﻿ Projeção Ortográfica - Matemática Aplicada
7 pág.

# Projeção Ortográfica

Pré-visualização1 página
���������
��
���������������������

ﬀﬂﬁ�ﬃ! #"�$&%#')(+*-,/.)$&"!01(!2

34ﬁ65�$&7809$&:;ﬁ6"!01(;')ﬁ=<>$?01ﬁ6:A@?0B #C6$EDGFIH�J
K

LM"- ON!ﬁ67P21 #'�$&')ﬁ�Q)ﬁ6')ﬁ671$&%R')ﬁ=<S #"�$&24TUﬁ671$& #2

V�W�W�X�YPZ�Z&[�[�[M\^]_aW�\cb)da]�e�\cf-g)Z�h&g)iae j

k?l

')ﬁm")(EN!ﬁ6:=n-7G(o')ﬁ

k&papaq

rts^ucvxw?y{zB|{}G~Pz
?svvxwvyv#vG}Gy/?}Gs{}GŁ??zs?}z�|{}8uzs/uy{?�}GŁ?s{zŁvs)Ł?zxwvwa}Gz�Łvu}Gv�?z



z�w?Eucv?zyG�z}Gs^ucvMw?y{zB|{}G~PzMzs�wazŁuzs�Ł?zM}Gs{wv~GzszMw?y{zB|{}8ucv?zs�zy^uzzŁv�}GŁu}
vzMw?vŁ?z

?zﬂ?}Gs{}GŁ??z?

-vyv=}GŁ



zŁuyvyMvw?y{zB|{}G~Pz=?}?wazŁuz

P
waz6?}G�zsﬂ}GŁ



zŁuyvy4vs



z6zy{?}GŁvvs�?}

P
}G

y{}Gv~Pz�vzﬂs{s^u}GMv

S′ = {O′, U1, U2, U3}
}�uzMvyvs?vsw?y{�}Gyvs



z6zy{?}GŁvvsG

z�zﬂv w?y{zB|{}G~Pzﬂ}G¢¡�v¡�?}Gyw?vŁ?z wvyv}Gz�vzﬂw?vŁ?z ?z ?}Gs{}GŁ??z�£zy{Ł?}



}xvs�}Gs{Mvs



z6zy¥¤

?}GŁvvswaz6?}G�zss{?wazy¡�?}

O′ = O ¦
z§s{}¨|v

¦

«

y{}Gv~Pz }GŁuy{}¬vs



z6zy{?}GŁvvs?}x?¢wazŁuzﬂŁ?zs?zss{s^u}GMvs

S
′ = {O, U1, U2, U3}

}

S = {O,~i,~j,~k}

xvv wazy

X ′ = QtX,
}G¢¡�?}

Q = [ U1 U2 U3 ]

­v�zsR}GŁ



zŁuyvyzs®}8uzy{}Gs

U1 ¦ U2
}

U3
}G¯£?Ł?~Pz ?zs°Ł??zs

θ
}

φ
±�®}8uzy

U1
�wvyv}Gz�vz

w?vŁ?z

xy
}xxwa}Gy{wa}GŁ??



?vyvz ®}8uzy

(cos θ, sen θ, 0) ¦
zUs{}¨|v

¦

U1 = (− sen θ, cos θ, 0).

±s®}8uzy{}Gs

U2
}

U3
}Gs^ucz�Ł?z�w?vŁ?z ?}8²Ł??z�wazy ~k

}

(cos θ, sen θ, 0)


U2 = − cos φ(cos θ, sen θ, 0) + sen φ~k = (− cos φ cos θ,− cos φ sen θ, sen φ)

U3 = cos φ~k + sen φ(cos θ, sen θ, 0) = (sen φ cos θ, sen φ sen θ, cos φ)

³

´
x′

y′

µ-?yv

³¶

ty{zB|{}G~Pz�zy^uzy·9²



v ?}x?



?az

ty{zB|{}G~Pz4±y^uzy·9²



v ¸9¹ﬂ?}xŁ?z1®}G�?y{zM?}¬¸ºº»

¼
~k

~i

~j

O′

U1

U2

U3

θ

φ

µ-?yvﬂ¸

¶

s{s^u}GMvs?}



z6zy{?}GŁvvsy{}Gv



zŁv?zs½ﬂw?y{zB|{}G~Pzﬂzy^uzy·9²



v

¸9¹ﬂ?}xŁ?z1®}G�?y{z�?}¬¸ºº» ¾}GŁv?zﬂ¿EaÀEvŁuzs

Á
~k

~i

~j

U2

U1

U3

(cos θ, sen θ, 0)

θ

φ

µ-?yv Â

¶ Ã

vs{}Gsy{}Gv



zŁvvs½ﬂw?y{zB|{}G~Pz�zy^uzy·9²



v

ty{zB|{}G~Pz4±y^uzy·9²



v ¸9¹ﬂ?}xŁ?z1®}G�?y{zM?}¬¸ºº»

Ä
(cos θ, sen θ, 0)

~k~j

~i

U3

(cos θ, sen θ, 0)

φ

θ

U2

U1

µ-?yv¬¹

¶

¾}Gv~Pz }GŁuy{}
zs®}8uzy{}Gs
vsvs{}Gs

{U1, U2, U3}
}

{~i,~j,~k}

¸9¹ﬂ?}xŁ?z1®}G�?y{z�?}¬¸ºº» ¾}GŁv?zﬂ¿EaÀEvŁuzs

Å
«

s{s{ªvﬂy{}Gv~Pz }GŁuy{}¬vs



z6zy{?}GŁvvs?}x?¢wazŁuz�Ł?zs?zss{s^u}GMvs

S
′ = {O, U1, U2, U3}

}

S = {O,~i,~j,~k}

xvv wazy 
 x′y′

z′


 =


 − sen θ cos θ 0− cos φ cos θ − cos φ sen θ sen φ

sen φ cos θ sen φ sen θ cos φ





 xy

z




}
v w?y{zB|{}G~Pz�xvv wazy

[
x′

y′

]
=

[
− sen θ cos θ 0

− cos φ cos θ − cos φ sen θ sen φ

] xy
z


 .

)zy}IÆE}G�w?zﬂwvyv

θ = 30◦
}

φ = 60◦
u}G�zs¡�?}

[
x′

y′

]
=

[
−1

2

√
3

2
0

−
√

3
4

−1
4

√
3

2

] 
 xy

z


 ≈ [ −0.5 0.87 0

−0.4 −0.25 0.87

]  xy
z


 .

Ç
svŁ??z�}Gs^ucvﬂw?y{zB|{}G~Pz�zs®}8uzy{}Gs ~i ¦ ~j
} ~k

sz�?}Gs{}GŁ?v?zs



z�zﬂŁv�²?yv�vvÈÆEz?

r-ÆEwa}Gy{�}GŁu}x?}Gs{}GŁ?vy
z



?azﬂ¡�?}xu}Gªv zy{}G

O = (0, 0, 0) 
z�zﬂ?¢?zsR®Gy^u



}Gs
}



z�z

®Gy^u



}GsvB|v



}GŁu}Gs½�zy{}G

(1, 0, 0) ¦ (0, 1, 0)
}

(0, 0, 1)
±?s{}Gy^®}�¡�?}¬ŁzM
Ł?}



}Gs{s·y{z



v



?vy

v w?y{zB|{}G~Pz�?zszEuy{zswazŁuzs
É£wazy¡�?}1ÊBË

Ì
z
}GŁ??}Gy{}G~Gz Í6Î�ÎÏÐ^Ñ�Ñ9Ò�Ò�ÒRÓ£Ô&ÕÎRÓ#ÖE×Ô?ØÓ#ÙEÚ?ÑEÛBÚ?ÜØ&ÝÑÞÖ&ß�Ñ9ÏEÚ?àáEàÚÎàØ�ÚEÕ×RÓ#Í6ÎÔ!ß }Gs^uczv?Mvs�w·B¤

ŁvsŁu}Gyv9uâ®vsR¡�?}
?s^uyv¯zﬂ¡�?}x£z�}IÆEwazs^uzMv¡�?ã

ty{zB|{}G~Pz4±y^uzy·9²



v ¸9¹ﬂ?}xŁ?z1®}G�?y{zM?}¬¸ºº»

ä
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

µ-?yvﬂå

¶

­/}8uzy{}Gs

~i ¦ ~j
} ~k

?}Gs{}GŁ?v?zs
?svŁ??z�w?y{zB|{}G~Pz�zy^uzy·9²



v

¸9¹ﬂ?}xŁ?z1®}G�?y{z�?}¬¸ºº» ¾}GŁv?zﬂ¿EaÀEvŁuzs