A maior rede de estudos do Brasil

Grátis
Aula_01

Pré-visualização | Página 1 de 3

*
*
LÓGICA MATEMÁTICA
PROF. DRA. DENISE CANDAL 
Aula 1. Introdução a Lógica Matemática
*
Conteúdo
AULA 1: Introdução a Lógica Matematica.
AULA 2: Proposições Simples e Compostas.
AULA 3: Tautologias, Contradições e Contingência.
AULA 4: Implicação Lógica
AULA 5: Equivalência Lógica
*
AULA 6: Tautologias e Equivalencias Lógicas
AULA 7: Noções de Algebra Booleana
AULA 8: Argumentos
AULA 9: Sentenças
AULA 10: Quantificadores.
Conteúdo
*
*
AULA 1. INTRODUÇÃO A LÓGICA MATEMÁTICA
*
Aristóteles e a Lógica
Aristóteles: seculo IV a.C. 384 - 322 a.C. 
Filósofo grego, aluno de Platão e professor de Alexandre, o Grande,
Considerado um dos maiores pensadores de todos os tempos,
Criador do pensamento lógico.
*
Sistematizou os conhecimentos existentes em Lógica.
Em sua obra Organum (“ferramenta para o correto pensar”), estabeleceu princípios tão gerais e tão sólidos que até hoje são considerados válidos.
Aristóteles e a Lógica
*
Preocupava-se com as formas de raciocínio que, a partir de conhecimentos considerados verdadeiros, permitiam obter novos conhecimentos.
A Lógica não era uma ciência teórica, prática ou produtiva, mas, sim, um instrumento para todas as ciências
Aristóteles e a Lógica
*
Leibnitz e a Lógica
Gottfried Wilhelm Leibniz: (1646-1716) filósofo e matemático.
Linguagem comum: sujeita a ambigüidades e imprecisões. 
Não seria o veículo ideal para a condução das idéias e da comunicação. 
*
Objetivo: construir uma linguagem artificial ou uma língua racional
Espécie de álgebra ou matemática generalizada 
As estruturas do pensamento e do raciocínio substituídas pelas estruturas do cálculo. 
leis sintáticas lógicas, criada a partir do levantamento das idéias mais simples, “alfabeto dos pensamentos humanos” , de forma que as idéias mais complexas pudessem ser desenvolvidas a partir desse “alfabeto”.
Leibnitz e a Lógica
*
Lógica? O Que é? 
Análise de métodos de raciocínio;
Um conjunto de regras para verificação se um pensamento é verdadeiro ou falso;
A Lógica está interessada principalmente na forma e não no conteúdo dos argumentos;
Lógica é essencialmente o estudo da natureza do raciocínio e as formas de aumentar ou melhorar sua utilização.
*
Lógica? Para quê??
Aumentar a capacidade de análise crítica dos argumentos utilizados na organização das idéias e dos processos criativos;
Melhorar a capacidade de racionalização e organização de idéias;
Melhorar a compreensão de conceitos básicos, na verificação formal de programas; 
Melhorar o entendimento do conteúdo de tópicos mais avançados.
*
Lógica: Estudo de Estruturas
Todo homem é “galinha”.
Marcos é um homem. 
Portanto, Marcos é “galinha”.
Toda loira é burra. 
Ofélia é uma loira. 
Portanto, Ofélia é burra.
Todo X é Y. 
Z é X. 
Portanto Z é Y.
*
Quantas pessoas devemos ter, no mínimo, numa sala, de modo a que possamos garantir que 4 delas tenham nascido num mesmo mês?
4 pessoas
24 pessoas
48 pessoas
37 pessoas
Problema dos Meses do Ano
*
4 pessoas em um mesmo mês
12 pessoas 1 em cada mês +
12 pessoas 1 em cada mês +
12 pessoas 1 em cada mês +...
Total 36 pessoas com 3 em cada mês
Mais 1 pessoa, coincidirá um dos meses.
Problema dos Meses do Ano
*
Quantas pessoas, no mínimo , devemos ter em um grupo para que possamos garantir a existência de pelo menos duas tendo nomes que começam com a mesma letra? (Considere um alfabeto com 26 letras.)
Problema do Alfabeto
*
26 letras – uma pessoa de cada letra
Mais 1 pessoa – 
a letra dessa pessoa 
coincidirá com alguma
 anterior
Resposta: 27 pessoas
Quantas pessoas, no mínimo , devemos ter em um grupo para que possamos garantir a existência de pelo menos duas tendo nomes que começam com a mesma letra? (Considere um alfabeto com 26 letras.) 
Problema do Alfabeto
*
Problema das Meias
Tenho 8 pares de meias brancas e 8 pares de meias pretas. Todos os pares estão numa gaveta. Quantas meias, no mínimo, devem ser retiradas da gaveta, para se ter certeza de obter um par de meias da mesma cor?
*
Problema das Meias
Tenho 8 pares de meias brancas e 8 pares de meias pretas. Todos os pares estão numa gaveta. Quantas meias, no mínimo, devem ser retiradas da gaveta, para se ter certeza de obter um par de meias da mesma cor?
 3 meias !!!
*
Em uma caixa, há 7 lenços brancos, 9 cinzas e 10 amarelos. 
Lenços serão retirados ao acaso, de dentro dessa caixa. Quantos lenços, no mínimo, devem ser retirados ao acaso, de dentro dessa caixa, para que se possa garantir que, dentre os lenços retirados, haja um de cada cor?
Problema dos Lenços
*
Em uma caixa, há 7 lenços brancos, 9 cinzas e 10 amarelos. 
Lenços serão retirados ao acaso, de dentro dessa caixa. Quantos lenços, no mínimo, devem ser retirados ao acaso, de dentro dessa caixa, para que se possa garantir que, dentre os lenços retirados, haja um de cada cor?
Problema dos Lenços
Pior das hipóteses:
10 amarelos
9 cinzas
1 branco
20 lenços
*
Nathalia tem uma blusa (B), uma saia (S) e uma calça (C). Uma das peças é vermelha, uma é branca e a outra é amarela, não necessariamente nessa ordem. 
Somente uma das afirmações abaixo é verdadeira:
B é vermelha
S não é vermelha
C não é amarela
Quais das cores das peças B , S e C , nessa ordem?
Problema das Roupas
*
Somente uma das afirmações abaixo é verdadeira:
Verdadeira: B é vermelha
Falsa: S não é vermelha 
Falsa: C não é amarela
Assim são verdades:
S é vermelha. 
C é amarela. 
Problema das Roupas
*
Falsa: B é vermelha
Verdadeira: S não é vermelha 
Falsa: C não é amarela
Assim são verdades:
B não é vermelha. 
C é amarela. 
Somente uma das afirmações abaixo é verdadeira:
Problema das Roupas
C seria vermelha
*
Falsa: B é vermelha
Falsa: S não é vermelha 
Verdadeira: C não é amarela
Assim são verdades:
B não é vermelha. 
S é vermelha. 
Somente uma das afirmações abaixo é verdadeira:
C é branca
B é amarela
Problema das Roupas
*
Problema das ovelhas
Um pastor está com suas ovelhas numa estrada. Uma delas anda na frente de outras duas, uma anda entre duas e uma anda atrás de duas. Quantas eram as ovelhas?
*
Problema das ovelhas
Um pastor está com suas ovelhas numa estrada. Uma delas anda na frente de outras duas, uma anda entre duas e uma anda atrás de duas. Quantas eram as ovelhas?
3 ovelhas !!!
*
(a) pelo menos uma delas tem altura superior a 1,90m
(b) pelo menos duas delas são do sexo feminino
(c) pelo menos duas delas fazem aniversário no mesmo mês
(d) pelo menos uma delas nasceu num dia par
(e) Pelo menos uma delas nasceu em janeiro ou fevereiro
Um jantar reune 13 pessoas de uma mesma família. 
Das afirmações a seguir, referentes às pessoas reunidas, a única necessariamente verdadeira é: (VUNESP)
Problema do Jantar
*
(a) Pelo menos uma delas tem altura superior a 1,90m
(b) Pelo menos duas delas são do sexo feminino
(c) Pelo menos duas delas fazem aniversário no mesmo mês
(d) Pelo menos uma delas nasceu num dia par
(e) Pelo menos uma delas nasceu em janeiro ou fevereiro
Um jantar reune 13 pessoas de uma mesma família. 
Das afirmações a seguir, referentes às pessoas reunidas, a única necessariamente verdadeira é: (VUNESP)
Problema do Jantar
*
Três irmãs — Ana, Maria e Cláudia — foram a uma festa com vestidos de cores diferentes. 
Uma vestiu azul, a outra vestiu branco, e a terceira, preto. 
Chegando à festa, o anfitrião perguntou quem eram. 
A de azul respondeu: “Ana é a que está de branco”;
A de branco disse: “Eu sou Maria”;
A de preto respondeu: “Cláudia é quem está de branco”. 
O anfitrião sabia que 
Ana sempre diz a verdade.
Ele foi capaz de identificar quem 
era cada irmã. 
As cores dos vestidos de 
Ana, Maria e Cláudia eram...
Problema das Irmãs
*
A de azul respondeu: “Ana é a que está de branco”;
A de branco disse: “Eu sou Maria”;
A de preto respondeu: “Cláudia é quem está de branco”. 
1a hipótese: Ana está de azul.
*
A de azul respondeu: “Ana é a que está de branco”;
A de branco disse: “Eu sou Maria”;
A de preto respondeu: “Cláudia é quem está de branco”. 
Ana diz sempre