-se pela nƒo propaga‚ƒo da onda de despolariza‚ƒo do n… sinuatrial para o m‹sculo 
ventricular, o que gera onda P nƒo seguida de QRS. Com isso, os trios deixam de apresentar qualquer rela‚ƒo 
de harmonia com os ventr„culos do ponto de vista el€trico: as ondas P geralmente se apresentam em uma 
frequˆncia bem regular, mas sƒo absolutamente independentes do QRS.
Quando isso acontece, os ventr„culos sƒo excitados por um mecanismo de escape lento. Quando o escape se 
d pelo feixe de His, o complexo QRS se apresenta estreito; quando o escape ocorre nas fibras de Purkinje, o 
QRS se mostra alargado.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
15
OBS5: Marca-passos (MP). Quando se tem BAV de 3º grau, podem existir complicações incompatíveis com a vida, 
podendo complicar com síncope (por déficit de sangue para o cérebro). Para solucionar tal quadro, devemos implantar 
marca-passos para realizar a estimulação artificial do coração em uma sequência compatível com a vida (em torno de 60 
bpm). Os marca-passos são aparelhos que liberam impulsos elétricos para o coração através de eletrodos, causando
despolarização elétrica e subsequente contração cardíaca. No ECG, os marca-passos produzem complexos QRS 
alargados. Estão disponíveis aparelhos de dois tipos:
 Provisório (transvenoso, esofagiano, transcutâneo). As indicações de marca-passo provisório estão sumarizadas 
abaixo:
 Como terapia inicial para implante de MP definitivo em bradicardiassintomáticas como: BAV de 3º grau 
(BAVT); Disfunção do nódulo sinusal sintomática (DNS) caracterizada por: bradicardia, parada sinusal, 
bloqueio sinuatrial e taquicardia paroxística (Síndrome Bradi-taqui).
 Bradicardias temporárias sintomáticas relacionadas a drogas: digoxina, diltiazem, B- bloqueador, 
amiodarona.
 Infarto agudo do miocárdio (IAM): IAM anterior com: surgimento de bloqueio de ramo direito (BRD) e PR > 
0,20s (200ms), Bloqueio de ramo direito (BRD) com hemibloqueio anterior esquerdo (HBAE), BRE agudo, 
BAV 2° grau Mobitz 2 (isto é: PR constante que de repente interrompe), BAVT; IAM inferior com: BAVT ou 
BAV 2°grau com instabilidade hemodinâmica, IAM de VD, com instabilidade hemodinâmica e BAVT, 
frequentemente necessitando de implante de MP dupla câmara para estimulo AV sequencial.
 Pós-operatório de cirurgia cardíaca: marcapasso epicárdico (eletrodos instalados durante cirurgia 
cardíaca).
 Controle de taquiarritmia com overdrive como: QT longo, Extra-sistolia atrial bloqueada, Taquicardia 
ventricular incessante, Taquicardia ventricular induzida por extra-sístole ventricular, Taquiarritmia 
ventricular dependente de bradicardia.
 Pós-operatório: história de Stokes-Adams, BAVT ou Mobitz II, Pausa sinoatrial prolongada.
 Bradicardia refratária durante ressuscitação ou choque hipovolêmico.
 Parada cardíaca em assístolia.
 Disfunção de MP definitivo.
 Definitivo: O MP pode ser indicado como um recurso terapêutico definitivo. O MP definitivo consiste em uma 
ferramenta fundamental para melhorar a qualidade de vida do idoso. A American Heart Association junto com o 
American College of Cardiology determinaram as indicações de MP definitivo de acordo com os trabalhos 
existentes na literatura atual em classes, conforme será descrito a seguir.
o Classes I: todas as condições em que há concordância para colocação de um MP;
o Classes II: condições em que pode ser indicada a colocação do MP, porém há discordância sobre a 
necessidade do uso.
o Classe III: condição em que existe uma concordância da não colocação da MP.
1.2.2. Bloqueio da condução intraventricular
Como sabemos, ao longo da massa ventricular, o estímulo cardíaco viaja por intermédio das fibras do Feixe de 
His. O feixe de His conduz a onda de despolarização normalmente, mas em um dos seus ramos o impulso elétrico é 
bloqueado. O complexo QRS torna-se, então, alargado devido ao retardo da onda de despolarização no ventrículo que
teve seu ramo bloqueado.
Com o atraso da condução pelo 
ramo direito, a ativação ventricular 
esquerda é realizada normalmente, 
através do ramo esquerdo da esquerda 
para direita. Quando a ativação 
ventricular esquerda está próxima da 
finalização, o impulso passa da 
esquerda para direita através do septo 
interventricular (ativação transeptal 
transmiocárdica), desencadeando a 
ativação lenta e anormal do lado direito 
do septo interventricular e parede livre 
do ventrículo direito. O contrário 
também é verdadeiro para o bloqueio do 
ramo esquerdo do feixe de His.
Tais alterações podem, portanto, serem avaliadas da seguinte maneira no ECG, optando pela análise das 
derivações V1 (para ventrículo direito e vetor septal) e V6 (para ventrículo esquerdo). Em ambos, o complexo se 
mostrará mais alargado.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
16
 Bloqueio de ramo direito do feixe de His: pode ser bem avaliado por meio das 
seguintes caracter„sticas:
o Nas deriva‚†es precordiais direitas (V1) teremos o seguinte padrƒo:
 Padrƒo RSR’: o que seria “complexo QRS” no ECG aparece com uma 
grande quilha na onda R, formando duas grandes ondas positivas: R e 
R’.
 Onda T assim€trica e em sentido oposto ao QRS.
o Nas deriva‚†es precordiais esquerdas (V6) e DI: padrƒo QRS com onda S 
ampla e arrastada.
o Eixo el€trico do cora‚ƒo (S“QRS): varivel, tendendo desvio para a 
direita.
 Bloqueio de ramo esquerdo do feixe de His: ocorre quando h bloqueio do 
tronco do ramo esquerdo antes da sua bifurca‚ƒo em fasc„culos Šntero-superior 
e p…stero-inferior ou o bloqueio dos dois fasc„culos ao mesmo tempo. Sua 
etiologia pode estar relacionada com: hipertensƒo arterial sistˆmica, doen‚a 
das art€rias coronrias, doen‚as valvulares, isquemia, esclerose, fatores 
mecŠnicos, em conseq‘ˆncia da hipertrofia ventricular esquerda, etc.
o Complexo QRS alargado (> 0,12 segundos).
o Na avalia‚ƒo das deriva‚†es precordiais esquerdas (V5 e V6):
 Ausˆncia de ondas q iniciais.
 Ondas R alargadas e monofsicas, apresentando entalhes 
(aspecto em torre) e empastamentos.
 Segmento ST infradesnivelado.
 Onda T negativa.
 Altera‚†es da repolariza‚ƒo.
o Na avalia‚ƒo das precordiais direitas (V1 e V2):
 Ausˆncia da onda r inicial.
 QRS negativo.
De um modo geral, no bloqueio de ramo esquerdo (BRE), a “orelha de coelho” no complexo QRS em V6 
representa o atraso entre a despolariza‚ƒo do septo para o ventr„culo esquerdo. J no bloqueio de ramo direito (BRD), a 
“orelha de colho” em V1 representa o atraso entre a despolariza‚ƒo do septo para o ventr„culo direito. 
Em resumo, temos:
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
17
2. Taquiarritmias
Sƒo arritmias card„acas caracterizadas por uma frequˆncia maior que 100 bpm. Pode ser um achado normal do 
ECG, principalmente quando o paciente tem realizado algum esfor‚o f„sico vigoroso ou por descarga de adrenalina por 
nervosismo, por exemplo. Contudo, pode estar relacionada com a presen‚a de doen‚a card„aca de base e de reflexos 
cardiovasculares.
O aumento da frequˆncia card„aca tem relevŠncia cl„nica importante a partir do momento que h um 
comprometimento do fluxo coronariano. Como se sabe, o enchimento das art€rias coronrias acontece durante a 
distole; contudo, como na taquicardia h muito pouco tempo para que o ventr„culo relaxe, a pressƒo coronria cai de 
uma forma importante. Indiv„duos que j apresentem algum tipo de obstru‚ƒo em coronria e apresenta taquicardia 
apresentam maior predisposi‚ƒo a desenvolver infarto no curso desta arritmia. 
As taquiarritmias (TA) podem ser classificadas em TA supra-ventriculares e TA ventriculares.
2.1. Taquiarritmias supra-ventriculares (TASV)
Sƒo arritmias causadas por disfun‚†es em s„tios localizados acima do n… atrioventricular, o que inclui o trio 
(acometido pela fibrila‚ƒo atrial e flutter atrial), a taquicardia atrial, a taquicardia sinusal, a taquicardia juncional (que 
ocorre na jun‚ƒo entre o trio e o ventr„culo), taquicardia reentrante nodal e a taquicardia reentrante atrioventricular 
(Síndrome de Wolf-Parkinson-White).
Na anlise das taquicardias supra-ventriculares, € sempre necessrio examinar os seguintes parŠmetros:
 Frequˆncia atrial;
 Frequˆncia ventricular;
 Regularidade ventricular (RR): o QRS € regular na taquicardia reentrante nodal, da taquicardia reentrante 
atrioventricular (S„ndrome de WPW), flutter atrial e na taquicardia atrial; € irregular na fibrila‚ƒo atrial e, 
enventualmente, no flutter e na taquicardia atrial.
 Identificar morfologia da ativa‚ƒo atrial (P, F, f);
 Avaliar rela‚ƒo P:QRS. A onda P pode nƒo existir e, caracteristicamente, o QRS mant€m seu padrƒo normal 
de ondas, mas se mostra estreitado (diferentemente da taquicardia ventricular, onde o QRS € alargado e 
bizarro).
 Importante: nas arritmias supraventriculares o QRS se mostra estreitado (< 0,12 segundos), visto que o 
dist‹rbio de condu‚ƒo se d acima do n… AV. Os dois ventr„culos se ativam ao mesmo tempo. A presen‚a de 
um QRS largo (> 120 ms) significa alguma aberrŠncia, isto €: uma situa‚ƒo anormal.
Os principais tipos de taquiarritmias supra-ventriculares atriais sƒo:
 Taquicardia sinusal: caracterizada pelos 
seguintes parŠmetros:
 Ondas P de morfologia normal;
 Frequˆncia atrial de 100 a 200 bpm;
 Frequˆncia ventricular de 100 a 200 
bpm;
 RR regular
 P:QRS –1:1.
 Fibrilação atrial: condi‚ƒo em que a musculatura card„aca atrial passa a apresentar, por algum fator 
desencadeante, uma atividade el€trica absolutamente ca…tica.  a arritmia mais comum (0,4% a 1% na 
popula‚ƒo adulta) e eleva 2 vezes o potencial de mortalidade (que aumenta mais ainda com a idade). A 
fibrila‚ƒo atrial € caracterizada por nƒo configurar onda P regular no tra‚ado grfico, nƒo apresentar uma 
contra‚ƒo atrial efetiva e pela irregularidade da passagem do est„mulo do trio para o ventr„culo (ou seja, hora 
passa, hora nƒo passa, de forma aleat…ria).
As principais causas sƒo: doen‚a valvar mitral, doen‚a 
coronariana, cardiomiopatias, HAS. As demais causas sƒo: 
excesso de consumo alco…lico, S„ndrome de WPW, pericardite, 
DPOC com hipoxemia.
Pacientes com fibrila‚ƒo atrial devem ser tratados como um grupo 
especial, isto porque a sua condi‚ƒo predisp†e a forma‚ƒo de 
trombos, que podem desgarrar-se da cavidade atrial, ganhar a 
circula‚ƒo e causar, entre outros comemorativos, a necrose de 
extremidades ou AVCi. Por esta razƒo, prescrevem-se 
anticoagulantes para estes pacientes.
De uma forma geral, os objetivos do tratamento da fibrila‚ƒo atrial consistem em:
 Controle da frequencia card„aca;
 Reversƒo para ritmo sinusal;
 Manuten‚ƒo para ritmo sinusal;
 Profilaxia de tromboembolismo.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
18
 Flutter atrial: a incidência geral do flutter atrial é de 0,09% da população, dos quais 58% também apresentam 
fibrilação atrial. O flutter se caracteriza por ondas atriais não-sinuais (pois não configuram uma onda P) que 
ocorrem com frequência muito rápida. O gráfico traçado se assemelha a dentes de serra.
O tratamento de eleição para seu tratamento é a cardioversão elétrica (95 a 100%).
 Taquicardia reentrante nodal (TRN): fenômeno que envolve o nó AV. É mais frequente em mulheres (2:1), na 
3ª a 5ª décadas de vida, sendo muito raro abaixo dos 2 anos de idade. Os sinais clínicos se manifestam na 
forma de batimento evidente em fúrcula esternal e síncope.
O tratamento emergencial consiste em:
 Cardioversão elétrica (100 J): se houver instabilidade hemodinâmica;
 Compressão do seio carotídeo;
 Adenosina (6/12/18 mg IV);
 Verapamil (até 15 mg IV).
 Na presença de sintomas severos ou por falência de tratamento clínico, optar pela ablação por cateter.
 Taquicardia reentrante atrioventricular 
(Síndrome de Wolf-Parkinson-White): síndrome 
caracterizada pela presença de uma via acessória 
anômala que promove um estímulo ventricular 
precoce. 
No ECG, observamos um QRS alargado com a 
presença marcante da chamada onda Delta, logo 
no início do complexo. O alargamento do QRS 
acontece porque o estímulo se propaga pelo feixe 
de His e depois retorna por esta via acessória (o 
que não deveria acontecer). Tais características do 
QRS podem ser vistas em DI, aVL, V4, V5 e V6.
Podemos perceber ainda uma diminuição do 
intervalo PR devido à excitação precoce dos 
ventrículos (síndrome de pré-excitação). Na 
realidade, do ponto de vista gráfico, o QRS se 
alarga as custas desta redução do intervalo PR.
A FC se mostra muito alta e a onda P inexistente.
O tratamento pode ser feito por ablação por cateter de radiofrequência introduzido pela via acessória. 
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
19
2.2. Taquicardia ventricular
 a ocorrˆncia de 3 ou mais batimentos de origem ventricular com frequˆncia acima de 100 bpm, sendo 
sustentada se a dura‚ƒo € maior ou igual a 30 segundos e nƒo-sustentada se a dura‚ƒo € menor. Geralmente, est 
associada a cardiopatias graves.
Seu quadro cl„nico € caracterizado por:
 A repercussƒo ir depender da disfun‚ƒo miocrdica pr€-existente e da frequˆncia ventricular;
 Pode levar a fibrila‚ƒo ventricular.
 O exame f„sico € caracterizado por FC em torno de 160 spm, ritmo regular ou discretamente irregular.
O ECG da taquicardia ventricular mostra FC entre 100 e 220 spm, com ritmo regular ou discretamente regular. A 
morfologia do tra‚ado € absolutamente inespec„fica, sem padr†es. A onda P, na FC alta, nƒo € vista e, quando presente, 
nƒo tem rela‚ƒo harmoniosa com o complexo QRS. Este tem a mesma morfologia das extra-s„stoles ventriculares, 
mostrando-se largo e bizarro.
O tratamento da taquicardia ventricular sustentada, quando o paciente estiver instvel, consiste na cardioversƒo 
el€trica, de imediato. Se o paciente estiver estvel, bem monitorado e internado em UTI, € poss„vel optar pelo tratamento 
medicamentoso (Amiodarona 150 IV em bolus em 10 minutos ou Lidoca„na 0,75 mg/kg IV em bolus).
2.3.Fibrilação ventricular (FV)
Situa‚ƒo em que a atividade contrtil dos ventr„culos deixa de ser efetiva, e o cora‚ƒo apenas tremula, sem 
capacidade de ejetar sangue. Por esta razƒo, o d€bito card„aco € zero, nƒo h pulso, nem batimento card„aco 
(caracterizando uma parada cardíaca, sendo considerada a maior trag€dia dentro da cardiologia abaixo apenas da 
assistolia).
No ECG temos um ritmo irregular e absolutamente ca…tico, sem ondas P, QRS ou T. Note que, diferentemente 
da taquicardia ventricular, as ondas sƒo extremamente assincr‡nicas. 
O ‹nico tratamento efetivo para a fibrila‚ƒo ventricular € a cardioversão 
elétrica (recomenda‚ƒo mxima). Nenhum outro tratamento pode reverter o quadro.
Pacientes cardiopatas, que apresentam miocardiopatias dilatadas, podem 
apresentar FV frequentemente. Tais pacientes sƒo candidatos ao implante de um 
cardioversor desfibrilador implantável (CDI). Tal procedimento € responsvel por 
prover a preven‚ƒo primria e secundria da morte s‹bita card„aca (MSC) em 
pacientes com cardiopatia estrutural.
Sƒo indica‚†es para o implante de CDI:
 Pacientes refratrios ‰ terapia medicamentosa;
 BRE – dissincronismo intra e interventricular por retardo do VE em rela‚ƒo 
ao VD ou por abertura e fechamento tardios da valva a…rtica em rela‚ƒo a 
mitral.
OBS6: Classificação de interferência eletromagnética sobre os dispositivos cardio-elétricos implantáveis (DCEI), 
conforme o grau de risco e recomendação para proteção.
 Risco aceitvel:
 Eletrodom€sticos em geral;
 Escadas rolantes e portas automticas;
 Autom…veis, ‡nibus, avi†es, motocicletas.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
20
 Aceitável com riscos: 
 Colchões magnéticos e mini-imãs;
 Telefones celulares, telefones sem fio, blue tooth, walkie talkie, wireless, Wi-fi, iPod;
 Antenas de telefonia celular;
 Eletrocautério;
 Radiação terapêutica;
 Desfibrilação externa.
 Ablação por radiofrequência (RF) e mapeamento eletro-anatômico magnético;
 Litotripsia;
 Aparelhos que produzem vibração mecânica;
 Sistemas de detecção de metais e anti-furto;
 Estimulação transcutânea, eletro-acumputura;
 Radares de navegação, radares militares;
 Campos eletromagnéticos, amplificadores de som e caixas acústicas;
 Profissional da área de montagem de televisores e uso de equipamentos de solda por radiofrequência.
 Inaceitável:
 Ressonância nuclear magnética;
 Medidor de gordura corporal.
OBS7: O termo assistolia consiste na cessação de qualquer atividade elétrica ou mecânica dos ventrículos. No ECG se 
caracteriza pela ausência de qualquer atividade elétrica ventricular observada em pelo menos 2 derivações, se 
mostrando com um desenho de gráfico em linha reta. 
Cerca de 80% das paradas cardiorrespiratórias são advindas de arritmias ventriculares e a presença de assistolia se 
reveste de um prognóstico sombrio para o paciente. Afirmar corretamente que o ritmo em tratamento é de fato assistolia 
passa a ser um diagnóstico que necessita uma absoluta certeza.
Ao visualizarmos um monitor com um gráfico sem ondas em qualquer momento do atendimento deve se proceder uma 
série de medidas que visam certificar-se do diagnóstico, o que será chamado de protocolo da "linha reta".
1º medida: confira ocabeamento da monitorização eletrocardiográfica - verifique se a fiação está conectada no paciente e no 
aparelho.
2º medida: aumente o ganho da derivação ao máximo que o aparelho permitir - ondulações muito finas podem parecer linha 
reta e com um ganho podemos passar a ver a fibrilação.
3º medida: mude as derivações do monitor - mude sequencialmente o seletor de derivações, pois a ausência de ondas numa 
derivação pode não se confirmar em outra. No caso da ação primária, onde usamos as pás do desfibrilador como derivação 
devemos rapidamente modificar a posição, passando a pá do apex para o terço superior do tórax e a pá direita para o bordo 
costal inferior direito, invertendo em 90º o eixo pesquisado.
Se após as 3 ações o monitor persistir com linha reta, de fato estamos vendo um padrão de assistolia, passando ao 
tratamento específico dessa condição. O uso de choques de forma empírica no paciente em assistolia é formalmente 
contra-indicado (Recomendação Classe III). Basicamente, devemos proceder da seguinte forma:
 Realizar ABC: Garantir uma boa ventilação e suplementação de oxigênio. 
 Drogas para assistolia:
o Epinefrina: EV/IO: 0,01mg/Kg (0,1ml/Kg - 1:10.000); ET: 0,1mg/Kg (0,1ml/Kg - 1:1.000); Repetir a cada 3 minutos, 
mesma dose.
o Atropina: A evidência do benefício é pequena (Recomendação IIb) - 1mg EV a cada 3 min até a dose máxima de 
0,04mg / Kg
o Bicarbonato de Na: A indicação do Bicarbonato na PCR é restrita aos casos de acidose preexistente e conhecida 
(Classe I) e na overdose de antidepressivos tricíclicos (Classe IIa). O uso durante manobras prolongadas é de 
recomendação IIb.
A maior parte dos pacientes em assistolia não sobrevive. Freqüentemente a assistolia deverá ser vista como a 
confirmação do diagnóstico de morte e não como um ritmo a ser tratado. A assistolia persistente representa isquemia e 
danos extensos ao miocárdio, decorrentes de períodos prolongados de perfusão coronariana inadequada.
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
21
DETERMINAÇÃO DO EIXO CARDÍACO
O eixo se refere à direção da despolarização que se difunde através do coração para estimular a contração 
miocárdica. A direção dessa despolarização é representada por um vetor resultante principal (vetor médio do QRS ou 
eixo elétrico cardíaco) que nos mostra por onde a maior parte do estímulo elétrico está caminhando. Normalmente, 
esse vetor se dirige de cima para baixo e da direita para a esquerda, com relação ao próprio indivíduo: a origem do vetor 
médio do QRS é sempre o nódulo AV e, como os vetores que representam a despolarização do ventrículo esquerdo são 
maiores, o vetor médio do QRS aponta levemente para o ventrículo esquerdo.
O vetor médio do QRS, de forma mais específica, é resultante de três importante vetores de ativação ventricular:
 Vetor septal (primeiro vetor): aponta da esquerda para direita, de cima para baixo e de trás para frente. Nas 
derivações unipolares do precórdio, o vetor septal desenha uma onda r (R pequena) nas derivações precordiais 
direitas (V1 e V2) e, também, uma onda q (Q pequena) em V5 e V6. Em casos de necrose ou bloqueio do ramo 
esquerdo de His (BRE), haverá ausência do vetor septal (V1 e V2 sem onda R e V5 e V6 sem onda Q).
 Vetor de parede livre (segundo vetor): é o mais importante da ativação ventricular por apresentar grande 
magnitude (é 10 vezes maior que o vetor septal). Daí, quando determinamos na clínica o eixo elétrico do 
coração, estamos nos referindo ao vetor de parede livre. Tem sua direção apontada para esquerda e para trás, 
podendo ser para cima nos corações horizontais ou para baixo nos verticais. O vetor de parede livre é 
responsável pelo aparecimento da onda S grande em V1 e V2 e R grande em V5 e V6.
 Vetor basal (terceiro vetor): a última parte dos ventrículos a ser ativada é a sua região basal; quase 
simultaneamente, dá-se a despolarização da base do septo e da região basal das paredes ventriculares. A soma 
do potencial elétrico elaborado nesta fase é chamada de vetor basal de ativação ventricular. Embora resultando 
de todas as forças basais, este vetor é de pequena grandeza (semelhante ou ligeiramente maior que o primeiro 
vetor) e dirigido para a direita, para cima e para trás. Quando a região superior e posterior do septo direito é 
dominante, o terceiro vetor aponta para cima e para trás; quando domina a anterior e superior, esta dirige-se 
também para cima, porém para a frente. Esse vetor será responsável pelo surgimento da onda S pequena nas 
derivações esquerdas, colaborando no final da onda S grande nas precordiais direitas. O terceiro vetor é 
identificado pela onda R da derivação aVR e pela onda S de V5 e V6.
O eixo serve para verificar se a movimentação de ondas do coração está no sentido normal. Se o indivíduo tem 
um infarto em uma determinada área, há um espaço morto naquele local. Neste caso, a onda não repercute neste 
espaço e se desvia, desviando o eixo como um todo.
Para uma melhor interpretação da posição do eixo vetorial cardíaco, devemos 
considerar alguns conceitos que foram apenas citados anteriormente, mas que serão 
necessários neste momento. 
 O triângulo de Einthoven nada mais é que a representação vetorial dos sentidos das 
derivações bipolares do plano frontal (DI, DII e DIII). Se deslocarmos todos os lados 
deste triângulo para um centro comum, formaremos um sistema de três eixos.
 Se considerarmos agora todas as linhas de derivações do plano frontal para o centro 
do triângulo de Einthoven, formamos um sistema de eixos hexa-axial (a chamada 
rosa-dos-ventos do ECG), de forma que o centro do sistema representa o nódulo AV 
(local de origem do vetor médio de QRS).
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1
22
Para determina‚ƒo do eixo, o procedimento bsico inicial € observar as deriva‚†es DI e aVF, que sƒo as 
deriva‚†es que estƒo direcionadas para o sentido normal da despolariza‚ƒo card„aca. Se o QRS for positivo (isto €, 
estiver voltado para cima) em DI, o vetor aponta para o lado positivo (isto €, lado esquerdo do indiv„duo). Se QRS for 
positivo em aVF, o vetor aponta para baixo na metade positiva da esfera. Neste caso, a localiza‚ƒo do vetor resultante 
principal ser na faixa normal entre 0 a 90’. Qualquer situa‚ƒo diferente desta, haver um desvio de eixo. Al€m disso, 
caso o QRS seja negativo em V2, o vetor aponta para trs (situa‚ƒo normal).
A partir das deriva‚†es DI e aVF – que sƒo perpendiculares entre si – podemos criar quatro quadrantes. A 
simples avalia‚ƒo da polaridade do QRS em DI e aVF (se o QRS est voltado para cima – positivo – ou para baixo –
negativo – no ECG a ser avaliado) pode determinar o quadrante onde estar localizado o eixo el€trico do cora‚ƒo. Para 
detalhar ainda mais a localiza‚ƒo do eixo el€trico, podemos lan‚ar mƒo do seguinte parŠmetro: o eixo el€trico vai estar 
mais pr…ximo, isto €, com uma angula‚ƒo menor, ‰ deriva‚ƒo que estiver mais positiva (ou mais negativa, se por ventura 
o eixo estiver fora do quadrante normal – que € o inferior direito): se DI estiver mais positivo que aVF, o eixo card„aco 
estar no quadrante inferior direito, mas estar mais pr…ximo ao angulo de 0o. Para detalhar mais ainda o intervalo de 
angula‚ƒo onde estar o eixo el€trico do cora‚ƒo, precisaremos observar as demais deriva‚†es do ECG, o que ser 
detalhado melhor em exemplos, ainda nesta se‚ƒo.
Em resumo, a localiza‚ƒo do eixo m€dio do QRS pode ser facilmente obtido seguindo os seguintes passos:
1. Observar a polaridade do complexo QRS nas deriva‚†es DI e aVF.
2. Determinar o quadrante do vetor de ativa‚ƒo.
3. Procurar uma deriva‚ƒo isoel€trica (+/-).
4. O eixo estar na deriva‚ƒo perpendicular ‰ deriva‚ƒo isoel€trica:
 DI ∟ aVF (DI € perpendicular a aVF)
 DII ∟ aVL (DII € perpendicular a aVL)
 DIII ∟ aVR (DIII € perpendicular a aVR)
5. Caso nƒo haja deriva‚ƒo isoel€trica, deve-se observar as deriva‚†es