VERIFIQUE SE O TRIÂNGULO DE VÉRTICES A(-3,-2,3), B(1,1,2) E C(-3,1,2) É RETÂNGULO. B C A 𝐴𝐵 = B – A 𝐴𝐵 = (1,1,2) – (-3,-2,2) 𝐴𝐵 = (4,3,0) 𝐴𝐶 = C – A 𝐴𝐶 = (-3,1,2) – (-3,-2,2) 𝐴𝐶 = (0,3,0) 𝐵𝐴 = - 𝐴𝐵 𝐵𝐴 = (-4,-3,0) 𝐵𝐶 = C - B 𝐵𝐶 = (-3,1,2) – (1,1,2) 𝐵𝐶 = (-4,0,0) 𝐶𝐴 = - 𝐴𝐶 𝐶𝐴 = (0,-3,0) 𝐶𝐵 = - 𝐵𝐶 𝐶𝐵 = (4,0,0) 𝐴𝐵 . 𝐴𝐶 = 0 𝐴𝐵 . 𝐴𝐶 = (4,3,0) . (0,3,0) 𝐴𝐵 . 𝐴𝐶 = (0 + 9 + 0) 𝐴𝐵 . 𝐴𝐶 = 9 𝐵𝐴 . 𝐵𝐶 = 0 𝐵𝐴 . 𝐵𝐶 = (-4,-3,0) . (-4,0,0) 𝐵𝐴 . 𝐵𝐶 = (16 + 0 + 0) 𝐵𝐴 . 𝐵𝐶 = 16 𝐶𝐴 . 𝐶𝐵 = 0 𝐶𝐴 . 𝐶𝐵 = (0,-3,0) . (4,0,0) 𝐶𝐴 . 𝐶𝐵 = (0 + 0 + 0) 𝐶𝐴 . 𝐶𝐵 = 0 Portanto o triângulo é retângulo em C. DADOS A(-3,-2, √ ) E B(-2,-3,-2 √ ), CALCULAR OS ÂNGULOS DIRETORES DO VETOR . DETERMINAR A PROJEÇÃO ORTOGONAL DE = (1,-3,-2) SOBRE = (-1,1,1) E DECOMPOR COMO SOMA COM , SENDO // E . Cos = 𝑥 |𝐴𝐵 | Cos = 1 2 Cos = 60º Cos β = 𝑦 |𝐴𝐵 | Cos β = −1 2 Cos β = 120º Cos ϒ = 𝑧 |𝐴𝐵 | Cos ϒ = −√2 2 Cos ϒ = 135º AB = B – A AB = (-2,-3,-2√2) – (-3,-2, −√2) AB = (1,-1, −√2) |AB | = 12 + (−1)2 + (− 2) 2 AB = √1 + 1 + 2 AB = √4 AB = 2 Proju 𝑣 = 𝑣 . 𝑢 𝑢 . 𝑢 . 𝑢 Proju 𝑣 = −6 3 . (-1,1,1) Proju 𝑣 = (−2) . (-1,1,1) Proju 𝑣 = (2,-2,-2) V1 = Proju 𝑣 V1 = (2,-2,-2) V = V1 + V2 (1,-3,-2) = (2,-2,-2) + V2 V2 = (1,-3,-2) – (2,-2,-2) V2 = (-1,-1,0) v . u = (1,-3,-2) . (-1,1,1) v . u = 1 . (-1) + (-3) . 1 + (-2) . 1 v . u = -1 - 3 – 2 v . u = -6 u . u = (-1,1,1) . (-1,1,1) u . u = (-1) . (-1) + 1 . (1) + 1 . (1) u . u = 1 + 1 + 1 u . u = 3 CALCULAR A ÁREA DO TRIÂNGULO ABC, SABENDO QUE O PONTO C(-2,0,X) É EQUIDISTANTE DE A(0,-1,-2) E B(1,-1,-1). |CA | = |CB | (√𝑋2 + 4𝑋 + 9 )2 = (√𝑋2 + 2𝑋 + 11 )2 X2 + 4X + 9 = X2 + 2X +11 X2 – X2 + 4X + 2X + 9 – 11 = 0 2X – 2 = 0 2X = 2 X = 1 CA = A – C CA = (0,-1,-2) – (-2,0,X) CA = (2,-1,-2-X) C𝐵 = B – C C𝐵 = (1,-1,-1) – (-2,0,X) C𝐵 = (3,-1,-1-X) |C𝐴 | = 22 + (−1)2 + (−𝑋 − 2 )2 |C𝐴 |= 4 + 1 + (𝑋)2 + 2(−𝑋)(−2 ) + (−2)2 |C𝐴 | = √5 + 𝑋2 + 4𝑋 + 4 |C𝐴 | = √𝑋2 + 4𝑋 + 9 |C𝐵 | = 32 + (−1)2 + (−𝑋 − 1 )2 |C𝐵 |= 9 + 1 + (−𝑋)2 + 2(−𝑋)(−1 ) + (−1)2 |C𝐵 | = √10 + 𝑋2 + 2𝑋 + 1 |C𝐵 | = √𝑋2 + 2𝑋 + 11 𝐴𝐵 = B – A 𝐴𝐵 = (1,-1,-1) – (0,-1,-2) 𝐴𝐵 = (1,0,1) 𝐴𝐶 = C – A 𝐴𝐶 = (-2,0,1) – (0,-1,-2) 𝐴𝐶 = (-2,1,3) s∆ = |𝐴𝐵 𝑋 𝐴𝐶 | 2 |𝐴𝐵 𝑋 𝐴𝐶 | = 𝑖 𝑗 𝑘 1 0 1 −2 1 3 = 0 1 1 3 𝑖 - 1 1 −2 3 𝑗 + 1 0 −2 1 𝑘 = (0-1) 𝑖 - (3-(-2)) 𝑗 + (1-0) = (-1,-5,1) |𝐴𝐵 𝑋 𝐴𝐶 | = (−1)2 + (−5)2 + 12 𝐴𝐵 𝑋 𝐴𝐶 = √1 + 25 + 1 𝐴𝐵 𝑋 𝐴𝐶 = √27 𝐴𝐵 𝑋 𝐴𝐶 = √32. 3 |𝐴𝐵 𝑋 𝐴𝐶 | = 3√3 s∆ = |𝐴𝐵 𝑋 𝐴𝐶 | 2 s∆ = 3√3 2 u.a