Buscar

Rede de Computadores 03

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 6 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 6 páginas

Prévia do material em texto

Rede de Computadores
Aula 03
Elementos de Interconexão de rede
Nesta aula, você irá: 
1. Conhecer os principais dispositivos de interconexão de rede.
2. Aprender a utilização desses dispositivos.
3. Analisar os dispositivos e relacioná-los às camadas do modelo OSI e TCP/IP.
São considerados elementos de Interconexão de redes:
Placas de Redes, modem, Repetidores (HUB), Ponte (BRIDGE), Comutador (SWITCH), Roteador (ROUTER).
Veremos cada uma mais detalhadamente ao decorrer dessa aula.
Placa de Rede:
É o principal hardware de comunicação entre devices através de uma rede. Tem como função controlar o envio e o recebimento de dados através de uma rede. Cada arquitetura de rede exige um tipo específico de placa, seja ela com ou sem fio. 
Por exemplo: não é possível utilizar uma placa Ethernet em uma rede sem fio ou Token Ring, pois estas não utilizam a mesma linguagem de comunicação.
 Além da arquitetura das placas de rede, existem outros fatores que impedem essa comunicação como taxa de transferência, barramentos e tipos de conectores.
Diferenças de taxa de transferência A taxa de transmissão de placas Ethernet variam de 10 mbps, 100 mbps, 1000 mbps(1 gbps) ou 10.000 mbps(10 gbps), e as placas Token Ring de 4 mbps ou 16 mbps. 
 No caso das fibras óticas, a taxa de transmissão é da ordem de 10 gbps.
Diferença entre barramentos As placas de rede mais comuns utilizadas hoje em dia possuem dois tipos de barramento: PCI (mais novo) e ISA (mais antigo). Para os chamados computadores portáteis são utilizados placas PCMCIA. Uma novidade são as placas de redes USB que, apesar de existirem, são caras e, portanto, podem ser substituídas pelas citadas anteriormente. 
 Fazendo uma análise da taxa de transmissão X barramentos, nas placas com o barramento ISA, por serem mais antigas, a taxa de transmissão é de no máximo 10 mbps, pois esta limitada à velocidade do barramento.
Tipos de conectores:
Para cada placa de rede, devemos utilizar cabos adequados à sua velocidade e tecnologia. Para as placas Ethernet de 10 mbps, por exemplo, devemos utilizar cabos de par trançado de categoria 3 ou 5, ou então cabos coaxiais para placas de 100 mbps e, para se obter o máximo de transmissão, o requisito mínimo do cabeamento são cabos de par trançado blindados nível 5 (CAT 5). Nas redes Token Ring, para placas de rede de 4 mbps, os requisitos são cabos de par trançado de no mínimo categoria 2 (recomendável o uso de cabos categoria 3) e cabos de par trançado blindado categoria 4 ou superior para placas de 16 mbps. Redes Token Ring não usam cabos coaxiais.
Para a placa de rede funcionar ela deve estar configurada em seu device. Hoje em dia a maioria das placas possuem o recurso PnP ( Plug and Play), tendo os seus endereçamentos configurados pelo sistema operacional. Nas placas mais antigas é necessário fazer a configuração e, além das informações passadas pelo seu administrador de rede, existem informações necessárias para o funcionamento do device. São os canais de IRQ, DMA e os endereços de I/O.
Para os níveis de recursos do sistema, todas as placas de rede são parecidas: elas precisam de um endereço de IRQ, de um canal de DMA e de um endereço de I/O. Uma vez configurados corretamente, as placas estarão aptas a trafegar a informação pelas redes. 
 A configuração do canal de IRQ é necessária para que a placa de rede possa chamar o processador quando tiver dados a entregar. Já o canal de DMA é utilizado para transferir os dados diretamente à memória, diminuindo a carga sobre o processador. O endereço de I/O informa ao sistema onde estão as informações que devem ser movidas. 
 Um outro dado importante para estabelecer a comunicação entre placas de rede, é o endereçamento de nó, também chamado de “mac address” Este é um numero em hexadecimal, composto de 48 bits, único e criado durante o processo de criação da placa. Este endereço é utilizado por dispositivos que trabalham na camada de enlace do modelo OSI. 
Modem:
É o dispositivo eletrônico que transforma o sinal digital em analógico e vice-versa. A origem da palavra modem é devida à expressão “modulador e demodulador”.  O processo de conversão dos sinais digitais para analógicos é chamado de modulação, e é de onde se inicia a transmissão. Para que haja a comunicação, os modens devem estar trabalhando nos mesmos padrões.  Os modens podem ser divididos em:
Modens para acesso discado Utilizam a linha telefônica para realizar uma chamada diretamente a um provedor de acesso, com modens de recebimento de chamadas. Baixas velocidades. Taxas em Kilobits/s.
Modens de Banda larga Utilizam meios de transmissão para estabelecer a comunicação usando tecnologias como XDLS. (ADSL - Asymmetric Digital Subscriber Line). Altas velocidades. Taxas em Megabits/s.
Repetidores (HUB):
Repetidor ou HUB funciona como a peça central em uma rede de topologia estrela, ele recebe os sinais transmitidos pelas estações e retransmite-os para todas as demais. Trabalham no nível físico do modelo OSI.
Existem dois tipos de repetidores, os passivos e os ativos.
Repetidores Passivos Funcionam como um espelho, pois simplesmente refletem os sinais recebidos para todas as estações que estão conectadas a eles. Como eles apenas refletem o sinal, não fazem nenhum tipo de amplificação do sinal, o comprimento máximo permitido entre o HUB e a estação não pode ser superior a 50 metros, utilizando um cabo de par trançado. Normalmente não possuem alimentação de energia e funcionam como um concentrador de fios.
Repetidores ativos Além de refletir, reconstitui o sinal enfraquecido e retransmite-o, fazendo com que a sua distância máxima duplique em relação ao HUB passivo, sendo de 100 metros entre a estação e o repetidor. Possui alimentação de energia, e amplifica o sinal.
Ponte (BRIDGE)
Funcionando no nível de enlace da camada OSI, a bridge tem como finalidade traduzir os quadros de diferentes tecnologias, ou seja, interligar redes de diferentes tecnologias. Um exemplo comum é a interligação entre uma rede Ethernet e uma rede Token Ring. Apesar de as duas redes possuírem arquiteturas diferentes e incompatíveis entre si, é possível estabelecer a comunicação usando um protocolo único, no caso o TCP/IP, por exemplo. Se todos os devices de rede estão falando a mesma língua, basta quebrar a barreira física das arquiteturas de rede diferentes utilizando uma ponte, ou BRIDGE.
Como funciona a ponte?
Em cada ponte existe um microprocessador que analisa os endereços específicos da camada de enlace e armazena-os em uma tabela interna. Estes endereços estão associados à rede que o equipamento conectado pertence. Quando um pacote é enviado do device de rede e recebido pela ponte, esta analisa o seu conteúdo para verificar o campo do endereço de destino. Se a ponte identifica que o pacote está endereçado para a mesma rede à qual pertence, então ela encaminha para o dispositivo. Caso contrário, a BRIDGE encaminha para a outra sub-rede.
Comutador (SWITCH)
Funcionando no nível de enlace da camada OSI, o comutador tem a mesma função de uma ponte, ou seja, “ouvir” o tráfego de cada porta Ethernet, descobrir a qual porta cada dispositivo está conectado e armazenar essa informação em sua tabela. Uma vez identificado o endereço de destino, o switch consulta a tabela e envia o tráfego diretamente para a porta de destino. A diferença entre eles é que o comutador realiza a troca de informações entre vários devices simultaneamente. Pode ser considerado como uma ponte com várias portas. Além de ser mais veloz que a ponte, o SWITCH pode suportar diversos tipos de interfaces. (Cabo de fibra ótica, Cat 5, Cat 6, Ethernet 10 mbps, 100 mbps, 1 gbps).
 O Switch, uma vez conectado à rede, automaticamente já trabalha para identificar os endereços dos devices que estão conectados às suas portas, mas, por ser um equipamento gerenciável, ou seja, possuir um software para gerenciamento, sua função de implementação pode variar em quatro níveis: 
Classe 1: Switch não gerenciado. Função de comutar os pacotes entre as portas, não possui suportea VLAN´s.
Classe 2: Swicth gerenciado. Função de comutar os pacotes e criação de VLAN´s ( Virtual LAN’s ).
Classe 3: Swich Layer 3. Além de possuir todas as características da classe anterior, realiza alguns serviços de camada três (Camada de redes modelo OSI).
Classe 4: Realiza a comutação das camadas 4 a 7 do modelo OSI.  
VLAN – Virtual Local Área Network
As VLAN’s funcionam como uma rede virtual, utilizada para transporte de informação somente para os devices que pertencem a ela. Como o SWITCH possui informação de endereçamento em sua tabela interna, o administrador de rede, para diminuir o tráfego de difusão, pode criar redes virtuais para que pareçam que estão em uma rede física. 
Os SWITCHES podem ser classificados em:
Roteador (ROUTER):
Funcionando no nível de redes da camada OSI, o roteador é o dispositivo que decide qual é o melhor caminho que o tráfego de informações deve seguir, baseado em endereços lógicos. Este processo se chama roteamento. 
O roteamento segue uma regra definida na chamada tabela de roteamento que pode ser configurada manualmente ou através de protocolos de roteamento (RIP, OSPF, IGRP , BGP, EGP). Com base nessa tabela, o device  analisa o endereço IP de destino dos dados de entrada e direciona os dados para uma porta de saída.
O roteador também pode funcionar como um gateway de aplicação, utilizando as camadas superiores do modelo OSI, o que coincide com o modelo TCP/IP. Neste caso, utilizando os protocolos das camadas superiores o roteador pode fazer algumas funções como, por exemplo:
NAT – Network Adress Translation O protocolo TCP/IP possui um endereço de origem e destino. Com o NAT esses dados podem ser modificados, tanto o de origem quanto o de destino. A função do roteador para realizar o NAT é utilizada para converter um único endereço exclusivo da Internet em vários endereços de rede privada. Ou seja, como medida de segurança, o endereço de origem, no caso uma máquina dentro da rede interna, é trocado pelo endereço externo do roteador. Assim, usuários da internet não poderão obter informações referentes ao endereçamento da rede interna.
DHCP – Dynamic Host Configuration Protocol O protocolo DHCP é utilizado para definir automaticamente endereços IP para computadores. Assim não é necessário configurar seus endereços de rede manualmente. Essa operação se dá utilizando o protocolo RARP da camada de enlace. Esse protocolo coleta as informações de hardware (MAC Address) e as associa a um endereço IP (lógico). Essa função também pode ser realizada por equipamento específico para essa função: o servidor DHCP.
Firewall O roteador também pode exercer a função de filtro de pacotes selecionando e permitindo quais deles podem transpassá-lo. Utilizando listas de acesso, o roteador pode fazer filtros com as listas de acessos, proibindo e permitindo tráfegos específicos tanto para dentro quanto para fora de sua rede.
Para saber mais sobre os tópicos estudados nesta aula, pesquise na internet sites, vídeos e artigos relacionados ao conteúdo visto. Se ainda tiver alguma dúvida, fale com seu professor online utilizando os recursos disponíveis no ambiente de aprendizagem.
OUTRAS REFERÊNCIAS 
No site: www.books.google.com.br/books consulte o livro:
Computer Networks
inauthor:"Andrew S. Tanenbaum"
Consulte e resolva exercícios relacionados aos temas:
HUB, SWITCH e ROUTER
Nesta aula, você: 
Conheceu os principais dispositivos de interconexão de rede.
Aprendeu onde e como utilizar os dispositivos de interconexão.
Analisou os dispositivos e relacionou-os com as camadas do modelo OSI e TCP/IP.
Na próxima aula, abordaremos os seguintes assuntos:
Definição e comparação de arquitetura de aplicação e topologias de rede.
Identificação de topologias de rede.
Comparação entre redes ponto a ponto, multiponot, cliente/servidor e híbridas.

Outros materiais