Buscar

A compact current conveyor cmos potentiostat

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 6 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 6 páginas

Prévia do material em texto

A Compact Current Conveyor CMOS Potentiostat 
Circuit for Electrochemical Sensors 
 
Abstract— In this work, a new compact CMOS potentiostat 
circuit for electrochemical sensors is proposed. Integrated 
Potentiostats in CMOS technology are usually found in the 
literature designed with operational amplifiers performing both 
the electrochemical sensor bias and signal readout. In order to 
present alternative circuitry, a new potentiostat topology 
composed of a two-stage operational amplifier and a current 
conveyor circuit is proposed. The current conveyor is employed 
to perform the bias signal readout of an electrochemical cell with 
three electrodes. Simulations and experimental results of a 
discrete circuit version show that the proposed potentiostat 
topology yields results compliant with those of classical topologies 
presented in the literature. 
 Keywords— Eletrochemical Sensor; Potentiostat; Current 
Conveyor; Amperometric Sensor. 
I. INTRODUCTION 
Electrochemical sensors have great potential for 
applications in many areas requiring electrochemical analyzes 
including the food industry, environmental monitoring, and 
biotechnology [1, 2, 3], they are also employed to researches 
related to the field of proteomics and genomics [2, 3, 4]. 
Electrochemical Sensors have good sensitivity and selectivity 
in detection of many chemical species and organic 
compounds, such as oxygen, glucose [2, 3, 5, 6, 7], and toxic 
metals. These sensors essentially respond to a certain amount 
of a chemical compound or analyte of interest, generating 
electrical signals currents being proportional to concentration 
of chemical species in analysis, characterized by a charge 
transfer ion solution, through oxidation and reduction 
reactions [2, 3, 8]. There are great interests in the 
development of portable devices that include electrochemical 
sensors and electronic systems in the same equipment [1]. 
Some examples of handheld devices, perform the detection of 
heavy metals in natural waters [10] and implantable 
microsystems used for monitoring and control of organic 
compounds, such as oxygen, glucose, and the cholesterol 
present in human blood [1, 2, 3, 7]. Portable devices require 
electronic systems with high integration and low power 
consumption for proper operation [1]. 
Electrochemical systems comprise an assembly formed of 
a sensor device, or electrochemical cell (ECC), that performs 
the detection of chemical species being sensitized due to 
reactions in chemical compounds, and an electronic circuit 
that performs the ECC bias and signal readout [1, 2, 4]. In this 
work, the sensor device of interest is a three-electrodes-ECC 
and the electronic circuit that performs the ECC bias and 
signal readout is a potentiostat. The scheme presented in Fig. 1 
shows a basic electrochemical system diagram employing a 
three electrode ECC, a potentiostat circuit and their basic 
connections. 
 
Fig.1 - Basic Electrochemical System 
Carlos Augusto de Moraes Cruz 
Graduate Program in Electrical 
Engineering – Department of 
Electronics and Computation, 
Federal University of Amazonas 
Manaus, AM, Brazil 
agscruz@hotmail.com 
Greicy Costa Marques 
 Department of Electronics and 
Computation 
Federal University of Amazonas 
Manaus, AM, Brazil 
greicymarques@gmail.com 
Alexandre Kennedy Pinto Souza 
Graduate Program in Electrical 
Engineering - Department of 
Electronics and Computation 
Federal University of Amazonas 
Manaus, AM, Brazil 
alexandre.akp7@gmail.com 
Thiago Brito Bezerra 
Graduate Program in Electrical 
Engineering -- Department of 
Electronics and Computation 
 Federal University of Amazonas 
Manaus, AM, Brazil 
brito tb@gmail com
Luís Smith Oliveira de Castro 
Graduate Program in Electrical 
Engineering - Department of 
Electronics and Computation 
Federal University of Amazonas 
Manaus, AM, Brazil 
luisfne@gmail.com 
978-1-7281-2109-3/19/$31.00 © 2019 IEEE
Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on March 25,2021 at 23:00:19 UTC from IEEE Xplore. Restrictions apply. 
Potentiostat circuits are usually implemented with three 
stage operational amplifiers in its composition [1, 7, 10], as 
shown in Fig. 2 and Fig. 3. The electrochemical systems 
presented in Fig. 2 and Fig. 3 are in the grounded WE, and 
grounded CE configurations, respectively[10]. The analyzes 
and electrochemical characterization using these types of 
electrochemical systems are performed by different 
voltammetric techniques applied to the potentiostat circuit, 
including: squarewave voltammetry, differential pulse 
voltammetry, and cyclic voltammetry [2]. With regard to 
circuit topology improvements, even the most recent 
developments in the field [2, 3, 7, 8] present few or none 
alternative circuitry. 
In this paper, a new compact potentiostat circuit topology 
is proposed, making use of an operational amplifier and a 
current readout circuit implemented with a circuit structure of 
first generation current conveyor. The proposed potentiostat 
circuit was designed to operate in the grounded WE 
configuration. 
The paper is organized as follows: Section II provides 
details of the proposed potentiostat topology. Section III 
presents the simulation and discrete circuit experimental 
results. Conclusions are summarized in Section IV. 
II. THE PROPOSED POTENTIOSTAT TOPOLOGY 
 
The three electrode electrochemical cell, in which the 
electrochemical analyzes are performed, is composed of a 
working electrode (WE), in which the redox reaction of the 
chemical analyte of interest takes place, a reference electrode 
(RE), which is used to perform the measurement of the electric 
potential of the chemical solution, or analyte, and the counter 
electrode (CE), which is an inert conductor material with the 
task of providing an electric current for the cell [6,12]. The 
dummy resistor-capacitor equivalent electric circuit model of 
the electrochemical cell [12] employed for the simulations, the 
results of which results are presented in this work, and its 
symbol indicating the electrodes that compose the ECC are 
shown in Fig. 4 (a) and (b) respectively. 
The proposed potentiostat topology, described in this 
section, connected to the electrochemical cell model shown in 
Fig. 4, and arranged in the grounded WE configuration, was 
evaluated using the cyclic voltammetry method. In order to 
compare its operation with the previous topologies presented 
in the literature, the cyclic voltammetry method was also 
applied to the potentiostat in Fig. 2. The potentiostat topology 
proposed in this paper, herein called electrochemical 
potentiostat proposed (EPproposed), and its circuit components 
are shown in Fig. 5. 
The proposed potentiostat EPproposed is composed of an 
operational amplifier (AOP), and a circuit which performs the 
transport of current from the electrochemical cell to the output 
of the potentiostat, called First-Generation Current Conveyor 
(CCI), as shown in Fig. 5. 
 
Fig 2 - Potentiostat Grounded (WE) configuration 
(a) (b) 
Fig. 4: Model of the Electrochemical Cell: (a) Schematic circuit of the dummy 
resistor-capacitor cell and (b) Electrochemical Cell symbol 
Fig. 3- Potentiostat grounded (CE) configuration 
Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on March 25,2021 at 23:00:19 UTC from IEEE Xplore. Restrictions apply. 
 
 Fig. 5. The proposed circuit (EPproposed) have been 
designed and simulated in a standard 0.18 μm CMOS 
technology. In this technology, as the bias swing is from 0.0 V 
to 1.8 V, the reference voltage GND, in this case, is 0.9 V, 
VDD/2 that can be derived from VDD. 
The AOP is a two stage operational amplifier, designed 
with an output-stage that allows the control of the current 
flowing though itself, that is the same current flowing through 
the electrochemical cell. The MOS transistor dimensions 
employed in both the AOP and the CCI- circuitsare given in 
Table I. 
To perform the measurement of the current flowing 
through the electrochemical cell, the CCI- circuit was 
connected to the ECC working electrode, providing a low 
impedance level for this circuit node. The CCI- circuit also 
performed transport of the current flowing through the 
electrochemical cell to the Vout terminal, which is connected 
to the resistor Rout. 
In the Potentiostat topology shown in Fig. 2, the 
transimpedance amplifier forces a virtual ground to the WE 
terminal and at the same time generates an output voltage that 
is linearly proportional to the current flowing through the 
electrochemical cell, providing thus a way of measuring the 
ECC current. 
The proposed potentiostat circuit topology (EPproposed 
Fig.5) receives the Vin voltage signal on the non-inverting 
AOP input, that is the gate terminal of the transistor M4. The 
feedback signal is then being applied to the inverting input of 
the AOP through the connection of the reference electrode of 
the dummy cell capacitor-resistor to the gate terminal of 
transistor M3. The difference between the Vin and RE signals 
is then amplified by the first and second stages of the AOP 
circuit. The second stage, that is the output stage of the AOP 
circuit, is the one composed of the transistors M7 and M8. The 
output signal of the second stage is applied to the ECC 
counter-electrode terminal, CE of the resistor-capacitor 
dummy cell, providing thus the necessary current through the 
cell. Regarding the second stage, it was implemented 
dimensioning the transistors M7 and M8 so that they could 
provide the necessary current needed to meet the requirements 
of the electrochemical cell. 
TABLE I- DIMENSIONS OF THE POTENTIOSTAT TRANSISTORS 
TRANSISTOR TYPE W [μm] L [μm] 
MP PMOS 1.0 
0.18 um 
M1, M3, M4 NMOS 2.0 
M2 NMOS 4.0 
M5, M6 PMOS 4.0 
M7, M9, M11 
M14, M16, M17 
NMOS 20.0 
M8, M10, M12 
M13, M15, M18 
PMOS 40.0 
 
The AOP is designed to satisfy two basic requirements 
involving electrochemical systems embedding potentiostats. 
The first is to control the electrical potential that arises 
between the ECC reference electrode and the ECC working 
electrode through the Vin input signal [10], and the second it 
to supply the ECC current through the AOP output terminal 
Vo that is connected to the ECC counter-electrode [10]. 
 One of the main functions of the potentiostat circuit is the 
ability to measure the electrical current flowing between the 
ECC counter-electrode and its working electrode [10]. To 
implement such a functionality, a CMOS version of the first 
generation current conveyor circuit was employed. The 
operation of this circuit is such that applying an input voltage 
to the Y input terminal, a potential of the same level appears at 
input terminal X. Similarly an input current being forced 
through the X terminal results in a current of the same 
magnitude flowing through the terminal Y, and the CCI- 
circuit transports a current of the same level to its Z terminal 
[2]. Therefore, the CCI- circuit will work to impose a current 
to the output resistance Rout through its Z terminal of the 
same level of that flowing through the ECC. 
The voltage at the CCI- circuit Y terminal is set to its X 
terminal, regardless of the current level that is imposed 
through the X terminal [10]. In this case, the CCI- circuit Y 
terminal is connected to the ground, forcing therefore a virtual 
ground level at its X terminal that is connected to the ECC 
Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on March 25,2021 at 23:00:19 UTC from IEEE Xplore. Restrictions apply. 
working electrode. Such a connection results in a low 
impedance level at the ECC working electrode. 
The current flowing through the X terminal is then 
conveyed to the Z node, the output current is then converted 
into the output voltage Vout, through the resistance Rout, that 
is linearly proportional do the current flowing through the 
ECC. Resulting thus in an indirect quantitative measure of the 
current flowing through the ECC. Such a function, 
implemented by the CCI- circuit, resembles the 
transimpedance amplifier shown in Fig 3, connected to the 
ECC working electrode performing the conversion current into 
voltage. Therefore, the proposed potentiostat circuit topology 
embeds all the requirements necessary for the proper operation 
of an electrochemical system [1] [6]. 
III. SIMULATIONS AND EXPERIMENTAL RESULTS 
 In order to demonstrate the effectiveness of the proposed 
EPproposed topology and to compare its performance with the 
conventional topology shown in Fig. 2, hereinafter referred to 
as EPconventional, simulations of both circuits using the cyclic 
voltammetry method were performed. The dummy resistor-
capacitor cell shown in Fig. 4 (a) was employed in both 
simulations, with EPproposed and EPconventional. The proposed 
circuit design is the same as that presented in the previous 
section. The load resistance RL of the EPconventional circuit, in 
Fig. 2, has the same value as the load resistance Rout used 
with the EPproposed circuit that is of 1.00 k . The triangular 
voltammetry wave called cyclic voltammetry (CV) was 
applied to the two circuits according to the methodology 
described in [1] and [11]. 
 The triangular input signal employed in the simulations 
with the EPproposed and EPconventional circuits is presented in Fig. 
6. The triangular input signal has the following characteristics: 
VPP = 1.6 V, f = 1 kHz, VLOW = -0.8 V, and VHIGH = 0.8 V. 
 The current generated in the electrochemical dummy 
resistor-capacitor cell with both EPproposed and EPconventional 
circuits for the described simulation configuration are 
presented as Icell_ EPproposed in Fig. 7 (a), and 
Icell_EPconventional in Fig. 7 (c). These results demonstrate that 
the proposed potentiostat circuit yields results very similar to 
those yielded by potentiostat topologies already well 
established in the literature. 
 As expected, the output voltage is linearly proportional to 
the current flowing through the dummy ECC in both circuits 
EPproposed and EPconventional as presented in Fig. 8 (a) and (b), 
Vout_EPproposed and Vout_ EPconventional, respectively. In order 
to evaluate part of the distortions introduced by each circuit 
topology when compared to their real delivered output 
voltage, the ideal output voltage for both circuits are also 
shown. The ideal output voltage is determined by multiplying 
the current through each dummy ECC circuit, Icell_ EPproposed 
and Icell_ EPconventional, by the 1.00 k load resistance present 
in each circuit. These results show the effectiveness of the 
proposed compact potentiostat. 
 
 
 
 
Fig. 7: (a) Current flowing through ECC in EPproposed; (b) current flowing 
through RL of EPproposed; and (c) Current flowing through ECC in 
EPconventional. 
 
 
Figure 6: Input Triangular wave applied to EPproposed e EPconventional
Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on March 25,2021 at 23:00:19 UTC from IEEE Xplore. Restrictions apply. 
 
 
Fig. 8: Output voltage signal of: (a) EPproposed; and (b) EPconventional. 
 
Although the dummy resistor-capacitor ECC circuit model 
is very useful to evaluate some important characteristics of the 
potentiostat circuits, as shown above. However, it has serious 
limitations to emulate a real chemical oxidation-reduction 
reaction cycle, and therefore it is not possible to represent a 
true cyclic voltammetry plot with such a model. Therefore, in 
order to overcome the limitations to further evaluate the new 
potentiostat topology, while the integrated version is being 
fabricated, a discrete version of the proposed circuit was 
implemented. 
The discrete version of the proposed potentiostat was 
implemented in a printed circuit board (PCB), shown in Fig. 9 
(a) and (b), with individual NMOS and PMOS transistors 
found in the CI 4007.The implemented EPproposed PCB was 
then connected to a standard electrochemical cell to measure 
the oxidation-reduction reaction of a potassium ferricyanide 
analyte solution with a concentration of 5 mmol.L-1 for 
different scan rate, the setup of which is shown in Fig. 10. 
The cyclic voltammetry plot for the employed analyte 
solution for different scan rate delivered by the proposed 
potentiostat circuit is presented in Fig. 11. The cyclic 
voltammetry plot for the employed analyte solution for 
different scan rate delivered by the commercial potentiostat 
PGSTAT302N is presented in Fig. 12. These results are 
compliant with those presented in the literature [1-8]. Despite 
the limitations of such an approach with a discrete PCB 
circuit, the yielded results were useful to confirm the 
effectiveness of the proposed potentiostat topology. 
In the near future, the preliminary experimental results will 
be compared to those yielded by an integrated version of the 
proposed potentiostat topology, implemented in the TSMC 
standard 6-metal 1-poly 0.18 μm CMOS technology. 
 
 
Fig. 9: Discrete EPproposed circuit implementation with CD4007: (a) 
circuit schematic; (b) PCB connections and assembled circuit; 
 
Vout_EPproposed Ideal_Vout_EPproposed 
Vout_EPconventional Ideal_Vout_EPconventional 
Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on March 25,2021 at 23:00:19 UTC from IEEE Xplore. Restrictions apply. 
 
Fig. 10: Setup Test of the EPproposed Circuit with Electrochemical 
Cell. 
 
Fig. 11: Oxidation-Reduction Reaction Cycle of the 5 mmol.L-1 
Potassium Ferricyanide Solution by EPproposed Circuit. 
 
 
Fig. 12: Oxidation-Reduction Reaction Cycle of the 5 mmol.L-1 
Potassium Ferricyanide Solution by PGSTAT302N Potentiostat. 
IV. CONCLUSIONS 
A new compact potentiostat circuit for electrochemical 
sensors was proposed in this work. The EPproposed circuit 
employs a single operational amplifier together with a current 
conveyor circuit to both bias the electrochemical cell and 
measure its current. The correct operation of the proposed 
potentiostat was evaluated through simulations and 
experimental results. The simulations were carried out with a 
dummy resistor-capacitor model to emulate the behavior of a 
real electrochemical cell. The experimental evaluation was 
performed with a discrete version of the EPproposed circuit. 
Comparisons of the simulation results with those yielded by 
different potentiostat topologies found in the literature, as well 
as, the experimental cyclic voltammetry plot results confirm 
the effectiveness of proposed potentiostat topology. 
ACKNOWLEDGMENT 
This research, according for in Article 48 of Decree nº 
6.008/2006, was funded by Samsung Electronics of Amazonia 
Ltda, under the terms of Federal Law nº 8.387/1991, through 
agreement nº 004, signed with CETELI/UFAM. 
REFERENCES 
[1] M. M. Ahmadi and G. A. Jullien, , K. Iniewski, Ed., “Circuits for 
amperometric electrochemical sensors,” in VLSI Circuit Design for 
Biomedical Applications. Norwood, MA: Artech House, 2008. 
[2] J. Kim, H.Kuo.“A 1.2V Low-Power CMOS Chopper-Stabilized Analog 
Front-End IC for Glucose Monitoring”. IEEE SENSORS JOURNAL, 
Sep. 2016. 
[3] A. Khandaker, A. Mamun, S. K. Islam, D.K. Hensley and N. McFarlane. 
“A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned 
Carbon Nanofibers”. IEEE TRANSACTIONS ON BIOMEDICAL 
CIRCUITS AND SYSTEMS. AUG. 2016. 
[4] M. Kimura , H. Fukushima, Y. Sagawa, K. Setsu, H. Hara, and S.Inoue 
Ed., “An integrated Potentiostat With an Eletrochemical Cell Using 
Thin-Film Transistors,” IEEE Transaction Electron Devices, vol. 56, No 
9, 2009. 
[5] L. Zuo, S. K. Islam, I. Mahub and F. Quaiyum,“A Low-Power 1-V 
Potentiostat for Glucose Sensors”. IEEE TRANSACTIONS ON 
CIRCUITS AND SYTEMS-II, VOL. 62, NO. 2, FREBRUARY 2015. 
[6] M. M. Ahmadi, and G. A. Jullien, “ Current-Mirror-Based Potentiostats 
for Three-Electrode Amperometric Electrochemical Sensors”, IEEE 
Transactions on Circuits and Systems—i: regular papers, vol. 56, no. 7, 
july 2009. 
[7] Z. Xiao, X. Tan, X. Chen, S. Chen, Z. Zhang, H. Zhang, J. Wang, Y. 
Huang, P. Zhang, L, Zheng, and H. Min. “An implantable RFID Sensor 
Tag toward Continuos Glucose Monitoring”. IEEE JOURNAL OF 
BIOMEDICAL AND HEALTH INFORMATICS . MAY. 2015. 
[8] T. Luo, H. Wang, H. Song and J. B. Christen.“CMOS Potentiostat for 
Chemical Sensing Applications”. Sensors IEEE, Nov. 2013. 
[9] S. M. Martin, F. H. Geabra, B. J. Larive, and R. B. Brown, “A CMOS-
Integrated Microinstrument for Trace Detection of Heavy Metals”, IEEE 
Journal of Solid-State Circuits, vol. 40, no. 12 , December 2005. 
[10] G. Eason, B. Noble, and I.N. Sneddon, “A comparison between 
potentiostatic circuits with grounded work or auxiliary electrode,” Rev. 
Sci. Instrument, vol.73, no.4, pp. 1921-1923, April.2002. 
[11] J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals 
and Applications, 2nd ed. New York: Wiley, 2001. 
[12] C. N. Yarnitzky. “Part I. Design and construction of a potentiostat for a 
chemical metal-walled reactor 2000”. Journal of Electroanalytical 
Chemistry, vol. 91, pp. 154-159, Mar. 2000. 
[13] C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analog IC design: the 
current-mode approach, Stevenage, U.K.: Peregrinus, 1990. 
Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on March 25,2021 at 23:00:19 UTC from IEEE Xplore. Restrictions apply. 
<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [ true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans/LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
 ]
 /NeverEmbed [ true
 ]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
 ]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
 ]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
 ]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False
 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperticon Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

Outros materiais