Buscar

Estruturas Metálicas - Apostila

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 136 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 136 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 136 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

RICARDO GASPAR 
 
 
 
 
 
 
ESTRUTURAS METÁLICAS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
São Paulo 
2008 
 
SUMÁRIO 
 
 
1. AÇO ESTRUTURAL................................................................................................................ 1 
1.1. Estruturas metálicas............................................................................................................. 1 
1.1.1. Vantagens......................................................................................................................... 1 
1.1.2. Desvantagens ................................................................................................................... 2 
1.1.3. Normas ............................................................................................................................. 2 
1.1.4. Aplicações......................................................................................................................... 3 
1.2. Formas usuais de metais ferrosos ....................................................................................... 3 
1.2.1. Etapas de fabricação do aço ............................................................................................ 3 
1.3. Tipos de aços estruturais...................................................................................................... 4 
1.3.1. Aço carbono ..................................................................................................................... 4 
1.3.2. Aços de baixa liga e alta resistência................................................................................ 5 
1.3.3. Nomenclatura da ABNT.................................................................................................. 5 
1.3.4. Espessura mínima para peças estruturais....................................................................... 5 
1.3.5. Propriedades dos aços estruturais ................................................................................... 6 
1.4. Tensões e deformações......................................................................................................... 6 
1.5. Ensaios.................................................................................................................................. 7 
1.5.1. Ensaios de tração ............................................................................................................. 8 
1.5.2. Diagrama tensão - deformação ....................................................................................... 8 
1.6. Lei de Hooke....................................................................................................................... 11 
1.6.1. Ensaios de compressão .................................................................................................. 12 
1.6.2. Coeficiente de Poisson ................................................................................................... 12 
1.6.3. Forma geral da Lei de Hooke........................................................................................ 13 
2. PRODUTOS SIDERÚRGICOS ............................................................................................. 16 
2.1. Perfis laminados................................................................................................................. 16 
2.2. Perfis Soldados ................................................................................................................... 18 
2.3. Perfis conformados a frio ou de chapas dobradas............................................................ 19 
2.4. Tubos .................................................................................................................................. 20 
2.5. Tabelas de perfis................................................................................................................. 20 
2.6. Principais tipos de concepções estruturais ........................................................................ 22 
2.6.1. Treliças isostáticas ......................................................................................................... 22 
2.6.2. Tesouras isostáticas ....................................................................................................... 23 
3. CRITÉRIOS DE DIMENSIONAMENTO ............................................................................ 24 
3.1. Método das tensões admissíveis ......................................................................................... 24 
3.2. Método dos Estados Limites............................................................................................... 25 
3.2.1. Carregamentos ............................................................................................................... 27 
3.2.2. Coeficientes de majoração das ações ............................................................................ 27 
4. PEÇAS TRACIONADAS ....................................................................................................... 30 
4.1. Dimensionamento no Estado Limite Último (ELU) ......................................................... 30 
4.1.1. Peças tracionadas com furos ......................................................................................... 30 
4.1.2. Peças com extremidades rosqueadas............................................................................. 31 
4.1.3. Peças ligadas por pinos.................................................................................................. 31 
4.1.4. Limitação de esbeltez das peças tracionadas ................................................................ 31 
4.1.5. Diâmetro dos furos......................................................................................................... 32 
4.1.6. Exemplos ........................................................................................................................ 35 
5. TRELIÇAS.............................................................................................................................. 40 
Definição.......................................................................................................................................... 40 
Apoios .............................................................................................................................................. 41 
Método do equilíbrio dos nós .......................................................................................................... 42 
Dimensionamento............................................................................................................................ 49 
 
6. LIGAÇÕES ............................................................................................................................. 50 
6.1. Ligações com conectores.................................................................................................... 50 
6.1.1. Rebites ............................................................................................................................ 50 
6.1.2. Parafusos........................................................................................................................ 50 
6.2. Espaçamento entre conectores........................................................................................... 52 
6.3. Dimensionamento............................................................................................................... 53 
6.3.1. Dimensionamento ao corte ............................................................................................ 54 
6.3.2. Dimensionamento ao esmagamento da chapa (pressão de apoio)............................... 54 
6.3.3. Dimensionamento ao rasgamento da chapa ................................................................. 55 
6.3.4. Dimensionamento à tração da chapa............................................................................55 
6.3.5. Ruptura por cisalhamento de bloco............................................................................... 56 
6.3.6. Combinação de conectores ............................................................................................ 56 
6.3.7. Dimensionamento à tração e a corte simultâneos – fórmulas de interação ................ 57 
6.3.8. Resistência ao deslizamento em ligações por atrito ...................................................... 57 
6.4. Ligações soldadas............................................................................................................... 63 
6.4.1. Tipos, qualidade e simbologia de soldas ....................................................................... 63 
6.4.2. Elementos construtivos para projeto ............................................................................. 65 
6.4.3. Resistência das soldas .................................................................................................... 67 
7. PEÇAS COMPRIMIDAS....................................................................................................... 69 
7.1. Introdução .......................................................................................................................... 69 
7.1.1. Flambagem elástica ....................................................................................................... 70 
7.1.2. Flambagem inelástica.................................................................................................... 73 
7.2. Dimensionamento............................................................................................................... 77 
7.3. Flambagem local ................................................................................................................ 80 
7.3.1. Parâmetros de flambagem local .................................................................................... 81 
8. PEÇAS FLETIDAS................................................................................................................ 88 
8.1. Introdução .......................................................................................................................... 88 
8.2. Dimensionamento à flexão ................................................................................................ 89 
8.2.1. Momento de início de plastificação e momento de plastificação ................................. 89 
8.2.2. Resistência à flexão de vigas com contenção lateral .................................................... 90 
8.2.3. Resistência à flexão de vigas sem contenção lateral contínua..................................... 96 
8.3. Dimensionamento da alma das vigas .............................................................................. 103 
8.3.1. Conceitos ...................................................................................................................... 103 
8.3.2. Tensão de cisalhamento............................................................................................... 103 
8.3.3. Vigas I com um ou dois eixos de simetria sem enrijecedores..................................... 104 
APÊNDICE ................................................................................................................................... 108 
BIBLIOGRAFIA........................................................................................................................... 111 
 
 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 1
ESTRUTURAS METÁLICAS1 
 
1. AÇO ESTRUTURAL 
 
 O aço é uma liga formada basicamente dos elementos ferro (Fe) e carbono (C), com 
teor máximo de 1,7%. Outros elementos químicos são adicionados para modificar as 
características mecânicas do aço, de acordo com sua utilização. Estas adições também são 
feitas em baixas porcentagens, por exemplo: manganês 1,65%, cobre 0,60%, etc. 
 Na natureza, o elemento ferro é encontrado na hematita, minério de ferro em 
abundância no Brasil. O carbono acha-se na composição do carvão mineral. A fabricação 
do aço é iniciada num forno especial, chamado “alto forno”, onde o minério de ferro e o 
carvão mineral são levados a temperaturas bem elevadas (1500ºC). Aí, inicia-se o processo 
de fabricação que dará origem ao aço, naturalmente, após uma seqüência de operações 
siderúrgicas. 
 A primeira usina siderúrgica de porte construída no Brasil, foi a Companhia 
Siderúrgica Nacional (CSN), situada na cidade de Volta Redonda, inaugurada em 1946. 
Até então, a produção de aço do país era insignificante. Nossas construções em Estruturas 
Metálicas dependiam quase que totalmente, da importação de perfis. As poucas obras 
metálicas existentes na época podiam ser resumidas em pontes ferroviárias, feitas pelos 
ingleses, coberturas de pequeno porte e construções especiais, pouco freqüentes, como o 
viaduto Santa Efigênia em São Paulo. 
 A CSN foi construída com assistência técnica da “United States Steel”, na época da 
Segunda Guerra Mundial. O programa da empresa visava à fabricação de diversos 
produtos siderúrgicos, em especial, os perfis metálicos. Assim, foi introduzido no Brasil o 
“padrão americano” de perfis. Isto acarretou a adoção de normas de fabricação de aço de 
origem americana, unidades inglesas para as dimensões dos perfis, etc. 
 As principais Usinas Siderúrgicas brasileiras são a CSN, Cosipa, Usiminas, Belgo-
Mineira, Cofavi (Companhia Ferro e Aço Vitória), Açominas, etc. 
 A produção das siderúrgicas visa atender toda a demanda nacional nas diferentes 
áreas de consumo. Assim, algumas siderúrgicas atendem por exemplo, a indústria naval, a 
indústria automobilística, outras atendem a construção civil, etc. 
 
1.1. Estruturas metálicas 
1.1.1. Vantagens 
• construção estruturas com boa precisão, possibilitando alto controle de qualidade; 
• garantia de dimensões de propriedades dos materiais; 
 
1 Este trabalho é uma compilação de vários textos sobre Estruturas Metálicas de autores consagrados, 
indicados na Bibliografia, feito unicamente para Notas de Aulas, com finalidade didática. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 2
• material resistente a choques e vibrações; 
• possibilidade de execução de obras mais rápidas e limpas; 
• possibilidade de desmontagens e de reaproveitamento das peças estruturais; 
• alta resistência, o que implica em estruturas mais leves, vencendo grandes vãos. 
 
1.1.2. Desvantagens 
• limitação da fabricação das peças em fábricas; 
• limitação do comprimento das peças devido aos meios de transportes; 
• necessidade de tratamento anticorrosivo; 
• necessidade de mão de obra e equipamentos especializados; 
• limitação de dimensões dos perfis estruturais. 
 
 Um valor econômico para vigas em concreto armado é 6m, ou 1/10 do vão. Para 
estruturas metálicas o vão econômico é de 13m a 25m ou aproximadamente 1/20 do vão. 
 O valor de um projeto de estruturas metálicas é geralmente cobrado 10% do custo 
do peso da estrutura. 
 
1.1.3. Normas 
 As Normas que tratam de estruturas metálicas são as seguintes: 
ABNT – Projeto e execução de estruturas de aço de edifícios: método dos estados limites – 
NBR-8800 (NB14). Rio de Janeiro, ABNT, 1986. 
ASTM – American Society for Testing and Materials: especificações para fabricação do 
aço, acabamento dos perfis, etc. 
AISC – American Institute of Steel Construction: especificações para projetos de prédios 
industriais ou residenciais em estruturas metálicas. 
AASHO – American Association of State Highway Offcials: especificações para projeto 
de pontes rodoviárias metálicas. 
 Além das normas de aço, outras normas devem ser consultadas para a elaboração de 
projetos em estruturas metálicas: 
NBR 6123 (NB599) Forças devidas ao vento em edificações, 1988. 
NBR 6120 (NB5)Cargas para o cálculo de estruturas de edificações, 1980. 
NBR 9763 (EB1742) Aços para perfis laminados, chapas grossas e barras, usados em 
estruturas fixas, 1987 
NBR 7188 (NB6). Carga móvel em ponte rodoviária e passarela de pedestre, 1984. 
NBR 7189 (NB7). Cargas móveis para projeto estrutural de obras ferroviárias, 1989. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 3
1.1.4. Aplicações 
 As aplicações do aço em Engenharia Civil são muitas como: 
telhados; pontes e viadutos; postes; 
edifícios comerciais; pontes rolantes; passarelas; 
edifícios industriais; reservatórios; indústria naval; 
residências; torres; escadas; 
hangares; guindastes; mezaninos. 
 
1.2. Formas usuais de metais ferrosos 
 As formas usuais de metais ferrosos são: ferro fundido, aço e ferro laminado, os 
quais são produzidos em três etapas de fabricação. 
1.2.1. Etapas de fabricação do aço 
 O processo industrial de obtenção do aço compreende o aproveitamento do ferro 
contido no minério de ferro e pela eliminação progressiva de impurezas. Na forma líquida, 
já isento das impurezas do minério, recebe adições que lhe dão as características desejadas, 
sendo solidificado e preparado para a forma requerida. O processo de fabricação do aço 
pode ser definido em três etapas: 
• 1a. fase: produção do ferro gusa (alto forno): o minério de ferro (hematita) é 
submetido a um forno de alta temperatura, cerca de 1500 ºC, juntamente com 
carvão mineral, resultando um produto denominado ferro gusa, também conhecido 
como ferro fundido. O ferro gusa não tem aplicação em estruturas metálicas por 
apresentar grande porcentagem de carbono, sendo por isto, quebradiço. As 
características do ferro fundido são as seguintes: teor de carbono: 3% a 4,5%; ferro: 
96%, mais impurezas; 
• 2a. fase: aciaria: o aço é obtido pela diminuição dos teores de carbono, silício e 
enxofre (refino), em equipamentos apropriados. O ferro gusa é depositado em 
fornos que os transforma em lingotes, além de reduzir seu teor de carbono, 
conforme as especificações. As características aço produzido são: teor de carbono: 
aproximadamente < 0,7% a 1,7% (pode variar de 0% a 1,7%); 
• 3a. fase: laminação: fabricação dos perfis em laminadores padronizados (rolled 
beam) em medidas americanas e européias. Depois da fase de aciaria (refino do 
ferro gusa) passa-se à produção de lingotes contínuos, na qual se inicia a 
solidificação do aço no molde, que é retirado continuamente por rolos extratores. O 
teor de carbono para os aços laminados é < 0,2%. Na laminação, os lingotes são 
pré-aquecidos e deformados pela passagem sobre pressão em laminadores cilindros, 
reduzindo sua espessura até a medida desejada para comercialização. As chapas 
sofrem também redução de espessura por laminação. 
 O carbono aumenta a resistência do aço porém, o torna mais duro e quebradiço. 
Contudo, o aumento do teor de carbono produz redução na ductilidade do aço, o que 
acarreta problemas com solda. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 4
 Os aços carbonos podem ser soldados sem precauções especiais, somente até o teor 
de carbono de 0,30%. 
 Os aços de baixa liga são aços carbonos acrescidos de elementos de liga (cromo, 
colúmbio, cobre, manganês, molibdênio, níquel, fósforo, vanádio, zircônio), os quais 
melhoram algumas de suas propriedades mecânicas. 
 As ligas aumentam a resistência do aço devido à modificação da micro-estrutura 
dos grãos finos. É possível atingir resistência elevada com 0,20% de carbono e permitir 
soldagens sem precauções. 
1.3. Tipos de aços estruturais 
 Os aços estruturais para Construção Civil são basicamente: aço carbono e aço de 
baixa liga. 
1.3.1. Aço carbono 
 É o aço mais indicado para estruturas metálicas, pois é fácil de ser encontrado em 
todas as bitolas. Como exemplo de aço carbono fabricado no Brasil, o ASTM A-36 ou 
simplesmente A-36. Numa terminologia menos técnica pode-se interpretar o aço A-36 
como aço comum. 
 Os aços carbono apresentam taxas que variam aproximadamente de 0,15% a 1,7% 
de carbono. 
Tabela 1.1 Tipos de aço carbono 
A36 
(ASTM) 
Usado em perfis, chapas e barras para a construção de edifícios, pontes 
e estruturas pesadas C = 0,25% a 0,29% 
fy = 36 ksi ≈ 250 MPa fu = 400 a 550 MPa 
A307 
(ASTM) 
Aço de baixo teor de carbono para fabricação de parafusos comuns 
(C < 0,15%) fu = 415 MPa 
A325 
(ASTM) 
Aço de médio teor de carbono para fabricação de parafusos de alta 
resistência (0,30% < C < 0,59%) 
fy = 550 MPa fu = 750 MPa 
A570 
(ASTM) 
Empregado para perfis de chapas dobradas devido a sua maleabilidade 
Grau 33: fy = 230 MPa fu = 360 MPa 
Grau 40: fy = 280 MPa fu = 380 MPa 
Grau 45: fy = 310 MPa fu = 410 MPa 
1 ksi = 70,3 kgf/cm2 . (kilo-libra por polegada quadrada) 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 5
 Em função do teor de carbono, os aços distinguem-se em quatro categorias: 
• baixo carbono C < 0,15% 
• moderado 0,15% < C < 0,29% 
• médio carbono 0,30% < C < 0,59% 
• alto carbono 0,60% < C < 1,70% 
 
1.3.2. Aços de baixa liga e alta resistência 
 São aços de resistência mecânica mais elevadas, possibilitando, assim, redução do 
peso próprio da estrutura. Devem ser utilizados em obras especiais tais como viadutos ou 
estruturas de grandes vãos, onde a redução do peso é importante. Evidentemente, são perfis 
de custo mais elevado que os comuns. Exemplo de aço de alta resistência: ASTM A-242, 
fabricado pela CSN, sob o nome comercial de aço COR-TEN. Este tipo de aço tem 
também elevada resistência à oxidação, não necessitando qualquer pintura de proteção. 
 O aço de alta resistência, do tipo CORTEN (ou similar) possui tensão de 
escoamento de 350 MPa. 
Tabela 1.2 Aços de baixa liga e alta resistência mecânica e à corrosão. 
A242 (ASTM) 
fy = 290 MPa a 350 MPa 
Perfis: 
Grupo 1 e 2: fy = 345 MPa fu = 480 MPa 
Grupo 3 fy = 315 MPa fu = 460 MPa 
Chapas e barras: 
19≤t : fy = 345 MPa fu = 480 MPa 
3819 ≤< t : fy = 315 MPa fu = 460 MPa 
10038 ≤< t : fy = 290 MPa fu = 435 MPa 
t = espessura 
 
1.3.3. Nomenclatura da ABNT 
 A ABNT prescreve a seguinte nomenclatura para os aços estruturais: 
MR 250 fy = 250 MPa fu = 400 MPa 
AR 290 fy = 290 MPa fu = 415 MPa 
AR 345 fy = 345 MPa fu = 485 MPa 
Módulo de Elasticidade: E = 205 GPa E=205000 MPa 20500 kN/cm2. 
1.3.4. Espessura mínima para peças estruturais 
 A espessura mínima das peças metálicas está ligada à sua proteção contra a 
corrosão. 
• sem necessidade de proteção contra corrosão: 3mm 
• com necessidade de proteção contra corrosão: 5mm 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 6
1.3.5. Propriedades dos aços estruturais 
• Ductilidade: é a capacidade do material de se deformar sob a ação de cargas sem 
se romper. Quanto mais dúctil o aço, maior será a redução de área ou o 
alongamento antes da ruptura. A ductilidade tem grande importância nas estruturas 
metálicas, pois permite a redistribuição de tensões locais elevadas. As barras de aço 
sofrem grandes deformações antes de se romper, o que na prática constitui um 
aviso da presença de tensões elevadas; 
• Fragilidade: é o oposto da ductilidade. Os aços podem ter características de 
elementos frágeis em baixas temperaturas; 
• Resiliência: é a capacidade do material de absorver energia mecânica em regime 
elástico; 
• Tenacidade: é a capacidade do material de absorver energia mecânica com 
deformações elásticas e plásticas; 
• Dureza: é a resistência ao risco ou abrasão. A dureza pode ser medida pela 
resistência que sua superfície se opõe à introdução de uma peça de maior dureza; 
• Resistência à Fadiga: é a capacidade do material suportar aplicações repetidas de 
carga ou tensões. Éusualmente expressa como um limite de tensão que causa a 
falha sob condições de esforços repetidos. Esta tensão pode ocorrer em regime 
elástico. 
 
1.4. Tensões e deformações 
 Os conceitos de tensão e deformação podem ser ilustrados, de modo elementar, 
considerando-se o alongamento de uma barra prismática (barra de eixo reto e de seção 
constante em todo o comprimento). 
 Considere-se uma barra prismática carregada nas extremidades por forças axiais P 
(forças que atuam no eixo da barra), que produzem alongamento uniforme ou tração na 
barra. Sob ação dessas forças originam-se esforços internos no interior da barra. Para o 
estudo desses esforços internos, considere-se um corte imaginário na seção mm, normal a 
seu eixo. Removendo-se, por exemplo, a parte direita do corpo, os esforços internos na 
seção considerada (m-m) transformam-se em esforços externos. Supõe-se que estes 
esforços estejam distribuídos uniformemente sobre toda a seção transversal. 
m
m
σ
L
P
δ
P
P
 
Figura 1.1 barra prismática submetida a esforços de tração 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 7
 Para que não se altere o equilíbrio, estes esforços devem ser equivalentes à 
resultante, também axial, de intensidade P. 
 Quando estas forças são distribuídas perpendiculares e uniformemente sobre toda a 
seção transversal, recebem o nome de tensão normal, sendo comumente designada pela 
letra grega σ (sigma). 
 Pode-se ver facilmente que a tensão normal, em qualquer parte da seção transversal 
é obtida dividindo-se o valor da força P pela área da seção transversal, ou seja, 
A
P=σ (1)
 A tensão possui a mesma unidade de pressão que, no Sistema Internacional de 
Unidades, é o Pascal (Pa), o qual corresponde à carga de 1N atuando sobre uma superfície 
de 1m2, ou seja, Pa = N/m2. 
 Como a unidade Pascal é muito pequena, costuma-se utilizar com freqüência seus 
múltiplos: MPa = N/mm2 = (Pa×106), GPa = kN/mm2 = (Pa×109), etc. Em outros Sistemas 
de Unidades, a tensão ainda pode ser expressa em quilograma força por centímetro 
quadrado (kgf/cm2), libra por polegada quadrada (lb/in2 ou psi), etc. 
 Quando a barra é alongada pela força P, como indica a Figura acima, a tensão 
resultante é uma tensão de tração; se as forças tiverem o sentido oposto, comprimindo a 
barra, tem-se tensão de compressão. 
 A condição necessária para validar a equação (1) é que a tensão σ seja uniforme em 
toda a seção transversal da barra. 
 O alongamento total de uma barra submetida a uma força axial é designado pela 
letra grega δ (delta). O alongamento por unidade de comprimento, denominado 
deformação específica, representada pela letra grega ε (epsilon), é dado pela seguinte 
equação: 
L
δε = (2)
onde: 
ε = deformação específica 
δ = alongamento ou encurtamento 
L = comprimento total da barra. 
 Note-se que a deformação ε é uma quantidade adimensional. É de uso corrente no 
meio técnico representar a deformação por uma fração percentual (%) multiplicando-se o 
valor da deformação específica por 102 ou mesmo até por mil (‰) multiplicando-se por 
103. 
 
1.5. Ensaios 
 Para se conhecer o comportamento estrutural do aço realizam-se ensaios em 
laboratório, utilizando-se corpos de prova normalizados, com o intuito de se obter as 
características mecânicas do material, tais como, módulo de elasticidade, tensão de ruptura, 
etc. Estas características mecânicas são utilizadas nos projetos estruturais. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 8
1.5.1. Ensaios de tração 
 Nos ensaios de tração do aço distinguem-se dois casos: aços que apresentam 
patamar de escoamento e os aços que não apresentam. 
 O ensaio de tração tem por objetivo o traçado da curva tensão-deformação e a 
obtenção das características mecânicas do material. Consiste em tracionar um corpo de 
prova em uma máquina de ensaio e registrar sucessivamente as tensões (σ) aplicadas e as 
correspondentes deformações unitárias (ε). 
 
1.5.2. Diagrama tensão - deformação 
 As relações entre tensões e deformações para um determinado material são 
encontradas por meio de ensaios de tração. Nestes ensaios são medidos os alongamentos δ, 
correspondentes aos acréscimos de carga axial P, que se aplicam à barra, até a sua ruptura. 
 Obtêm-se as tensões (σ) dividindo as forças pela área da seção transversal da barra 
e as deformações específicas (ε) dividindo o alongamento pelo comprimento ao longo do 
qual a deformação é medida. Deste modo obtém-se um diagrama tensão-deformação do 
material em estudo. Na Figura 1.2 ilustra-se o diagrama tensão-deformação típico do aço. 
 região
elástica região plástica
C
ε0
L
p
P
r
f
f Ap
e
f
σ
escoamento
B
ε
δ
P
εr
D
E
 
Tensão 
A
P=σ 
 
Deformação específica 
 
L
δε = 
fr = tensão de ruptura 
fe ou fy = tensão de escoamento 
fp = tensão limite de proporcionalidade 
 
Figura 1.2 Diagrama tensão-deformação do aço 
 
 Região elástica: de 0 até A as tensões são diretamente proporcionais às 
deformações; o material obedece a Lei de Hooke, mais à frente enunciada, e o diagrama é 
linear. 0 ponto A é chamado limite de proporcionalidade, pois, a partir desse ponto deixa 
de existir a proporcionalidade. 
 Nesta fase, as deformações desaparecem quando retiradas as cargas aplicadas. 
Portanto, não há deformação permanente nesta fase. 
 Daí em diante inicia-se uma curva que se afasta da reta AO , até que em B inicia-se 
o fenômeno do escoamento. 
 Região plástica: é aquela situada após o ponto A até a ruptura. Nesta fase as 
deformações no material são permanentes. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 9
 No ponto B inicia-se o escoamento, caracterizado por um aumento considerável da 
deformação com pequeno aumento da força de tração. 
 A presença de um ponto de escoamento pronunciado, seguido de grande 
deformação plástica é uma característica do aço, que é o mais comum dos metais 
estruturais em uso atualmente. Tanto os aços quanto as ligas de alumínio podem sofrer 
grandes deformações antes da ruptura. Materiais que apresentam grandes deformações, 
antes da ruptura, são classificados de materiais dúcteis. Outros materiais como o cobre, 
bronze, latão, níquel, etc, também possuem comportamento dúctil. Por outro lado, os 
materiais frágeis ou quebradiços são aqueles que se deformam relativamente pouco antes 
de romper-se, como por exemplo, o ferro fundido, concreto, vidro, porcelana, cerâmica, 
gesso, entre outros. 
 O ponto C é o final do escoamento o material começa a oferecer resistência 
adicional ao aumento de carga, atingindo o valor máximo ou tensão máxima no ponto D, 
denominado limite máximo de resistência. A partir do ponto C verifica-se outro fenômeno 
físico, chamado encruamento. O aumento de resistência das ligas metálicas ocorrida após o 
escoamento é chamado encruamento. A fase plástica caracteriza-se pelo endurecimento por 
deformação a frio, ou seja, pelo encruamento do material. Além deste ponto, maiores 
deformações são acompanhadas por reduções da carga, ocorrendo, finalmente, a ruptura do 
corpo-de-prova no ponto E do diagrama. 
O limite de resistência corresponde ao valor máximo de tensão que o material pode 
suportar (ponto D). Depois de atingida esta carga máxima, inicia-se a fase de ruptura 
caracterizada pelo fenômeno da Estricção. A Estricção é uma diminuição acentuada da 
seção transversal do corpo de prova até a sua ruptura. No ponto E, verifica-se a ruptura da 
peça após a estricção, que teve início em D. Observa-se, também, queda no valor da tensão 
aparente entre D e E. 
Na Figura 1.3 são ilustrados diagramas tensão – deformação de vários tipos de aço, 
em escala real. 
 
Figura 1.3 Diagramas tensão-deformação em escala real 
 
EstruturasMetálicas, de Madeiras e Especiais Ricardo Gaspar 10
 O limite de escoamento para o aço A-36 é fy= 250 MPa e o limite de 
proporcionalidade ou elasticidade (fp) ocorre aproximadamente a 80% da tensão de 
escoamento, portanto, fp = 200 MPa. O limite de elasticidade corresponde a uma 
deformação da ordem de 0,10% no corpo de prova, portanto, trabalhando-se na fase 
elástica as deformações sofridas são pequenas. O aumento de deformação no escoamento 
cresce aproximadamente de 1,5% a 2,0%. 
 Apresenta-se a seguir uma tabela com os valores principais das tensões sofridas por 
um corpo de prova de aço A-36 de comprimento L= 20 cm, admitidas as deformações 
indicadas. O quadro abaixo não se prende a um ensaio específico, os seus números têm 
como objetivo fornecer somente uma ordem de grandeza desses valores. 
 
Tabela 1.3 Ensaio do aço A-36 
Aço A-36 Tensão (σ) (MPa) 
Deformação 
Específica (ε) (%) 
Deformação (δ) 
(cm) 
Limite de elasticidade 200 0,10 0,02 
Início do escoamento 250 0,15 0,03 
Fim do escoamento = início do encruamento 250 2,00 0,4 
Limite de resistência = tensão máxima 450 16 3,2 
Limite de ruptura = tensão de ruptura 290 24 4,8 
 
 Há outro tipo de aço que não apresenta patamar de escoamento. O aspecto da curva 
tensão-deformação para estes aços está indicado na Figura 1.4. Observa-se que a inclinação 
da reta referente à fase elástica dos aços é sempre a mesma porque o módulo de 
elasticidade apresenta valores idênticos para os diferentes tipos de aço. 
0
fp
σ
rf
fe
εr ε (%)εp= 0,2 
Figura 1.4 Diagrama tensão-deformação de aços sem patamar de escoamento 
 
 Nesta curva não existe um limite ou tensão de escoamento definida claramente no 
gráfico. Entretanto, por analogia com os aços que apresentam patamar de escoamento, 
define-se um limite de escoamento convencional, como sendo aquela tensão que deixa uma 
deformação permanente de 0,2%, quando o corpo de prova é descarregado. 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 11
1.6. Lei de Hooke 
 Os diagramas tensão-deformação ilustram o comportamento de vários materiais, 
quando carregados por tração. Quando um corpo-de-prova do material é descarregado, isto 
é, quando a carga é gradualmente diminuída até zero, a deformação sofrida durante o 
carregamento desaparecerá parcial ou completamente. Esta propriedade do material, pela 
qual ele tende a retornar à forma original, é denominada elasticidade. Quando a barra volta 
completamente à forma original, diz-se que o material é perfeitamente elástico; mas se o 
retorno não for total, o material é parcialmente elástico. Neste último caso, a deformação 
que permanece depois da retirada da carga é denominada deformação residual. 
 A relação linear da função tensão-deformação foi apresentada por Robert HOOKE 
em 1678 e é conhecida por LEI DE HOOKE. Verifica-se que o trecho do diagrama da 
Figura 1.2, entre os pontos O e A é retilíneo, o que caracteriza a relação linear entre 
tensões e deformações. Daí, o conhecido enunciado da Lei de Hooke: “Na fase elástica, as 
tensões são proporcionais às deformações”, ou seja, 
εσ E= (3)
onde 
σ = tensão normal 
E = módulo de elasticidade do material 
ε = deformação específica 
 
 O Módulo de Elasticidade é o coeficiente angular da região linear do diagrama 
tensão-deformação, sendo diferente para cada material. O Módulo de Elasticidade 
representa fisicamente a força de ligação entre as moléculas do corpo em estudo. Mede a 
deformabilidade do material; quanto maior for o seu valor, menor será a deformação 
sofrida. 
 O valor do módulo de elasticidade é constante para cada metal ou liga metálica. É 
uma característica física do material. 
 A Lei de Hooke é válida somente para a fase elástica dos materiais. Por este 
motivo, quaisquer que sejam os carregamentos ou solicitações sobre o material, vale a 
superposição de efeitos, ou seja, pode-se avaliar o efeito de cada solicitação sobre o 
material e depois somá-los. 
 Alguns valores de Módulo de Elasticidade (E) são mostrados na Tabela abaixo. 
Para a maioria dos materiais, o valor do Módulo de Elasticidade, sob compressão ou sob 
tração, são iguais. 
Tabela 1.4 Propriedades mecânicas típicas de alguns materiais 
Material Peso específico (kN/m3) 
Módulo de Elasticidade 
(GPa) 
Aço 78,5 200 a 210 
Alumínio 26,9 70 a 80 
Bronze 83,2 98 
Cobre 88,8 120 
Ferro fundido 77,7 100 
Madeira 0,6 a 1,2 8 a 12 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 12
Deformações elásticas 
 Quando uma barra é carregada por tração simples, a tensão axial é AP /=σ e a 
deformação específica é L/δε = . Combinando estes resultados com a Lei de HOOKE, 
tem-se a seguinte expressão para o alongamento da barra: 
EA
PL=δ (4)
 Esta equação mostra que o alongamento de uma barra linearmente elástica é 
diretamente proporcional à carga e ao comprimento e inversamente proporcional ao 
módulo de elasticidade e à área da seção transversal. O produto EA é conhecido como 
rigidez axial da barra. 
1.6.1. Ensaios de compressão 
 Na determinação das características mecânicas dos aços estruturais, não é freqüente 
o emprego do ensaio de compressão, dando-se preferência ao ensaio de tração. Existem 
dificuldades neste tipo de ensaio, como a possibilidade de flambagem do corpo de prova e 
outros problemas práticos ligados especificamente ao ensaio. 
 Os ensaios de compressão são realizados quase sempre no campo da pesquisa, 
visando comparar seus resultados com os ensaios de tração. Quando se ensaia à 
compressão obtém-se também a curva tensão-deformação, os limites de proporcionalidade 
e de escoamento, módulos de elasticidade, etc. Os valores encontrados para estas 
propriedades são aproximadamente iguais aos obtidos num ensaio de tração. Nos estudos 
teóricos e cálculos, admitem-se que as propriedades mecânicas citadas são as mesmas, 
quando o material trabalha à tração ou à compressão. Na verdade, as diferenças 
ocasionalmente encontradas para certos tipos de aço são pequenas. 
 Assim, a validade da Lei de Hooke ocorre tanto para peças comprimidas como para 
tracionadas, admitindo-se a mesma curva tensão – deformação, com os mesmos valores, 
nos dois casos. O módulo de elasticidade, limites de escoamento e de elasticidade, etc, 
apresentam conseqüentemente, os mesmos números para tração ou compressão. 
1.6.2. Coeficiente de Poisson 
 Quando uma barra é tracionada, o alongamento axial é acompanhado por uma 
contração lateral, isto é, a largura da barra torna-se menor enquanto cresce seu 
comprimento. Quando a barra é comprimida, a largura da barra aumenta. A Figura 1.4 
ilustra essas deformações. 
P
P
P
P
 
Figura 1.4 Deformações longitudinal e lateral nas barras 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 13
 A relação entre as deformações transversal e longitudinal é constante dentro da 
região elástica, e é conhecida como relação ou coeficiente de Poisson (v); definido como: 
allongitudindeformação
lateraldeformação=υ (5)
 Esse coeficiente é assim conhecido em razão do famoso matemático francês S. D. 
Poisson (1781-1840). Para os materiais que possuem as mesmas propriedades elásticas em 
todas as direções, denominados isotrópicos, Poisson achou ν ≈ 0,25. Experiências com 
metais mostram que o valor de v usualmente encontra-se entre 0,25 e 0,35. 
 Se o material em estudo possuir as mesmas propriedades qualquer que seja a 
direção escolhida, no ponto considerado, então é denominado, material isótropico. Se o 
material não possuir qualquer espécie de simetria elástica, então é denominado material 
anisotrópico. Um exemplo de material anisotrópico é a madeira pois, na direção de suas 
fibras a madeira é mais resistente. 
 
1.6.3. Forma geral da Lei de Hooke 
 Considerou-se anteriormente ocaso particular da Lei de HOOKE, aplicável a 
exemplos simples de solicitação axial. 
 Se forem consideradas as deformações longitudinal (εL) e transversal (εt), tem-se, 
respectivamente: 
EL
σε = e 
ELt
υσνεε == (6)
 No caso mais geral, no qual um elemento do material é solicitado por três tensões 
normais σx, σy e σz, perpendiculares entre si, às quais correspondem respectivamente às 
deformações εx, εy e εz, a Lei de HOOKE é definida como: 
σy x
σ
σz
 
( )[ ]zyxx E σσυσε +−= 1 
( )[ ]xzyy E σσυσε +−= 1 
( )[ ]yxzz E σσυσε +−= 1 
(7)
 
 A lei de HOOKE é válida para materiais homogêneos, ou seja, aqueles que 
possuem as mesmas propriedades (mesmos E e ν) em todos os pontos. 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 14
Exemplos 
1. Determinar a tensão de tração e a deformação específica de uma barra prismática de 
comprimento L=5,0m, seção transversal circular com diâmetro φ=5cm e Módulo de 
Elasticidade E=20.000 kN/cm2 , submetida a uma força axial de tração P=30 kN. 
L= 5 m
P P=30 kN
 
4
2πφ=A 6,19
4
52 =×= πA cm2 
A
P=σ 53,1
6,19
30 ==σ kN/cm2 ou 15,3 MPa 
EA
PL=δ 0382,0
6,19000.20
50030 =×
×=δ cm 
L
δε = 0000764,0
500
0382,0 ==ε ou × 1000 = 0,0764 (‰) 
 
2. A barra da figura é constituída de 3 trechos: trecho AB=300 cm e seção transversal com 
área A=10cm2; trecho BC=200cm e seção transversal com área A=15cm2 e trecho 
CD=200cm e seção transversal com área A=18cm2 é solicitada pelo sistema de forças 
indicado na Figura. Determinar as tensões e as deformações em cada trecho, bem como o 
alongamento total. Dado E=21.000 kN/cm2. 
300 cm
30kN
A
150kN
200 cm200 cm
B C
50kN
D
170kN
 
 
 
Trecho A-B 
R=150kN
300 cm
150kN
A
170kN
50kN
30kN
B
=
 
A
P=σ 15
10
150 ==σ kN/cm2 
EA
PL=δ 214,0
10000.21
300150 =×
×=δ cm 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 15
L
δε = 713,01000
300
214,0 =×=ε (‰) 
 
Trecho B-C 
R=120kN30kNR=120kN
150kN
=
200 cm
B C
50kN
170kN
=
 
A
P=σ 8
15
120 ==σ kN/cm2 
EA
PL=δ 076,0
15000.21
200120 =×
×=δ cm 
L
δε = 38,01000
200
076,0 =×=ε (‰) 
 
Trecho C-D 
30kNR=170kN
150kN
=
200 cm
50kN
C D
170kN
 
A
P=σ 44,9
18
170 ==σ kN/cm2 
EA
PL=δ 0899,0
18000.21
200170 =×
×=δ cm 
L
δε = 45,01000
200
0899,0 =×=ε (‰) 
 
Alongamento total 
38,00899,0076,0214,0 =++=δ cm 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 16
2. PRODUTOS SIDERÚRGICOS 
 
 Os produtos laminados, os perfis soldados e os elementos de ligação são os 
principais materiais empregados em Estruturas Metálicas. 
 A indústria siderúrgica oferece ao projetista diversos produtos com aplicações nas 
construções civis e seus acabamentos, dos quais destacam-se: 
• perfis laminados a quente; 
• perfis soldados; 
• perfis conformados a frio (chapa dobrada); 
• chapas laminadas a quente; 
• chapas laminadas a frio; 
• tubos de várias formas. 
 
2.1. Perfis laminados 
 Os perfis laminados recebem esta denominação porque no seu processo de 
fabricação, rolos especiais chamados laminadores, produzem as formas finais dos 
diferentes perfis. 
 São os mais empregados na construção de estruturas metálicas e sua fabricação é 
feita em diversas dimensões e modelos padronizados. A tabela abaixo ilustra os produtos 
siderúrgicos mais utilizados. 
 
Tabela 2.1 Tipos de produtos siderúrgicos: 
 
 
 
 
Cantoneira de abas iguais Cantoneira de abas desiguais C padrão I padrão 
 
 
 
 
Tê laminado Tê cortado de I ou H Tubo quadrado Tubo circular 
 
 
 
 
Perfil soldado Perfil laminado a frio Chapas e barras 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 17
1– Cantoneiras: são empregadas em treliças, contraventamentos, linhas de transmissão de 
energia elétrica e ligações. 
2- Perfis T: têm aplicações em estruturas soldadas e podem ser fabricados por processos de 
laminação ou através do corte de perfis I ou H. 
3- Perfis I e U: empregados principalmente como vigas. Suas abas não têm faces paralelas 
e as bordas são arredondadas. 
4- Perfis H: são empregados em elementos sujeitos à carga axial de compressão. 
5- Barras chatas e redondas: as barras chatas são utilizadas em ligações e as barras 
redondas, em elementos tracionados (tirantes). 
6- Chapas laminadas (a quente): têm espessura compreendida entre 3mm e 50mm, pois, 
chapas mais espessas apresentam problemas de soldabilidade. As suas principais 
aplicações estão nas ligações, emendas de vigas e pilares, bases de colunas e na fabricação 
de perfis soldados. 
7- Chapas laminadas (a frio): são fornecidas em bobinas, com espessura inferior a 3mm e 
largura em torno de 2,50m. São empregadas na obtenção de perfis conformados a frio, 
também chamados, perfis de chapa dobrada, usados em estruturas leves, tais como, 
coberturas industriais tipo arco, Shed, etc. Outras aplicações são: fôrmas para lajes de 
edifícios, materiais para revestimento de paredes externas, internas e de cobertura. 
 
• Perfis laminados 
 
Perfil I ou perfil de aba estreita 
h = 3” a 20” 
h = 3” a 12” (comerciais) 
 
Inclinação da face interna da aba = 16,67%; 
São utilizadas como elementos resistentes à flexão 
(vigas). 
 
 Perfil H 
bf = d 
(bf = mesa ou flange) 
d = 4” a 6” 
 
Pouco uso em estruturas. 
 
 
T
T
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 18
 
Perfil C ou U ou perfil de aba estreita 
h = 3” a 15” 
 
 
Peças submetidas à flexão, vigas, colunas de postos de 
gasolina, etc. 
 
 
 
Cantoneiras: 
Fabricadas com abas iguais e desiguais: 
Abas iguais – (7/8” x 7/8”x 1/8)” → (8 x 8 x 1)” 
Abas desiguais – (13/4 x 11/4 x 1/8)” → (8 x 4 x 1)” 
 
Utilizadas em peças submetidas à tração ou compressão 
(treliças, tesouras). 
 
• Combinações de perfis laminados 
 
 É muito comum a combinação de perfis em estruturas metálicas. As figuras abaixo 
ilustram algumas das várias possibilidades de combinações de perfis metálicos. 
 
 
 
2.2. Perfis Soldados 
 Como o próprio nome sugere, são perfis fabricados de chapas planas soldadas. 
Correspondem, no Brasil, aos chamados perfis de abas largas (wide-flange) americanos. A 
sua seção transversal é semelhante a de um perfil I com abas mais alargadas e as faces das 
mesas paralelas. São fabricadas em grande variedade de dimensões de alma e mesa. A 
CSN padronizou as seguintes séries de perfis soldados: 
• Perfil série CS – Colunas Soldadas 
• Perfil série VS – Vigas Soldadas 
• Perfil série CVS – Colunas e Vigas Soldadas 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 19
 Pode-se considerá-los como a continuação das séries I e H de perfis laminados em 
dimensões maiores. 
 São utilizados também quando são necessários perfis de grandes dimensões ou 
seções especiais. As aplicações dos perfis soldados são as mesmas dos perfis laminados, ou 
seja, vigas de pontes, galpões industriais (pilares e vigas), edifícios de grande altura, etc. 
• Perfis de chapas soldadas 
 
Perfis I h > b 
 
VS (Viga Soldada):para peças submetidas à flexão: para vigas 
 
 
CVS (Coluna Viga Soldada): para peças submetidas à flexo-
compressão 
 
Perfil H 
 
CS (Coluna Soldada): h=b 
para peças submetidas à compressão: colunas 
CS (altura em mm × massa em kg/m) 
 
 
 
2.3. Perfis conformados a frio ou de chapas dobradas 
 As grandes siderúrgicas abastecem a indústria de menor porte com chapas finas 
para a obtenção de perfis de chapas dobradas. Os perfis de chapasdobradas são obtidos por 
meio do dobramento de chapas finas (3; 5; 6) mm a frio e, às vezes, também por meio de 
solda, embora a solda seja pouco utilizada, pois eleva o custo de fabricação do perfil. 
 Os perfis de chapas dobradas são utilizados como elementos estruturais em 
estruturas pouco carregadas, como coberturas e esquadrias. Outra aplicação importante são 
as telhas auto-portantes de seção trapezoidal. 
 São obedecidos raios mínimos para evitar a fissuração do aço durante o dobramento 
a frio. 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 20
2.4. Tubos 
 Na construção metálica utilizam-se tubos de seção circular, quadrada ou retangular 
e outros perfis tubulares de formas especiais empregados em esquadrias metálicas. 
 O tubo circular associa a máxima resistência com o menor peso, em peças sujeitas à 
compressão ou à flexão. Normalmente, são utilizados como barras comprimidas de 
estruturas leves e como treliças planas ou espaciais. Exemplos: andaimes tubulares para 
escoramento de pontes, coberturas espaciais, etc. 
.o0o. 
 Apresentam-se a seguir, algumas tabelas dos perfis mais utilizados em estruturas 
metálicas. 
2.5. Tabelas de perfis 
 As tabelas de perfis simples (laminados ou soldados) apresentam as características 
geométricas individuais de cada perfil. 
Nomenclatura 
 Chama-se alma de um perfil, a região hachurada da seção transversal, indicada na 
Figura abaixo. Denomina-se aba ou mesa de um perfil a região sem hachura. Geralmente, a 
alma é parte do perfil que serve de união entre suas abas, como ocorre no caso de perfis I, 
H e U. 
 
 
h = altura do perfil 
 
b = largura da aba, flange ou mesa 
 
tf = espessura da aba (thickness=espessura) 
tw = espessura da alma 
 
 
 
 
Características geométricas dos perfis simples: 
 As características geométricas de cada perfil são indispensáveis ao projeto e 
dimensionamento de qualquer estrutura. Para facilitar o trabalho do engenheiro foram 
calculadas e tabeladas para todos os perfis fabricados no Brasil. 
 
tw
ALMA
tf
tf
b
b
h
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 21
 As Tabelas apresentam as seguintes características geométricas dos perfis simples, 
com o intuito de facilitar e agilizar os cálculos estruturais: 
• A: área da seção transversal do perfil (cm²) 
• Ix: momento de inércia em relação ao eixo x (cm4) 
• Iy; momento de inércia em relação ao eixo y (cm4) 
• rx: raio de giração em relação ao eixo x (cm) 
• ry: raio de giração em relação ao eixo y (cm) 
• wx: módulo de resistência em relação ao eixo x (cm³) 
• wy: módulo de resistência em relação ao eixo y (cm³) 
• bf: largura da aba do perfil 
• tf: espessura da aba do perfil 
• tw: espessura da alma do perfil 
• h:altura total do perfil 
• xg,yg : coordenadas do centro de gravidade 
 
 Estão também tabelados os pesos de cada perfil por metro linear. É útil na avaliação 
do peso próprio das peças em estudo. 
 Na prática, recomenda-se a utilização das tabelas, pois facilitam o trabalho de 
cálculo e diminuem a possibilidade de erro. Entretanto, há casos em que se deve recorrer à 
Resistência dos Materiais para a determinação destas características. São casos especiais, 
por exemplo, onde forem usados perfis não padronizados, especialmente fabricados para 
um projeto, ou em perfis compostos não previstos nas tabelas, etc. 
 
Coordenadas do Centro de Gravidade (CG) 
 As características geométricas são fundamentais para a o dimensionamento. 
Notoriamente, aquelas calculadas em relação a eixos (x, y), passando pelo CG da seção do 
perfil. As figuras abaixo ilustram a posição do CG de alguns tipos de perfis. 
b
h
xg
yg
CG X
Y
h
xg
X
Y
yg
CG
 
xg
X
Y
yg
Z
CG
xg
X
Y
yg
CG
 
Perfil I Perfil C Cantoneira de abas iguais Cantoneira de abas desiguais
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 22
2.6. Principais tipos de concepções estruturais 
 
2.6.1. Treliças isostáticas 
 Atingem vãos livres até 30 m. Acima de 30 m utilizar arcos treliçados. 
Genericamente h = 1/15 do vão. 
 
 
+ - + -
+
- - +
 
Sistema WARREN 
 
 
Sistema FINK 
 
 
Sistema HOWE 
 
 
Sistema PRATT 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 23
2.6.2. Tesouras isostáticas 
 
 
WARREN 
 
 
HOWE 
 
 
WARREN (com montante) 
 
 
 
PRATT 
 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 24
3. CRITÉRIOS DE DIMENSIONAMENTO 
 
 As estruturas devem oferecer segurança a todas as ações, por mais desfavoráveis 
que sejam, ao longo de sua vida útil para o qual foi projetada. As estruturas não devem 
atingir um estado limite imediato ou em longo prazo, mesmo em condições precárias de 
funcionalidade. Além da previsão de todas as ações, do projeto adequado, é necessário 
também que a estrutura tenha uma reserva de resistência, garantida por coeficientes de 
segurança adequados. 
 O Método das Tensões Admissíveis foi o primeiro método a ser utilizado para 
garantir a segurança. Até meados da década de 1980, o projeto de estruturas metálicas 
NBR 8800 utilizava o Método das Tensões Admissíveis. Com a revisão da norma de 
estruturas metálicas em 1986, começou-se a utilizar o Método dos Estados Limites. 
 A NBR 8680:2003 Ações e Segurança nas Estruturas, define as condições e 
critérios do Método dos Estados Limites. 
3.1. Método das tensões admissíveis 
 Nas estruturas de aço, geralmente se considera o limite de escoamento como início 
de ruptura do material. Para se ter segurança contra ruptura por escoamento utilizam-se nos 
cálculos, tensões admissíveis que são obtidas dividindo-se o limite de escoamento por 
coeficientes de segurança adequados. Como as tensões admissíveis ficam dentro do regime 
elástico, esta teoria de dimensionamento chama-se elástica e os cálculos são efetuados com 
segundo a Resistência dos Materiais. 
 A teoria elástica de dimensionamento é caracterizada por quatro pontos. 
a) o estado limite de resistência é o início de plastificação da seção, no ponto de maior 
tensão; 
b) o cálculo dos esforços solicitantes é feito em regime elástico, não sendo considerada a 
redistribuição de momentos fletores causadas pela plastificação de uma ou mais seções 
da estrutura; 
c) as cargas atuantes são consideradas com seus valores reais estimados (cargas em 
serviço); 
d) a margem de segurança da estruturas fica embutida na tensão admissível adotada para 
cada tipo de solicitação. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 25
 O dimensionamento é considerado satisfatório quando a maior tensão solicitante em 
cada seção for inferior ao valor admissível correspondente, ou seja: 
σσ < 
 A tensão admissível de tração ( tσ ) é relativa à área líquida é 0,6fy, exceto em furos 
de conexões por pinos. 
yf6,0=σ 
 A relação entre a tensão de escoamento e a tensão admissível à tração é γ =1,67, 
que é o coeficiente de segurança utilizado. 
67,1
6,0
1 ==σ
yf → portanto, γ =1,67. 
3.2. Método dos Estados Limites 
 Um estado limite ocorre sempre que a estrutura deixa de satisfazer um de seus 
objetivos. Eles podem ser divididos em Estados limites últimos (ELU) e Estados limites de 
Utilização, ou de Serviço (ELS). 
 Quando uma seção da estrutura entra em escoamento, duas coisas importantes 
acontecem: 
a) o escoamento começa no ponto de maior tensão e depois de se propaga a outros pontos 
da seção, aumentando sua resistência interna; 
b) em estruturas hiperestáticas, o escoamento de uma ou mais seções provoca 
redistribuição dosmomentos fletores, aumentando a resistência da estrutura. 
 Diz-se que uma estrutura é segura quando ela possui condições de suportar todas as 
ações ao longo de sua vida útil para a qual foi projetada. 
 Por Ações entendem-se todas as causas que provocam tensões na estrutura. A 
estrutura atinge seu estado limite último quando perde a estabilidade ou quando em um de 
seus pontos o material atinge a tensão de ruptura ou uma deformação plástica excessiva. 
 O conceito de segurança abrange o estado limite ao longo de sua vida útil e às 
condições de funcionabilidade. Portanto, existem dois tipos de estados limites: estados 
limites últimos e estados limites de utilização. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 26
 O método dos estados limites utilizado para o dimensionamento dos componentes 
de uma estrutura (barras, elementos e meios de ligação) exige que nenhum estado limite 
aplicável seja excedido quando a estrutura for submetida a todas as combinações 
apropriadas de ações. Quando a estrutura não mais atende aos objetivos para os quais foi 
projetada, um ou mais estados limites foram excedidos. Os estados limites últimos estão 
relacionados com a segurança da estrutura sujeita às combinações mais desfavoráveis de 
ações previstas em toda a sua vida útil. Os estados limites de utilização estão relacionados 
com o desempenho da estrutura sob condições normais de serviço. 
 A princípio fundamental deste método é que a resistência de cálculo (Rd) (o índice d 
provém da palavra inglesa design) de cada componente ou conjunto da estrutura deve ser 
igual ou superior à solicitação de cálculo (Sd). A resistência de cálculo é determinada para 
cada estado limite e é igual ao produto de um coeficiente de minoração (φ) pela resistência 
nominal (Rn), ou seja, (Rd= φ Rn). 
 As condições analíticas de segurança estabelecem que as solicitações de cálculo 
não devem ser maiores que as resistências de cálculo e devem ser verificadas em relação a 
todos os estados limites e todos os carregamentos especificados para o tipo da construção 
considerada. São expressas por: 
nd RS φ≤ 
onde: 
Sd = solicitação de cálculo 
Rn = resistência nominal do material 
φ = coeficiente de minoração do material 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 27
3.2.1. Carregamentos 
 As cargas que atuam nas estruturas são chamadas de Ações. A ações a serem 
adotadas no projeto das estruturas de aço e de seus componentes são as estipuladas pelas 
normas apropriadas e as decorrentes das condições a serem preenchidas pela estrutura. 
Essas ações devem ser tomadas como nominais, devendo ser consideradas como seguintes 
tipos de ações nominais: 
• Ações permanentes (G), incluindo peso próprio da estrutura e peso de todos os 
elementos componentes da construção, tais como pisos, paredes permanentes, 
revestimentos, acabamentos, instalações e equipamentos fixos, etc. 
• Ações variáveis (Q), incluindo as sobrecargas decorrentes do uso e ocupação da 
edificação, equipamentos, divisórias, móveis, sobrecargas em coberturas, pressão 
hidrostática, empuxo de terra, vento, variação de temperatura, etc. 
• Ações excepcionais (E), explosões, choques de veículos, efeitos sísmicos, etc. 
3.2.2. Coeficientes de majoração das ações 
 No método dos estados limites, as ações devem ser majoradas de um coeficiente de 
majoração das ações (γ) 
SSd γ= 
onde: 
Sd = solicitação de cálculo 
γ = coeficiente de majoração das ações 
S = esforço nominal 
 A combinação das ações no caso normal e durante a construção é dada por: 
( )∑∑
=
++=
n
j
jjqjqgd QQGS
2
11 ψγγγ 
 Para as condições excepcionais, tem-se: ( )∑∑ ++= QEGS qgd ψγγ 
onde: G = ação permanente 
 Q = ação variável 
 Q1 = ação variável predominante 
 E = ação excepcional 
 ψ = fator de combinação: é um fator estatístico que leva em conta a freqüência 
 da ocorrência simultânea das cargas 
 γq1 = coeficiente de ponderação da ação variável predominante 
 γg = coeficiente de ponderação da ação permanente 
 
Estado limite Último 
 Os Estados Limites Últimos (ELU) estão associados à ocorrência de cargas 
excessiva e conseqüentemente a colapsos das estruturas devido, por exemplo a: perda de 
equilíbrio como corpo rígido, ruptura de uma ligação ou seção ou instabilidade em regime 
elástico ou não. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 28
 Os coeficientes de majoração das ações indicados pela norma de Ações e Segurança 
nas estruturas, NBR 8681 são mostrados na Tabela abaixo. 
Tabela 3.1. Coeficientes de segurança de solicitações para o estado limite último 
Ações permanentes Ações variáveis 
Ações Grande 
variabilidade 
Pequena 
variabilidade 
(*) 
Cargas variáveis 
decorrentes do uso da 
edificação (carga de 
utilização) (**) 
Outras 
ações 
variáveis 
Recalques 
diferenciais 
Variação de 
temperatura 
ambiental 
 γg γg γq γq γq γq 
Normais 1,4 (0,9) 1,3 (1,0) 1,5 1,4 1,2 1,2 
Construção 1,3 (0,9) 1,2 (1,0) 1,3 1,2 1,2 1,0 
Excepcionais 1,2 (0,9) 1,1 (1,0) 1,1 1,0 0 0 
Os valores entre parênteses correspondem a ações permanentes favoráveis à segurança. 
(*) Peso próprio de elementos metálicos e de elementos pré-fabricados com controle rigoroso de peso. 
(**) Sobrecargas em pisos e coberturas, cargas em pontes rolantes ou outros equipamentos, variações de 
temperatura provocadas por equipamentos, etc. 
 
 São consideradas cargas permanentes de pequena variabilidade os pesos próprios de 
elementos metálicos e pré-fabricados, com controle rigoroso de peso. Excluem-se os 
revestimentos destes elementos feitos in loco. 
 A variação de temperatura citada não inclui a gerada por equipamentos, a qual deve 
ser considerada como ação decorrente do uso da edificação. 
 Ações decorrentes do uso da edificação incluem sobrecargas em pisos e em 
coberturas, cargas de pontes rolantes cargas de outros equipamentos. 
 Os fatores de combinação (ψ) da NBR 8681 estão indicados na Tabela abaixo. 
Tabela 3.2 Fatores de combinação ψd no Estado Limite Último 
Ações Fatores de combinação (ψ) 
Sobrecargas em pisos de bibliotecas, arquivos, oficinas e 
garagens, conteúdo de silos e reservatórios. 0,75 
Cargas de equipamentos, incluindo pontes rolantes e 
sobrecargas em pisos diferentes dos anteriores. 0,65 
Pressão dinâmica do vento 0,60 
Variação de temperatura 0,60 
 
 Os coeficientes ψ devem ser tomados iguais a 1,0 para ações variáveis não citadas 
nesta tabela e também para as ações variáveis nela citadas, quando forem de mesma 
natureza da ação variável predominante Q1; todas as ações variáveis decorrentes do uso de 
uma edificação (sobrecargas em piso e em coberturas, cargas de pontes rolantes e de outros 
equipamentos), por exemplo, são considerados de mesma natureza. 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 29
Estado Limite de Utilização 
 Os Estados Limites de Utilização estão associados às cargas em serviço. Evita-se, 
assim, a sensação de insegurança dos usuários de uma obra na presença de deslocamentos 
ou vibrações excessivas, ou ainda, prejuízo de componentes não estruturais como 
alvenarias e esquadrias. No Estado Limite de Utilização, as cargas são combinadas como 
anteriormente explanado sem, entretanto, majorar seus valores, ou seja, utilizando(γ =1,0). 
 Os limites de deslocamentos máximos para o estado limite de utilização, fixados 
pela norma de estruturas metálicas NBR 8800, estão indicados na Tabela abaixo. 
Tabela 3.3 Valores limites de deformações elásticas, segundo a NBR 8800. 
Ações a considerar Elemento estrutural Limite 
Sobrecarga Barras biapoiadas suportando elementos de cobertura inelásticos. 240
1 do vão 
Sobrecarga Barras biapoiadassuportando elementos de cobertura elásticos. 180
1 do vão 
Sobrecarga Barras biapoiadas suportando pisos. 
360
1 do vão 
Cargas máximas por 
roda (sem impacto) 
Vigas de rolamento biapoiadas para pontes 
rolantes com capacidade de 200 kN ou 
mais. 800
1 do vão 
D
es
lo
ca
m
en
to
s v
er
tic
ai
s 
Cargas máximas por 
roda (sem impacto) 
Vigas de rolamento biapoiadas para pontes 
rolantes com capacidade inferior a 200 kN. 600
1 do vão 
Força transversal da 
ponte 
Vigas de rolamento biapoiadas para pontes 
rolantes. 600
1 do vão 
Ed
ifí
ci
os
 in
du
st
ri
ai
s 
D
es
lo
ca
m
en
to
s h
or
iz
on
ta
is
 
Força transversal da 
ponte, ou vento 
Deslocamento horizontal da coluna relativo 
à base. 400
1 a
200
1 da altura 
Sobrecarga 
Barras biapoiadas de pisos e coberturas, 
suportando construções e acabamentos 
sujeitos à fissuração. 240
1 do vão 
D
es
lo
ca
m
en
to
s v
er
tic
ai
s 
Sobrecarga Idem, não sujeitos à fissuração. 
360
1 do vão 
Vento Deslocamento horizontal do edifício, relativo à base, devido a todos os efeitos. 400
1 da altura do edifício
Vento 
Deslocamento horizontal relativo entre dois 
pisos consecutivos, devido à força 
horizontal total no andar entre os dois pisos 
considerados, quando fachadas e divisórias 
(ou ligações com a estrutura) não 
absorverem as deformações da estrutura. 
500
1 da altura do andar O
ut
ro
s e
di
fíc
io
s 
D
es
lo
ca
m
en
to
s h
or
iz
on
ta
is
 
Vento Idem, quando absorverem. 
400
1 da altura do andar 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 30
4. PEÇAS TRACIONADAS 
 
 Peças tracionadas são aquelas sujeitas a solicitações axiais de tração, geralmente 
denominadas tração simples. As peças tracionadas podem ser empregadas em estruturas 
como tirantes, barras tracionadas de treliças, etc. 
 As peças tracionadas são dimensionadas admitindo-se distribuição uniforme das 
tensões de tração na seção transversal considerada. Esta condição é obtida na maioria dos 
casos na prática, principalmente se a peça não apresentar mudanças bruscas na seção 
transversal. Admite-se que a carga de tração axial seja aplicada no centro de gravidade 
(CG) da seção. No dimensionamento analisam-se primeiramente as condições de 
resistência e, em seguida, as condições de estabilidade da barra. 
 As seções transversais das barras tracionadas podem ser simples ou compostas 
como, por exemplo: 
• barras redondas; 
• barras chatas; 
• perfis laminados (L, C, U, I); 
• perfis compostos. 
 As ligações das extremidades das peças tracionadas com outras partes da estrutura 
são feitas por diversos meios como: soldagem, parafusos e rebites, rosca e porca para 
barras rosqueadas. 
 
4.1. Dimensionamento no Estado Limite Último (ELU) 
 A resistência de uma peça submetida a tração axial pode ser determinada pela 
ruptura da seção líquida (que provoca colapso), ou pelo escoamento generalizado da seção 
bruta (que provoca deformações excessivas). 
4.1.1. Peças tracionadas com furos 
 Os furos diminuem a área da seção transversal da peça. Portanto, há um 
enfraquecimento na peça, que deve ser considerado no dimensionamento. 
a) ruptura da seção líquida (condição de resistência): 
75,0, ==≤ tukntntdt comfARR φφφ 
onde: 
An = área líquida de uma peça com furos ou entalhes 
fuk = tensão de ruptura característica do aço 
 
b) escoamento da seção bruta (condição de ductilidade): 
90,0, ==≤ tygtntdt comfARR φφφ 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 31
 
4.1.2. Peças com extremidades rosqueadas 
 As barras com extremidades rosqueadas, consideradas neste item, são aquelas com 
diâmetro igual ou superior a 12 mm (1/2”). 
65,0,75,0 ==≤ tukgtntdt comfARR φφφ 
onde Ag = área bruta da barra 
4.1.3. Peças ligadas por pinos 
 No caso de chapas ligadas por pinos, a resistência é determinada pela ruptura da 
seção líquida efetiva. 
4.1.4. Limitação de esbeltez das peças tracionadas 
 O índice de esbeltez (λ) é definido na Resistência dos Materiais como a relação 
entre o comprimento livre (não contraventado) (L) e o raio de giração mínimo (imin) de sua 
seção transversal. 
mini
L=λ (adimensional) com 
A
Ii minmin = 
onde I é o momento de inércia da seção transversal. 
 O índice de esbeltez é muito importante no dimensionamento de peças 
comprimidas, nas quais pode ocorrer o fenômeno da flambagem. 
 Nas peças tracionadas, o índice de esbeltez não tem importância fundamental, pois 
o esforço de tração tende a retificar a haste, reduzindo a excentricidade construtiva inicial. 
Contudo, as normas fixam valores mínimos de coeficiente de esbeltez, a fim de reduzir 
efeitos vibratórios provocados por impactos, vento, etc. 
 O índice de esbeltez de barras tracionadas, excetuando-se tirantes de barras 
redondas pré-tensionadas, não pode, em princípio, exceder os seguintes limites: 
 
Tabela 4.1 Valores de esbeltez limites em peças tracionadas 
Peças AISC / NBR AASHTO 
Vigamentos principais 240 200 
Contraventamentos e outros vigamentos secundários 300 240 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 32
4.1.5. Diâmetro dos furos 
 
 Os furos enfraquecem a seção da peça. O diâmetro total a ser considerado é igual ao 
diâmetro nominal do conector (d), acrescido de 3,5mm. A Norma, o AISC recomenda 
considerar os furos com diâmetros 1/8” (3,2mm) maiores que o diâmetro nominal adotado. 
Este acréscimo de diâmetro é devido às imperfeições causadas na chapa durante a abertura 
do furo, especialmente se forem abertos por punção. 
 É erro comum, principalmente para os que vêm o assunto pela primeira vez, pensar 
na área líquida como a área bruta, subtraída das áreas de todos os furos existentes na 
ligação. Isto é incorreto; a área líquida é estudada, pensando-se numa possível seção de 
ruptura, tendo-se em mente a transmissão de esforços (distribuição de tensões no interior 
da peça). Deve ser imaginada como a seção mais provável de ruína. Logo, os furos a serem 
considerados serão, somente aqueles contidos na seção de ruptura em estudo. 
 
Seção transversal líquida dos furos 
 
 Numa barra com furos, a área líquida (An) é obtida subtraindo-se da área bruta (Ag) 
as áreas dos furos contidos em uma mesma seção reta da peça. 
d+3
,5m
m
Área bruta (Ag)
d+3
,5m
m
Área líquida
 (An)
 
Figura 4.1 Área líquida e área bruta 
 
 No caso de furação em zig-zag, é necessário pesquisar diversos percursos para se 
encontrar o menor valor de seção líquida uma vez que a peça pode romper segundo 
qualquer um desses percursos. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 33
g
b
furação reta
p
b 1
1
1
furação em zig zag
2
3
3
2
s
 
Figura 4.2 Tipos de furações 
 Os segmentos zig-zag são computados com um comprimento reduzido, dado pela 
seguinte expressão empírica: 
g
s
4
2
 
onde: 
g = espaçamento transversal entre duas filas de furos (gage) 
s = espaçamento longitudinal entre furos de filas diferentes 
p= espaçamento entre furos da mesma fila (pitch) 
 
 A área líquida (An) de barras com furos pode ser representada pela equação: 
( ) t
g
smmdbAn ⋅

 ++−= ∑∑ 45,3
2
, 
adotando-se o menor valor obtido nos diversos percursos pesquisados. 
 
Seção transversal líquida efetiva 
 Nas ligações de barras tracionadas em que a solicitação for transmitida apenas em 
um dos elementos da seção, utiliza-se uma seção líquida efetiva (An,ef) para levar em conta 
que, na região da ligação, as tensões se concentramno elemento ligado e não mais se 
distribuem uniformemente em toda a seção. No caso de peças ligadas com conectores 
aplicam-se os seguintes coeficientes de redução Ct: 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 34
Tabela: Coeficientes de redução da área liquida (Ct) 
Ct Perfis 
0,90 
I ou H, cujas mesas tenham largura não inferior a 2/3 da altura e em perfis T cortados 
desses perfis, com ligações nas mesas, tendo no mínimo três conectores por linha de 
furação na direção do esforço. 
0,85 Demais perfis, tendo no mínimo três conectores por linha de furação na direção do esforço. 
0,75 Em todas as barras, cujas ligações tenham somente dois conectores por linha de furação na direção do esforço. 
 
 No caso de barras tracionadas com ligações soldadas apenas em alguns dos 
elementos da seção, o coeficiente de redução da área depende da relação entre o 
comprimento longitudinal l das soldas e a largura b da chapa ligada. 
 
Coef de redução Ct Relação entre l e b (l > b) 
1,0 bl 2≥ 
0,87 blb 5,12 ≥> 
0,75 blb ≥>5,1 
 
N
N
N
b
h
b < 2h/3
C = 0,85 se
b > 2h/3
C = 0,90 se
t
t
 
 
N
tC = 0,75
N
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 35
4.1.6. Exemplos 
1. Calcular a espessura necessária de uma chapa de 100mm de largura, sujeita a um esforço 
axial de tração de 100 kN. Resolver o problema utilizando o aço comercial (MR-250), com 
tensão admissível yt f6,0=σ . 
Solução: Para o aço MR 250, tem-se a seguinte tensão admissível referente à área bruta: 
2151502506,0 cm
kNMPat ==×=σ 
Área bruta necessária: 267,6
15
100 cmNA
t
g === σ 
Espessura necessária: cmt 67,0
10
67,6 == → adota-se 5/16” = 7,94 mm 
2. Resolver o problema precedente para o dimensionamento no estado limite último. 
Solução: Admitindo-se que o esforço de tração seja provocado por uma carga variável de 
utilização, a solicitação de cálculo vale: 
kNNN qd 1501005,1 =×== γ 
a área bruta necessária é obtida pela expressão: 267,6
259,0
150 cm
f
NA
yt
d
g =×== φ 
espessura necessária: cmt 67,0
10
67,6 == → adota-se 5/16” = 7,94 mm 
No caso tração centrada devida a cargas variáveis, os métodos dos Estados Limites e o de 
Tensões Admissíveis fornecem o mesmo dimensionamento. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 36
3. Duas chapas 7/8”×300mm são emendadas por traspasse com 8 parafusos φ 7/8”. 
Verificar se as dimensões das chapas são satisfatórias para uma carga axial de tração de 
300 kN, admitindo-se aço MR 250 (ASTM A36). 
3 0
0m
m N=300 kN
t=22mm
t=22mm
N=300 kN
22mm 22mm
 
Solução: 
O tipo de ligação adotado introduz excentricidade no esforço axial. Contudo, o problema 
será resolvido admitindo-se as chapas sujeitas a esforço axial. 
Área bruta: cm22,254,2
8
7 =× 
260,6622,230 cmAg =×= 
A área líquida na seção furada é obtida deduzindo-se a área de quatro furos com diâmetro 
7/8”+1/8”=2,54 cm. 
( ) 204,4422,254,2430 cmAn =××−= 
Admitindo-se que a solicitação seja produzida por uma carga permanente de grande 
variabilidade, o esforço solicitante de cálculo vale: 
kNNN qd 4203004,1 =×== γ 
cálculo dos esforços resistentes: 
área bruta: kNN resd 5,14982560,669,0, =××= 
área líquida: kNN resd 2,13914004,4475,0, =××= 
 Os esforços resistentes são superiores aos esforços solicitantes, concluindo-se que 
as dimensões satisfazem com folga. 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 37
4. Duas chapas (280mm × 20mm) são emendadas por traspasse com furos d = 20mm, 
abertos por punção. Calcular o esforço resistente de projeto das chapas, admitindo-se 
submetidas à tração axial. Dado: Aço MR 250. 
Aço: MR 250: fy = 250 MPa fu = 400 MPa 
7575 75 75
N
20
28
0m
m
1
2
a
1
3
3
3
1
2 3
20
N
50
50
40
50
50
40
 
Solução 
O efeito da excentricidade no esforço de tração é desprezado 
O diâmetro dos furos é: 20 + 3,5 = 23,5 mm 
Seção bruta das chapas: Ag = 28 × 2 = 56 cm2 
Seção líquida: 
1-1-1: ( ) 26,46235,2228 cmAn =××−= 
2-2-2: 2
2
45,48235,24
54
5,7228 cmAn =×


 ×−××+= 
3-3-3: 2
2
0,55235,25
54
5,7428 cmAn =×


 ×−××+= 
A menor seção líquida correspondente à reta 1-1-1. 
Esforços resistentes 
Área bruta: kNN resd 126025569,0, =××= (126 tf) 
Área liquida: kNN resd 1398406,4675,0, =××= (139,8 tf) 
Resposta: Nd,res = 1260 kN 
Note-se que neste exemplo, o escoamento da seção bruta ocorrerá antes da ruptura da 
seção líquida. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 38
5. 
Para o perfil [U381×50,4 kg/m] 
(15”), em aço MR250 da figura, 
calcular o esforço resistente de 
tração. 
O diâmetro dos conectores é 
d = 22mm. 
 
Área da seção transversal do 
perfil Ag = 64,2 cm2 
 
Solução 
38
1m
m
150
85
1
N
85
85
10.2
86.4 1
 
Aço: MR 250: fy = 250 MPa fu = 400 MPa 
a) escoamento da seção bruta 
ygresd fAN 9,0, = kNN resd 1444252,649,0, =××= 
 
b) ruptura da seção líquida 
diâmetro do furo considerado: 22 + 3,5 = 25,5 mm 
Área líquida: ( ) 28,5302,155,242,64 cmAn =××−= 
Área líquida da seção 1-1 = 23,408,5375,0 cmAn =×= 
unresd fAN 75,0, = kNN resd 1210403,4075,0, =××= 
 
6. Calcular o diâmetro do tirante em aço ASTM A36 (MR250), capaz de suportar uma 
carga axial de 150kN (15tf), sabendo-se que a transmissão da carga será feita por um 
sistema de rosca e porca. Admite-se que a carga seja do tipo permanente, com grande 
variabilidade (γf = 1,4). 
Solução: 
Barras rosqueadas: 
ut
f
g f
N
A
75,0×= φ
γ
 277,10
4075,065,0
1504,1 cmAg =××
×= 
Adota-se parafuso com diâmetro d = 3,81mm (1½”), cuja área é Ag = 11,40 cm2. 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 39
 
7. Para a cantoneira [L 178×102×12,7] (7”×4”×½”) indicada na Figura, determinar: 
a) a área líquida, sendo os conectores de diâmetro d = 22 mm (7/8”); 
b) o maior comprimento admissível, para esbeltez máxima λ=240. 
17
8m
m
76
medidas em milímetros
76
102
(a)
64
64
12
.7
(b)
76
38
12.7
1 2
(c)
1
2
1
2
2
76
11
5
38
38
 
O cálculo pode ser feito rebatendo-se a cantoneira segundo seu eixo (Figura c). 
Comprimentos líquidos dos percursos: 
Diâmetro dos furos d = 22 + 3,5 = 25,5 mm. 
Percurso 1-1-1: mm5,2165,2527,12102178 =×−−+ 
Percurso 2-2-2: mm6,2225,253
1154
76
764
767,12102178
22
=×−×+×+−+ 
O percurso 1-1-1 é crítico. 
a) seção líquida: 24,2727,16,21 cmAn =×= 
b) o maior comprimento desta cantoneira trabalhando como tirante será: 
Para cantoneira [L 178 × 102 × 12,7], tem-se raio de giração mínimo: imin = 2,21 cm. 
Índice de esbeltez máximo para peças tracionadas: 240
min
≤=
i
lλ 
Logo minmax 240 il ×= cml 53021,2240max =×= 
 
Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar 40
5. TRELIÇAS 
 
Definição 
 Treliça é toda estrutura constituída de barras ligadas entre si nas extremidades. O 
ponto de encontro das barras é chamado nó da treliça. Os esforços externos são aplicados 
unicamente nos nós. 
 Denomina-se treliça plana, quando todas as barras de uma treliça estão em um 
mesmo plano. 
 Para se calcular uma treliça deve-se: 
a) determinar as reações de apoio; 
b) determinar as forças nas barras. 
 A condição para que uma treliça de malhas triangulares seja isostática é: 
 
vbn +=2 
onde: 
b= número de barras 
n= número de nós 
v= número de reações de apoio 
 
 Adota-se como convenção de sinais: 
barras tracionadas:

Outros materiais