reversal when the intensity of incident light suddenly increases. The mechanism is likely due to a release of H + by the pigment. These ions are then translocated to the cytoplasm, causing electrical potential changes in the plasma membrane and subsequent ciliary reversal and reorientation of the cell (Fabczak, Fabczak, & Song, 1993a; Fabczak et al., 1993b; Matsuoka & Kotsuki, 2001; Menzies, Das, & Wood, 2004; Sobierajska, Fabczak, & Fabczak, 2006), perhaps involving a G-protein-mediated sig- nalling pathway (Fabczak, Sobierajska, & Fabczak, 2004). Certainly, a photophobic response might be a selective advantage, keeping the ciliate hidden from potential predators. However, one cannot help but wonder which trait is under selection: the photopho- bic response mediated by the pigment chemicals or the toxic nature of the pigment chemicals themselves (Lobban, Hallam, Mukherjee, & Petrich, 2007). Heterotrichs can survive several weeks without food (Jackson & Berger, 1985a, 1985b). Nevertheless, encystment is a common feature of this class, stimu- lated by a variety of factors, such as absence of food or excess metabolites (Giese, 1973; Repak, 1968). The cyst wall is formed of several layers, which may contain chitin (Mulisch & Hausmann, 1989). Excystment occurs through a cyst pore plug or micropyle . It may be induced by freshly bacterized medium (Giese, 1973; Repak, 1968), and is perhaps promoted by a substance liberated from excysting conspecifics (Demar-Gervais & Génermont, 1971). Conjugating Stentor have been observed rarely in nature (Burchill, George, Lindberg, & Sims, 1974; Tartar, 1961). Stentor coeruleus mates with some frequency in the laboratory, perhaps induced by elevated temperatures (Rapport, Rapport, Berger, & Kupers, 1976), while Blepharisma has served as a model for understanding heterotrich sexual processes (Miyake, 1996). The marine heterotrich Fabrea requires a complex organic medium to complete conjugation (Demar−Gervais, 1971). 6.3 Somatic Structures The heterotrich cell body is quite variable in shape (Fig. 6.1) depending upon whether the ciliate is a benthic or substrate oriented species or a more planktonic species. The body is covered by numer- ous bipolar somatic kineties composed of dikinetids (Tuffrau, 1968). There is a fine glycocalyx on top of the plasma membrane, which is underlain by an alveolar layer that is often not well-developed and appears to be discontinuous. The epiplasm is very thin and inconspicuous. Mucocysts and pig- mentocysts are found beneath the alveolar layer, giving the range of “living colors” in this group – black, blue, blue-green, brown, rose, and yellow. Chlorella symbionts may impart a grass-green color to those species harboring them. 6.3 Somatic Structure 133 134 6. Subphylum 1. POSTCILIODESMATOPHORA: Class 2. HETEROTRICHEA – Once Close to the Top The somatic kinetids are typically dikinetids that lie 20–40° to the long axis of the kinety (Grain, 1984; Lynn, 1981, 1991; Fabrea – Da Silva Neto & Grolière, 1993; Condylostomides – Da Silva Neto, 1994b). The anterior kinetosome is often the only one ciliated and it bears a tangential transverse ribbon of about 6 microtubules near triplets 3, 4, and 5. This ribbon is usually doubled by a single microtubule on the right inside edge (Fig. 6.2). The posterior kinetosome is less often ciliated and may have a transverse ribbon associated with it, oriented in a variety of ways. There is a kineto- desmal fibril homologue originating near triplets 5, 6, which extends laterally, usually associating with the postciliary ribbon originating from the next anterior dikinetid. It is called a homologue because it usually does not have the obvious periodic striation found in other ciliates, although it arises from the same triplet region. The post- ciliary ribbon of this kinetosome is divergent and extremely well-developed, numbering 12 or more microtubules, which extend towards the cortex as ribbons oriented perpendicular to the cell surface and separated by a single microtubule (Fig. 6.2). These postciliary ribbons are accompanied by dense material called a retrodesmal fibril (Grain, 1984) or a postciliary accessory fibre (Peck, Pelvat, Bolivar, & Haller, 1975). Yogosawa-Ohara, Suzaki, and Shigenaka (1985) suggest that this fibre may induce the twisting of the body during contractions of Spirostomum . A number of postciliary ribbons are integrated together to form the conspicuous postciliodesma or Km fiber in the cortex of these ciliates. Myonemes are typically present and always so in contractile forms. They are predominantly longi- tudinally arranged around the entire body, and are either in direct contact with the somatic kinetosomes or indirectly contact them via intermediate fibres. Transverse myonemes may integrate the longitudi- nal bundles, either locally or throughout the cortex. These cortical contractile systems created consider- able interest among cell biologists who sought to explain their role in changing cell shape. Huang and Pitelka (1973) first experimentally demonstrated the antagonistic relationship between the myonemes and postciliodesmata in Stentor : the myonemes are responsible for contraction of the body while micro- tubule-on-microtubule sliding achieves the slow elon- gation back to the “relaxed” form. This system has now been demonstrated in normal contractions of Spirostomum (Yogosawa-Ohara & Shigenaka, 1985; Yogosawa-Ohara et al., 1985) and in the light- induced contractions of the posterior portion of the body in Blepharisma (Ishida, Suzaki, & Shigenaka, 1991a; Ishida Suzaki, Shigenaka, & Sugiyama, 1992). Contraction and elongation involve calcium (Ishida et al., 1992; Legrand, 1971), which may be stored as hydroxyapatite in crystalline intracellular deposits (Takagui & Silveira, 1999) or in cortical alveoli (Ishida, Shigenaka, Suzaki, & Sugiyama, 1991b). However, there are conflicting reports regard- ing the inhibitory action of cytochalasin , an actin antagonist, on contraction (Ettienne & Selitsky, 1974; Yogosawa-Ohara & Shigenaka). Although we can- not yet conclude that this is an actin-based system, a caltractin-like protein has been localized to the myonemes of Stentor (Maloney, McDaniel, Locknar, & Torlina, 2005). The contractile vacuole system is well- developed in heterotrichs , especially the fresh-water forms, which may have conspicuous collecting canals (Patterson, 1976, 1980). Mucocysts are probably widespread among heterotrichs, since they often encyst . However, there are relatively few studies on these. Mulisch and Hausmann (1983) documented their role in lorica construction in folliculinids . Pigmentocysts are considered to be a special type of mucocyst (Hausmann, 1978). 6.4 Oral Structures Tuffrau (1968) presented a detailed description of the heterotrich oral region and its fibrillar supports, but this diversity has been considerably reduced with the removal of a number of groups from this class (see Taxonomic Structure above). The oral region is characterized by an adoral zone of polyki- netids , which typically form a small dextral spiral around the cytostomal region deeper in the oral cavity. The oral polykinetids then extend out of this deeper cavity onto the cell surface of the oral region where variations in the pattern become more conspicuous: they may be organized as a linear file along the left border; may form a more or less com- plete circle around the anterior end, or may extend out on two wing-like projections in the folliculinids (Fig. 6.1). The peristomial region circumscribed by 6.4 Oral Structures 135 Fig. 6.2. Ultrastructure of the cortex of the Class HETEROTRICHEA . A Somatic dikinetids . ( a ) Blepharisma (after Ishida et al., 1991a). ( b ) Climacostomum (after Peck et al., 1975). ( c ) Eufolliculina