Buscar

Analytic_solutions_to_Maxwells_equations_sinusoidal_steady-state_and_transient_space-time_problems_in_transverse_magnetic_and_transverse_electric_field_analysis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 4 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

88 MMET'98 Proceedings 
Department of Electrical Engineering 
Purdue University at Indianapolis 
723 West Michigan Street, Sk 16QB 
Indianapolis, Indiana 46202-5 132, USA 
lyshev@ engr. iupui.edu 
The electromagnetic field model is governed by four Maxwell's equations, which are given in 
the point form for tiiie-varying fields as 
Jff(x,y,z,t) 
V X E ( x , y , z , t ) =-p-- 
d t ' 
p ( x , y , z , t ) V - E ( x , y , z , t ) = , V . H ( x , y , z , t ) = Q , 
E 
where E is the electric field intensity; pi is the magnetic field intensity; 9 is the current density; p is 
the charge density. 
The development of analytic methods to solve Maxwell's equations in the coordinate systems 
used is our particular interest. The common coordinate systems applied (rectangular, circularly 
cylindrical, and spherical) are studied, and complete analytic solutions to Maxwell's equations are 
given. The rectangular and cylindrical Coordinate systems are C Q ~ ~ O I I ~ Y used. This paper 
demonstraltes that an analytic solution to Maxwell's equations, if it exists, can be fmd in the chosen 
coordinate system by the superposition of TM and TE fields, and the reciprocity theorem can be used. 
In the circularly cylindlrical system, the TM and TE potentials satisfy the Helmholtz equation, and the 
first-, second-, and third-kind Bessel functions are applied. Only the spherical coordinate system has 
Kharkov, Ukraine, VIIth International Conference on Mathematical Methods in Electromagnetic Theory 
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARA. Downloaded on September 30,2021 at 14:02:24 UTC from IEEE Xplore. Restrictions apply. 
http://iupui.edu
89 
MMET'98 Proceedings 
complete coordinate surfaces of fmite size, and therefore, in this system the bsundw value ~ ~ o b ~ e ~ 
cm be solved. Hence, the spheroidal configuration, which has @ -symmetry, is of a great importance. 
'The wave or ~~~~o~~ equation for the field quantities (E or H ) in kms of the ~ ~ e - v ~ ~ ~ ~ sources 
cm be expressed and solved in the spherical coordmate system. 
Kharkov, Ukraine, VIIth International Conference on Mathematical Methods in Electromagnetic Theory 
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARA. Downloaded on September 30,2021 at 14:02:24 UTC from IEEE Xplore. Restrictions apply. 
MMET'98 Proceedings 
E , = - j q . P n w a i + V p 
By making use of E , the following equations result 
v x v x PT,wai - - 
H , = B x PTMai, E , = 9 
jctx 
V x H , = jwEE2, V x E , = -jw@, - M , 
From quation 
E , = v x P+, q 
V2 pTk;al = y 2 PTEa, + M , . 
The thorough analysis per€omed indicates, that for TM and TEi fields &e equations 
H , = V x PTMa, 
agld E , = V X Prk;a, 
should be solved by using the following procedure. Bn the Cartesian coordinate systems, as one 
~ b t ~ i h ~ BTM md PTE, H , a d E , results. 
one finds PTE by S O I V ~ ~ equation 
e, E , can be found by solving 
V x H , = j m E , +I,, E , --ja 
while E , isobtained sing .PTk and H , is found fi.om 
coordhae system, ch is given h terms p, $, z ~ the TM and $E field 
equations age 
N = V x PTMai 
and E = V x PTEa,, 
and the scalar potential satisfies Helmholtz equations are given by 
V 2 P T M = Y 2 P T M , y 2 = -W2W . 
The following partial differential equation for PTM results 
and the solution of t h i s equation is found using hyperbolic functions. In particular, 
where CD,(p) @,(e) and al,(z) are the Bessel functions. 
R Z M = Q P ( P P 4 (@PZ (z> , 
If the spherical coordinate system is used, the field components are found for TM fields as 
and for TE fields we have 
Kharkov, Ukraine, VIIth International Conference on Mathematical Methods in Electromagnetic Theory 
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARA. Downloaded on September 30,2021 at 14:02:24 UTC from IEEE Xplore. Restrictions apply. 
MMET’98 Proceedings 91 
+ J , v x E , =2? -qesrfi,H, 
E,=-N,, H , = E L , J 1 = - M 2 , & , = & , & = E Z 9 
or 
er 
E I - - H 2 7 H 1 - --E 2 3 J ! = M 2 ? E ~ = & , p, = E ~ , 
E , = H, H , = E , , J , = - M 2 , F , = -be,, pl = - E , e 
In psrticular, by applying these transformations, solution of (4) is identical to (3). 
4. Cowclusions 
This paper addresses the problem of solution of well’s equatioiis in the rectmplar, 
cal coordinate systems. Sinusoidal steady-state and 
searched. By uskg the results, it is shown that Maxwell’ 
solved, mQ Lqportant problems have been focused and solved. In particular, the complexity of the 
S O ~ ~ ~ O I I depiends on the coordinate system used, and spherical ~ o o r d ~ ~ ~ system has advantages to 
find analytic solutions to Maxwell’s equations. 
Kharkov, Ukraine, VIIth International Conference on Mathematical Methods in Electromagnetic Theory 
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARA. Downloaded on September 30,2021 at 14:02:24 UTC from IEEE Xplore. Restrictions apply.

Outros materiais