Logo Studenta

Trabajo de Titulación

¡Este material tiene más páginas!

Vista previa del material en texto

UNIVERSIDAD DE CUENCA 
FACULTAD DE FILOSOFÍA, LETRAS Y CIENCIAS DE LA EDUCACIÓN 
 
CARRERA DE MATEMÁTICAS Y FÍSICA 
 
“ELABORACIÓN DE MATERIAL DIDÁCTICO PARA LA 
ENSEÑANZA DE TEMAS DE FÍSICA I EN LA CARRERA DE 
MATEMÁTICAS Y FÍSICA DE LA UNIVERSIDAD DE CUENCA” 
Trabajo de Titulación previo a la obtención 
del Título de Licenciado en Ciencias de la 
Educación en Matemáticas y Física 
 
AUTORES: 
Karla Viviana Garcés Villacís 
C.I. 0105933055 
Vilma Briseyda Romero Chimbo 
C.I. 0104880455 
 
DIRECTOR: 
Dr. Alberto Santiago Avecillas Jara 
C.I. 1704208816 
 
CUENCA – ECUADOR 
2017
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 2 
RESUMEN 
 
Esta Tesis titulada "Elaboración de Material didáctico para la enseñanza de temas de 
Física I en la carrera de Matemáticas y Física de la Universidad de Cuenca "quiere potenciar 
la enseñanza de la Física a través del uso de diferentes dispositivos didácticos. El Proyecto se 
dividió en tres partes. 
La primera parte hace una revisión de algunos conceptos teóricos básicos, que están 
relacionados con el constructivismo. La parte final del capítulo propone el uso de modelos 
físicos para enseñar Física I en educación superior y media. 
 La segunda parte de la tesis desarrolla un análisis estadístico a partir de algunas 
encuestas que fueron respondidas por algunos estudiantes de la carrera. El análisis muestra la 
opinión de los estudiantes sobre la enseñanza de la física y algunas recomendaciones sobre el 
uso de material didáctico. Los resultados se muestran a través de gráficos estadísticos y 
algunas inferencias. 
El último capítulo consiste en una guía para el uso de cada material didáctico. La guía 
presenta las características de cada material y hace algunas recomendaciones para los 
maestros. Finalmente, se elabora una hoja de trabajo para probar conceptos básicos. 
 
Palabras clave: Física, material didáctico, dispositivos didácticos, modelos físicos, 
constructivismo. 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 3 
ABSTRACT 
This Thesis entitled as “Elaboración de Material didáctico para la enseñanza de temas de 
Fisica I en la carrera de Matemáticas Y Física de la Universidad De Cuenca” wants to enhace 
the teaching of Physics through the use of different didactical devices. The Project was 
divided into three parts. 
The first part makes a review of some basic theoretical concepts, which are related to the 
Constructivism. The final part of the chapter proposes the use of physical models in order to 
teach Physics I in higher and mid – level education. 
 The second part of the thesis develops a statistical analysis from some surveys which were 
answered by some students of the faculty. The analysis shows the students´ opinion about the 
teaching of physics and some recommendations about the using of didactical material. The 
results are shown through statistical graphics and some inferences. 
The last chapter consists of a guide for the use of each didactical material. The guide features 
the characteristics of each material and it makes some recommendations for teachers. Finally, 
a worksheet is elaborated in order to test basic concepts. 
 
Keywords: Physics, teaching material, didactical devices, physical models, 
constructivism. 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 4 
Tabla de contenido 
INTRODUCCIÓN ................................................................................................................................ 14 
CAPITULO I ............................................................................................................................................ 15 
FUNDAMENTACIÓN TEÓRICA ............................................................................................................... 15 
El constructivismo y su reseña histórica ........................................................................................... 15 
Dificultades y Retos en la enseñanza de la Física ............................................................................. 16 
El Aprendizaje de la Física a partir del Constructivismo ................................................................... 18 
Didáctica de la Física. ........................................................................................................................ 20 
Aplicación de modelos en la enseñanza de la Física ......................................................................... 22 
CAPÍTULO II ........................................................................................................................................... 25 
FUNDAMENTACIÓN ESTADÍSTICA ..................................................................................................... 25 
DIAGNÓSTICO ................................................................................................................................... 25 
Presentación del Problema ............................................................................................................... 25 
Selección de la población .................................................................................................................. 26 
Metodología ...................................................................................................................................... 26 
Análisis de la encuesta ...................................................................................................................... 26 
Interpretación de resultados. ........................................................................................................... 46 
CAPÍTULO III .......................................................................................................................................... 47 
PROPUESTA ........................................................................................................................................... 47 
Esquema de la Propuesta.................................................................................................................. 48 
Matriz de planeación ........................................................................................................................ 49 
GUÍA DE USO PARA EL DOCENTE .......................................................................................................... 49 
VECTORES UNITARIOS EN 3D ............................................................................................................ 51 
COMPONENTES RECTANGULARES DE UN VECTOR....................................................................... 55 
JUEGO DE VECTORES EN 2D Y 3D ..................................................................................................... 56 
COMPONENTES RECTANGULARES DE UN VECTOR....................................................................... 60 
VECTOR DESPLAZAMIENTO .............................................................................................................. 61 
VECTORES DESPLAZAMIENTO ENTRE DOS PUNTOS ESPECÍFICOS ................................................ 64 
PRODUCTO DE VECTORES ................................................................................................................. 65 
PRODUCTO VECTORIAL DE VECTORES .......................................................................................... 69 
JUEGO DE VECTORES DE ÁNGULO PLANO ........................................................................................ 71 
VECTOR ÁNGULOS PLANOS .......................................................................................................... 75 
JUEGO DE MANIJAS ........................................................................................................................... 76 
TORQUE .........................................................................................................................................79 
PAR, TORQUE DE UN PAR ............................................................................................................. 81 
VECTORES CONCURRENTES .............................................................................................................. 82 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 5 
TORQUE DE N FUERZAS CONCURRENTES ..................................................................................... 86 
VECTORES COPLANARES ................................................................................................................... 88 
COMPOSICIÓN DE FUERZAS APLICADAS SOBRE UN CUERPO RÍGIDO .......................................... 91 
VECTORES COPLANARES ................................................................................................................... 92 
COMPOSICIÓN DE FUERZAS COPLANARES ................................................................................... 95 
FUERZAS PARALELAS ......................................................................................................................... 97 
COMPOSICIÓN DE FUERZAS PARALELAS ..................................................................................... 100 
CENTRO DE MASA DE UN SISTEMA DE MASAS PUNTUALES .......................................................... 101 
CENTROS DE MASA ..................................................................................................................... 104 
PLACA DE EQUILIBRIO ..................................................................................................................... 106 
EQUILIBRIO DE UN CUERPO RÍGIDO ........................................................................................... 109 
TORNO ............................................................................................................................................ 110 
OTRAS MÁQUINAS SIMPLES ....................................................................................................... 113 
GRÁFICA DE DESPLAZAMIENTO Y VELOCIDAD ............................................................................... 114 
MOVIMIENTO RECTILÍNEO UNIFORME ....................................................................................... 118 
CURVA PARABÓLICA ....................................................................................................................... 119 
MOVIMIENTO DE UN PROYECTIL ................................................................................................ 124 
CURVA EN EL PLANO ....................................................................................................................... 126 
CURVA EN EL ESPACIO .................................................................................................................... 128 
CONCEPTOS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN LINEALES. .......................................... 131 
VECTORES EN EL MOVIMIENTO ANGULAR ..................................................................................... 133 
CONCEPTOS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN ANGULARES. ..................................... 136 
CONCLUSIONES ................................................................................................................................... 138 
RECOMENDACIONES ........................................................................................................................... 139 
Bibliografía .......................................................................................................................................... 140 
ANEXOS ............................................................................................................................................... 141 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 6 
Lista de tablas: 
Tabla 2. 1 Frecuencia con la que los estudiantes realizaban las tareas. ............................................... 27 
Tabla 2. 2 Tiempo utilizado para ampliar conocimientos de Física. ..................................................... 28 
Tabla 2. 3 Estudio de la materia de Física I en la secundaria. ............................................................... 29 
Tabla 2. 4 Horas de clase por semana destinadas a Física I en la secundaria....................................... 30 
Tabla 2. 5 Facilidad de los estudiantes para resolver ejercicios de Física I........................................... 31 
Tabla 2. 6 Facilidad de los estudiantes para comparar ejercicios de Física I con la vida diaria. ........... 32 
Tabla 2. 7 Porcentaje de nivel de comprensión en temas estudiados en Física I ................................. 33 
Tabla 2. 8 Frecuencia con la que los estudiantes consultaban sus dudas sin temor. ........................... 34 
Tabla 2. 9 Tiempo dedicado a despejar dudas dentro de la clase. ....................................................... 36 
Tabla 2. 10 Existencia de respeto en el aula de clases. ........................................................................ 37 
Tabla 2. 11 Frecuencia con la que el docente comparaba la teoría con la práctica. ............................ 38 
Tabla 2. 12 Frecuencia con la que el docente utilizaba la creatividad. ................................................. 39 
Tabla 2. 13 Colaboración del docente con tutorías para los estudiantes. ............................................ 40 
Tabla 2. 14 Colaboración del maestro con el estudiante en la realización de tareas. .......................... 41 
Tabla 2. 15 Utilización de material didáctico para mayor comprensión en los alumnos. .................... 42 
Tabla 2. 16 Utilidad del uso de material didáctico. ............................................................................... 43 
Tabla 2. 17 Necesidad del uso de material didáctico en el aula de clase. ............................................ 44 
Tabla 2. 18 Material de mayor utilidad para el aprendizaje. ................................................................ 45 
 
 
Lista de Gráficos 
 
Gráfica 2. 1 Frecuencia con la que los estudiantes realizaban las tareas. ............................................. 27 
Gráfica 2. 2 Tiempo utilizado para ampliar conocimientos de Física. .................................................. 28 
Gráfica 2. 3 Estudio de la materia de Física I en la secundaria. ........................................................... 29 
Gráfica 2. 4 Horas de clase por semana destinadas a Física I en la secundaria. ................................... 30 
Gráfica 2. 5 Facilidad de los estudiantes para resolver ejercicios de Física I. ...................................... 31 
Gráfica 2. 6 Facilidad de los estudiantes para comparar ejercicios de Física I con la vida diaria. ....... 32 
Gráfica 2. 7 Porcentaje de nivel de comprensión en temas estudiados en Física I .............................. 33 
Gráfica 2. 8 Frecuencia con la que los estudiantes consultaban sus dudas sin temor. .......................... 34 
Gráfica 2. 9 Tiempo dedicado a despejar dudas dentro de la clase. ...................................................... 36 
Gráfica 2. 10 Existencia de respeto en el aula de clases ....................................................................... 37 
Gráfica 2. 11 Frecuencia con la que el docente comparaba la teoría con la práctica. ........................... 38 
Gráfica 2. 12 Frecuencia con la que el docente utilizaba la creatividad. .............................................. 39 
Gráfica 2. 13 Colaboración del docente con tutorías para los estudiantes. ........................................... 40 
Gráfica 2. 14 Colaboración del maestro con el estudiante en la realización de tareas. ......................... 41 
Gráfica 2. 15 Utilización de material didáctico para mayor comprensión en los alumnos. .................. 42 
Gráfica 2. 16 Utilidad del uso de material didáctico............................................................................. 43 
Gráfica 2. 17 Necesidad del uso de material didáctico en el aula de clase. .......................................... 44 
Gráfica 2. 18 Material de mayor utilidad para el aprendizaje. .............................................................. 45 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 7 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 8 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 9 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 10 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 11 
 
AGRADECIMIENTO 
Al haber culminado con éxito este trabajo de graduación, queremos primeramente agradecer 
a Dios por darnos vida y salud para avanzar en nuestra carrera profesional. 
 En segundo lugar queremos hacer extensivo el agradecimiento a nuestro director de tesis 
Dr. Santiago Avecillas Jara una persona muy sabia: quien con su paciencia y dedicación ha 
sabido guiarnos de la mejor manera en la realización de este trabajo. 
Así mismo queremos agradecer a todos los profesores de la carrera quienes nos han 
compartido su conocimiento y respondido cada una de nuestras inquietudes, a nuestros 
compañeros estudiantes quienes al convivir con nosotras día a día en un salón de clases, nos 
han brindado su amistad y nos han hechos participes de sus experiencias y conocimientos. 
Finalmente queremos hacer extensivo el agradecimiento a nuestra familia y amigos que de 
una u otra manera nos han apoyado para poder lograr nuestras metas propuestas. 
A cada uno de ustedes gracias y que Dios les colme de bendiciones hoy y siempre. 
 
 
Karla y Vilma. 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 12 
DEDICATORIA 
El presente trabajo de graduación está dedicado a Dios por darme vida y salud para poder 
alcanzar mis metas planteadas. 
Este trabajo quiero dedicarlo también a mis padres, quienes a pesar de que estuvieron 
mucho tiempo lejos de este país siempre estuvieron pendientes de mí aconsejándome e 
inculcándome valores para ser siempre una persona de bien. A mis abuelitos, quienes 
hicieron el papel de padres durante muchos años. A mis tíos(as) en especial Nubia y Magno, 
quienes me abrieron las puertas de su casa y me trataron como a una hija mas. A mi hijo 
Miguel, quien le da sentido a mi vida, es mi fuente de inspiración y mis ganas de superarme 
y ser mejor cada día. A mis hermanas: Claudia y Fernanda y a mi hermano: Luis quienes de 
una u otra forma han sido partícipes en esta etapa de mi vida. 
A mi compañera de tesis y más que eso amiga Vilma Romero, por la paciencia y la 
dedicación empleada en este trabajo. 
A mis amigos(as); Mateo, Juan, Natalia, Lucia, Karen y demás personas quienes me han 
brindado su amistad y siempre han estado dispuestos(as) a compartir conmigo sus 
conocimientos para ayudarme a despejar mis dudas. 
Por último quiero dedicar este trabajo de graduación a mi esposo Jhofre por hacer posible 
la realización de esta tesis brindándome todo el apoyo económico, estar siempre presente 
incondicionalmente, ser mi fuerza e impulsarme siempre a seguir adelante y cumplir mis 
metas. 
 
Karla Garcés 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 13 
DEDICATORIA 
La presente Tesis está dedicada en primer lugar a Dios, ya que gracias a él he logrado 
concluir mi carrera. 
A mi querida madre Rosario que, por su amor, por su paciencia, por su dedicación y por 
todo el esfuerzo que hizo para ayudarme a lograr cada una de mis metas propuestas, porque 
me supiste formar con buenos valores, hábitos y sentimientos lo cual me han ayudado a salir 
adelante en los momentos más difíciles, me faltan palabras para agradecerte mi ángel que 
me cuidas desde el cielo. 
A mi padre y a mis hermanas por todo el apoyo brindado, pero en especial para ti Norma 
que muchas veces tuviste que hacer el roll de madre y me supiste inculcar buenos valores. 
A mí amada hija Alyna por ser mi fuente de motivación e inspiración para poder superarme 
cada día y así tener un futuro mejor. 
Finalmente a mi esposo por la confianza, paciencia y amor que me brinda día a día, a mis 
amigas Karla, Lucia, Natalia, Karen, hnas. López, Mateo y demás personas que 
contribuyeron para lograr mis objetivos. 
Vilma Romero 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 14 
INTRODUCCIÓN 
La Física y su enfoque educativo se han vistos beneficiados durante los últimos años 
debido al surgimiento de diversas herramientas, las cuales han provenido de la tecnología y 
nuevas propuestas educativas. No obstante, los procesos educativos en el campo de la 
enseñanza de las ciencias también han mostrado ciertas falencias, producto de metodologías 
carentes de pedagogía y de creatividad. 
 Las nuevas teorías educativas ponen de manifiesto una nueva perspectiva, la cual 
busca enseñar la Física a nuevas generaciones de estudiantes e impulsarlos hacia un 
pensamiento más crítico e incluso, hacia una carrera científica. En particular, el 
Constructivismo, cuya teoría ha sido elaborada en el transcurso de estos años bajo la tutela de 
diversos autores, enfatiza en el uso de diversos recursos a fin de obtener un aprendizaje 
significativo en el estudiante. 
Los materiales didácticos, entendidos como maquetas o dispositivos lúdicos, son 
posiblemente los elementos de más amplio uso entre docentes. La comunicación de una idea 
resulta ser más sencilla si es que esta puede ser representada de manera gráfica. Sin embargo, 
un material didáctico requiere de un soporte didáctico que permita su correcta inserción en la 
labor pedagógica. Por tanto, cada material debe ser conducido a partir de una guía de trabajo. 
Las Físicas analizadas en la carrera de Matemáticas y Física de la Universidad de 
Cuenca precisan de un soporte adicional para su enseñanza. Durante años, la enseñanza de 
algún tema se vio complementada con el uso del material del laboratorio o con la utilización 
de algún recurso del docente. No obstante, la realidad actual de la carrera obliga a la 
implementación de material didáctico, la cual se espera, llene las expectativas dentro de cada 
asignatura. De este modo, el material didáctico se convierte en un nuevo protagonista que 
junto al docente, buscan concretar aquellas ideas establecidas en el Constructivismo. 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 15 
CAPITULO I 
FUNDAMENTACIÓN TEÓRICA 
El constructivismo y su reseña histórica 
En el ámbito educativo actual se han producido diversas transformaciones, las cuales 
apuntan a promover una enseñanza más centrada en el estudiante y su contexto. La búsqueda 
de propuestas viables ha desencadenado una investigación por parte de educadores e incluso 
de otros expertos quienes, desde su área de conocimiento, han puesto a disposición diversas 
técnicas y estrategias. Una de las corrientes pedagógicas que se alinea con este objetivo es el 
Constructivismo, el cual en esencia promueve una construcción más dinámica del 
conocimiento, pues el docente abandona aquel papel hegemónico para pasar a convertirse en 
un facilitador y mediador; el alumno asume mayores responsabilidades en su autoaprendizaje 
y al contexto de trabajo existente en el aula se suman iniciativas didácticas novedosas. 
Inicialmente, la escuela constructivista habría de alimentarse de concepciones previas 
que se enfocaban en la construcción activa del conocimiento del aprendiz. En sus tratados 
sobre el aprendizaje, Ausubel ya cuestionaba la manera negativa en la que el aprendizaje por 
repetición influía en los educandos, de tal manera que para este investigador (citado por 
Cakir, 2008), la información memorizadaque ingresa en la estructura cognitiva del sujeto es 
incapaz de generar un impacto dentro los conceptos previos del estudiante. De este modo, 
otros expertos como Piaget, hablaron sobre la existencia de patrones mentales, los cuales 
constituyen un banco de información que permite explicar y dar sentido a los fenómenos que 
circundan a la persona; por tanto, si el hecho que se analiza y coteja llega a representar algo 
relevante para el sujeto, este será incorporado como un aprendizaje a largo plazo. 
Vygotsky, por su parte, instauró un concepto para trasladar los conocimientos previos 
de un estudiante a un nuevo nivel; así su investigación describió la existencia de una zona de 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 16 
desarrollo próxima. Según esta teoría: “la ZDP constituye la distancia entre el nivel real de 
desempeño determinado por la resolución independiente de ejercicios y el nivel de 
desempeño potencial determinado a través de la resolución de problemas bajo la tutela de un 
adulto o en colaboración con pares más capaces”. En este proceso se denota la importancia 
de una comunicación efectiva entre quien busca alcanzar nuevos conocimientos y su 
facilitador, y como ya se ha visto, resulta necesario indagar sobre lo que ya conoce el 
estudiante para generar más réditos en el aprendizaje. 
De las teorías planteadas asoma al aprendizaje significativo, quizá como el concepto 
más relevante dentro de la teoría constructivista; de este modo: “Ausubel sugiere que una 
efectiva instrucción requiere que el profesor elija información relevante para enseñar y que 
provea los medios para ayudar a los estudiantes a relacionar aquellos conceptos con lo que él 
ya conoce” (Slavin, 1988). 
A modo de resumen, la teoría constructivista incorpora diversas teorías sobre las que 
descansa su labor. Por otro lado, se requiere concienciar sobre el rol que deben asumir 
estudiantes y docentes dentro de este marco dinámico de trabajo. Adicionalmente es 
importante manifestar que la parte operativa que se encargue de cubrir esta propuesta 
educativa debe ser sustentada en técnicas y herramientas que respondan con la solidez 
adecuada y que de esta manera permitan dar ese salto de la mera teoría y especulación hacia 
la práctica. 
Dificultades y Retos en la enseñanza de la Física. 
Al hablar de las dificultades instaladas en la enseñanza de Física, se hace referencia a 
aquellos aspectos que juegan en contra del docente al momento de transmitir conceptos. Uno 
de los primeros inconvenientes al que apuntan muchos expertos es el deficiente dominio de 
conceptos básicos de Física que poseen los estudiantes. Resulta evidente que mientras se 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 17 
carezca de una comunicación de ideas a partir de principios físicos perfectamente asimilados, 
será imposible incorporar nuevo contenido; este hecho ha concitado la búsqueda de 
soluciones; así Wieman (2007) manifiesta que dicha problemática ha motivado a que muchos 
investigadores educativos en Física analicen con qué profundidad los estudiantes aprenden 
los conceptos básicos en sus cursos introductorios de la asignatura. De esta manera, países 
norteamericanos y europeos han estandarizado pruebas generales de Física General para 
medir la idoneidad de los candidatos que postulan a una carrera científica. 
Mientras, que por un lado, la comprensión de conceptos básicos de Física es una falencia 
educativa indiscutible, la misma se ve agudizada por la carencia de pedagogía al elaborar los 
contenidos durante una clase. De este modo, los inconvenientes que se observan en los 
estudiantes para retener conceptos no resultan sorpresivos si se advierte que el docente emite 
una enorme cantidad de información compleja en contraste con el tiempo del que él dispone. 
Wieman (2007), presentó un experimento diseñado para medir la capacidad de comprensión 
entre profesores y estudiantes de postgrado en una universidad norteamericana; ellos 
observaron un video sobre un tema de física dictado por una eminencia en la materia y 
posteriormente debieron responder un test que constaba de 6 preguntas; un porcentaje poco 
menor al 10% atinó a todas las respuestas. 
En cuanto a procesos cognitivos (aquellos que se relacionan con la manera en la que la 
información es captada, organizada y utilizada), existe cierta incertidumbre respecto a cuál 
sería la manera más efectiva para elaborar la transmisión de contenidos. Hoy en día, la 
psicología cognitiva reitera en las diversas formas de aprender que poseen las personas y en 
este marco de discusión, se hace referencia a las representaciones mentales, que constituyen 
la manera en la que un contenido es asimilado dentro de la estructura cognitiva del sujeto. Al 
respecto se afirma: 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 18 
Johnson- Laird postula que existen por lo menos tres clases de representaciones 
mentales distintas: las representaciones proposicionales, definidas como cadenas de 
símbolos, similares al lenguaje natural, en el sentido que necesitan de reglas 
sintácticas (relaciones de lógica formal o reglas de producción) para combinarse, pero 
que no se confunden con él; los modelos mentales, análogos estructurales del mundo, 
y las imágenes, definidas como visuales del modelo. (Ileana & Moreira, 1998) 
La eficiente transmisión de contenidos conduce a una tarea más compleja y que se 
convierte en el reto por excelencia del maestro: el enseñar a estudiar Física como lo hacen los 
científicos. El reto de una enseñanza pragmática de la Física supone que el docente tenga en 
cuenta algunas pautas. Preliminarmente, los estudiantes se hallan envueltos en una rigidez 
que prácticamente los obliga a aprender y deja de lado la espontaneidad; un experto señala al 
respecto que: “los profesores podrían permitir a los estudiantes tener libertad para encontrar 
la información deseada. Los estudiantes deben ser permitidos para probar sus ideas e inventar 
maneras de registrar lo que ven y puedan hacer sus propias preguntas” (Tamir, 1983, p. 65) 
El Aprendizaje de la Física a partir del Constructivismo 
Al haber analizado las dificultades y retos que implica la enseñanza de Física en los 
tiempos actuales, se insistió en la necesidad de considerar los criterios de los estudiantes y 
comprender las limitaciones naturales que pueden existir durante su aprendizaje; sin 
embargo, la apertura que el docente brinde debe ser manejada a partir de los principios que 
rigen al Constructivismo, de esta manera será posible delinear un marco óptimo de trabajo en 
el aula de clase. 
En la mayoría de las ocasiones, la introducción de un concepto nuevo se rige a lo que, de 
manera literal, propone el texto de trabajo o el docente; los expertos afirman que la mente 
jamás será capaz de asimilar aquellos contenidos elaborados por otros, pues impiden el 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 19 
proceso de reconstrucción por parte del estudiante. Respecto a esta problemática el 
constructivismo plantea una premisa importante, la cual considera que: “los estudiantes 
albergan una extensa variedad de concepciones alternas acerca de objetos y eventos al 
momento de ingresar a la instrucción formal” (Wandersee, J, & Novak, 1994, p. 178)”. Es 
prudente esperar entonces, que cada concepto elaborado por el profesor sea procesado, 
contrastado y modificado de acuerdo a lo que ya conoce el sujeto sobre ese hecho. Por otro 
lado, aquellas ideas erróneas que los estudiantes acarrean y no encuentran un respaldo 
necesario tienden a sufrir modificaciones, de esta manera: “cuando un aprendiz encuentra 
situaciones en las que sus esquemas existentes no pueden explicar la nueva información, 
dichos esquemas deben ser cambiados o deben hacerse otros nuevos” (Cakir, 208). 
Cuando un profesor planteael concepto de inercia, por ejemplo, él lo enuncia como aquel 
estado de movimiento o de reposo permanente que podría ser alterado debido a la acción de 
una fuerza externa y acto seguido, coloca la ecuación del movimiento ∑ 𝐹 = 𝑚𝑎; esta 
anticipación apenas ha colocado al concepto en un ámbito proposicional; por el contrario, si 
el docente parte de un tópico conocido como precauciones del conductor y hace alusión a 
elementos de seguridad, tales como airbag o cinturón, que los automóviles llevan con el fin 
de evitar un accidente producto de un inesperado frenado, en ese instante se podría crear una 
conexión de lo teórico con lo cotidiano, lo cual atribuye un sentido a lo establecido en el 
principio de Newton y de paso lo contextualiza en el marco de una situación real. De esta 
manera, los principios de un aprendizaje significativo se alinean con el siguiente criterio: 
“una persona llega a alinearse a una concepción porque esta ayuda a interpretar experiencias, 
resolver problemas y llenar necesidades emocionales” (Cakir, 2008). 
Una vez que el conocimiento físico es entendido como un conjunto de conceptos que se 
relacionan con el contexto cotidiano del sujeto, resulta necesario incentivar una aplicación de 
los mismos en diversas situaciones. El constructivismo dicta algunos mecanismos mediante 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 20 
los cuales el profesor puede generar oportunidades para que los estudiantes lleven a cabo esta 
tarea. Por una parte, los laboratorios otorgan una valiosa experiencia que entrelaza la teoría 
con la práctica y como bien lo manifiesta Dawe (2003) los resultados positivos pueden ser 
resultado de una apropiación de los conceptos aprendidos, por parte de los estudiantes, así 
como un descubrimiento individual de “nuevos conceptos” durante el trabajo práctico. 
En otro escenario, el contacto con la naturaleza y museos científicos otorga también 
posibilidades de conectarse con el mundo natural que se estudia. Entre otras de las 
actividades factibles se sugiere incentivar a la re- escritura de los conceptos físicos por parte 
de los estudiantes, de tal manera que ellos son estimulados a desarrollar explicaciones y 
justificarlas, lo cual también desencadenaría en la formación de un pensamiento crítico. 
Didáctica de la Física. 
Cuando se hace referencia al término didáctica se puede hacer un análisis etimológico, 
el cual manifiesta que dicha palabra proviene del griego didaskein, cuyo significado es 
enseñar. Con el paso del tiempo, la didáctica se ha consolidado como una disciplina de gran 
base conceptual, mediante la cual se intentan mejorar los procesos de enseñanza y 
aprendizaje y bajo la cual se aglutinan y analizan diversos aspectos inherentes al proceso 
educativo; así en palabras de Gundem (1998), el término didáctica puede también significar: 
las personas que tienen la habilidad para enseñar y aprender, los soportes para la enseñanza, 
que incluyen los medios y los métodos, el ambiente de enseñanza, entre otras cosas. 
Al relacionar a la didáctica con lo que sostiene el enfoque constructivista, se generan 
algunas repercusiones que dan diversas pautas sobre la manera de encarar el proceso 
didáctico de la Física. En primer lugar, se vuelve necesario establecer las directrices o 
propósitos que rigen al proceso educativo; en este punto se puede resaltar lo que plantea el 
Dr. Santiago Avecillas en su texto guía de trabajo: 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 21 
Es nuestro deseo tratar de conseguir, a través de estas obras, que el estudiante 
descubra, elabore aprenda y maneje las leyes de la Física, como una ciencia natural 
que es, antes de convertirse exclusivamente en un ¨autómata hábil para resolver 
problemas. Además, pretendemos que una vez que el alumno capte la metodología, 
sea capaz de crecer por su propia cuenta. (ASAJ, 2007) 
En este lineamiento se destaca aquel criterio que ya ha sido asumido de manera 
previa, el cual recalca en hacer una Física coherente con las expectativas del estudiante y en 
la que se intente generar un aprendizaje significativo. Así, se puede avizorar el rol del 
docente, quien deberá desempeñar un papel de mediador, poniendo al alcance del estudiante 
todos aquellos contenidos complejos, pero siempre siendo consecuente con aquella conexión 
que debe haber entre lo teórico y lo práctico. 
La visión didáctica de los contenidos apunta a generar solvencia en los estudiantes 
respecto al dominio de conceptos básicos, los cuales pueden ser considerados como la base 
sobre la cual se edifica el futuro aprendizaje del estudiante. En este punto resulta necesario 
volver sobre los pasos y rescatar aquello sobre lo que el constructivismo ha enfatizado, que es 
precisamente evitar que la pedagogía del profesor sea elaborada de modo tradicional; 
expertos de otras partes del mundo ponen al descubierto toda la ineficacia del tradicionalismo 
mediante la elaboración de estudios sobre la destreza de los estudiantes al resolver problemas 
de Física; Estados Unidos, por ejemplo, aplica una prueba estándar denominada FCI, cuyo 
objetivo es visibilizar las habilidades de los estudiantes para resolver problemas relacionados 
con la mecánica clásica. La inoperancia que tienen los estudiantes provenientes de medio 
ambientes donde se aplica una enseñanza tradicional es alarmante, y de este manera, se 
señala: ¨la clase tradicional es simplemente, poco exitosa en ayudar a la mayoría de los 
estudiantes a lograr dominio de conceptos fundamentales¨ (Wieman, 2007, pág. 63). 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 22 
Al discutir sobre aquellos métodos y recursos didácticos capaces de volver operativos 
los objetivos planteados, se puede apreciar un interesante rango de opciones, que van desde el 
uso de softwares, guías didácticas hasta estrategias de aprendizaje elaboradas desde otras 
áreas del conocimiento. Existen propuestas que apelan a estimular las facultades cognitivas 
del sujeto; así la psicología propone elaborar un aprendizaje de conceptos fisicos a partir de 
modelos mentales, los cuales visualizan al fenómeno desde lo abstracto, con sus relaciones 
correspondientes, y desde lo real, con algo tangible de por medio, que permita crear 
interacción entre el docente y el estudiante. 
Aplicación de modelos en la enseñanza de la Física 
La manera en la que los conceptos o eventos son percibidos depende en gran medida, 
como lo manifiesta la teoría constructivista, de las percepciones previas del sujeto; sin 
embargo, gran parte del conocimiento científico proviene de un legado cultural . En términos 
de Duit, se puede señalar que “aunque cada individuo tiene que construir conocimiento por sí 
mismo, el proceso de construcción siempre tiene un componente social” (Duit, 1996, pág. 
45). A partir de este discernimiento, la Física ha consolidado mecanismos específicos, que 
permiten dar explicación a la comunidad científica o educativa de diversos fenómenos 
naturales que han sido estudiados a lo largo del tiempo. 
Posiblemente, los estudiantes de preescolar habrán sentido asombro con aquellas 
fascinantes esferas de tamaños y colores diferentes que se sostenían sobre hilos y 
simbolizaban un sistema solar. Aquella educación inicial basada en el uso de maquetas o 
modelos físicos tuvo gran repercusión, pues sus características lúdicas y visuales generaban 
una interacción adecuada con quienes apenas empezaban a percatarse de lo que tenían a su 
alrededor. 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 23 
Para Ornek (2008), un modelo físico es una representación física de algo que puede 
ser un objeto puntual, un móvil por ejemplo, o en su defecto, un sistema extenso, como es el 
caso del sistema solar. Esta primera aproximación, sin lugar a duda, significa un avance 
importante en lasrelaciones que el estudiante tiene con su entorno ya que le permite 
apropiarse del concepto al estar en contacto físico con aquello que estudia. No obstante, para 
niveles de estudio superior, esta opción puede resultar un aporte insuficiente debido a la 
limitación que una gráfica o maqueta ofrece para comprender otros eventos que conciernen al 
objeto. 
De este modo, aparece el lenguaje matemático, como aquel aliado indispensable que 
constituye una herramienta primordial dentro de cualquier disciplina científica. Es posible 
analizar el aporte al estudio de los fenómenos naturales tales como: movimientos de 
corrientes marítimas o tornados, que brinda el modelo físico- matemático, el cual hace uso de 
entes como ecuaciones para poder emitir una explicación más sustancial que se complementa 
con la imagen. Por otro lado, el entramado del modelo físico resulta de cierta manera 
complejo; así, un modelo constituye apenas una concepción, que busca aproximarse a la 
realidad y para ello se puede hacer uso de herramientas mucho más sofisticadas como las 
simulaciones. Tal es el caso de la NASA, que programa complejos algoritmos, que le 
permiten conocer con cierta certeza la respuesta de sus aparatos bajo ciertas condiciones 
preestablecidas. 
Para el caso educativo, el uso de un modelo físico pasa fundamentalmente por un fin 
didáctico y, como bien lo manifiesta Ornek (2008), un modelo físico en la enseñanza de la 
Física es considerado como un sistema o fenómeno físico idealizado y simplificado. De esta 
manera, el material debe mostrar ciertas características puntuales que permitan generar 
aquella comunicación concisa de ideas y para ello, muchos de los modelos alteran 
características tales como la escala, lo cual otorga connotación; así, se pueden ver partículas 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 24 
tales como: electrones o protones, cuyas ínfimas dimensiones son traducidas en esferas y 
canicas, para poder evidenciar algún comportamiento particular de las mismas. Por otro lado, 
el análisis de ciertos sistemas físicos, sobre todo en la Estática y la Dinámica, demanda el uso 
de elementos matemáticos como vectores, los cuales sirven para conocer el desplazamiento 
de una partícula o indican la dirección de una fuerza. Paralelamente a la manifestación 
palpable de aquellos elementos físicos, corre por cuenta del docente el anclaje de los mismos 
en un modelo pedagógico, que sea capaz de elaborar una explicación adecuada. 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 25 
CAPÍTULO II 
FUNDAMENTACIÓN ESTADÍSTICA 
DIAGNÓSTICO 
Presentación del Problema 
La enseñanza de las ciencias exactas, particularmente de la Física, representa un área 
primordial y estratégica dentro del BGU. Los estudiantes abarcan el aprendizaje de diversos 
conceptos, los cuales son necesarios para el entendimiento posterior de la Física Superior, al 
mismo tiempo que permiten elaborar una conexión con otras ciencias naturales. 
Los esfuerzos realizados en lo concerniente a la enseñanza de la Física ponen en 
evidencia las dificultades que los estudiantes presentan al estudiar los modelos matemáticos 
de los diversos fenómenos físicos. De hecho, muchos estudiantes parecen no ligar la parte 
teórica con la práctica, y de este modo, quien aprende acumula una cantidad de dudas, 
producto de aquellos contenidos que parecen ser complejos. 
Esa problemática que envuelve a la Física y que afecta tanto a quien enseña como al 
que aprende, ha sido analizada a partir de encuestas, las cuales buscan visibilizar el 
pensamiento que posee el estudiante acerca de la Física desde su contexto colegial y 
universitario, además de conocer la influencia que esta tiene en su vida cotidiana. Por otro 
lado, se busca recolectar los criterios de los educandos, para orientar la generación de 
material didáctico y las características que estos deben poseer para revertir esa condición de 
complejidad atribuida a la Física. 
El resultado final de las encuestas pretende evidenciar aquellas trabas en el 
aprendizaje que los estudiantes tienen, pero del mismo modo, se plantea una posible solución 
a través de la utilización de material didáctico, el cual busca generar un beneficio directo para 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 26 
los docentes, pues son ellos quienes cuentan con él para mejorar la etapa didáctica. De esta 
manera, se vuelve plausible un beneficio posterior para los estudiantes. 
Selección de la población 
La población se encuentra conformada por todos los estudiantes de sexto y octavo 
ciclos de la Carrera de Matemáticas y Física, que se hallan inscritos en el período Septiembre 
2016-Febrero 2017 y que han aprobado la asignatura de Física I. La cantidad de estudiantes 
en total es de 34; por consiguiente, la muestra es el total de la población. 
Metodología 
El método utilizado fue el descriptivo, en el cual se elaboró un muestreo probabilístico 
que acopió al total de la población. Para la investigación se generó una encuesta, la cual 
consta de 18 preguntas, las mismas que responden a los objetivos planteados al inicio de este 
trabajo de titulación. 
Análisis de la encuesta 
Se analizó cada una de las preguntas del cuestionario, a fin de extraer información 
relevante. Todas las tablas y gráficos son propiedad de los autores. 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 27 
Pregunta 1: ¿Usted realizaba las tareas encomendadas por su maestro dentro y fuera 
del salón de clase? 
Tabla 2. 1 Frecuencia con la que los estudiantes realizaban las tareas. 
Respuestas Número de Estudiantes Porcentaje 
SIEMPRE 9 26% 
CASI SIEMPRE 16 47% 
A VECES 6 18% 
RARA VEZ 3 9% 
NUNCA 0 0% 
TOTAL 34 100% 
 Fuente: Elaboración propia 
Gráfica 2. 1 Frecuencia con la que los estudiantes realizaban las tareas. 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos evidencian que los estudiantes comparten un nivel de 
corresponsabilidad en el cumplimiento de sus tareas que mayoritariamente oscila entre las 
tres primeras categorías. El 26% señala que siempre cumple con sus tareas, el 47% indica que 
lo hace casi siempre, el 18% dice que solo a veces y el 9% restante se ubica en la cuarta 
categoría. 
 
0%
50%
SIEMPRE CASI
SIEMPRE
A VECES RARA VEZ NUNCA
26%
47%
18%
9%
Categoria
P
o
rc
e
n
ta
je
s 
d
e
 
e
st
u
d
ia
n
te
s
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 28 
Pregunta 2: ¿Cuánto tiempo al día usted usa para ampliar su conocimiento en el área de 
la Física? 
Tabla 2. 2 Tiempo utilizado para ampliar conocimientos de Física. 
Respuestas Número de Estudiantes Porcentaje 
(0 a 1) hora 16 47% 
(1 a 2) horas 16 47% 
(2 a 3) horas 2 6% 
3 horas o más 0 0% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 2 Tiempo utilizado para ampliar conocimientos de Física. 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos evidencian que la mayoría de los estudiantes dedicaban entre 0 y 
2 horas en su preparación académica. El 47% manifestó que solía estudiar en el intervalo de 
una hora, otro 47% manifestó que estudiaba en un intervalo de una a dos horas. El restante 
6% ha revelado que lo hacía durante un período más largo, el cual oscilaba entre 2 y 3 horas. 
 
 
0%
10%
20%
30%
40%
50%
(0 a 1) hora (1 a 2) horas (2 a 3) horas 3 horas o más
47% 47%
6%
0%
P
o
rc
e
n
ta
je
 d
e
 e
st
u
d
ia
n
te
s
Categorias 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 29 
Pregunta 3: ¿En la educación secundaria usted estudió la materia de Física I? 
Tabla 2. 3 Estudio de la materia de Física I en la secundaria. 
Respuestas Número de Estudiantes Porcentaje 
SÍ 31 91% 
NO 3 9% 
TOTAL 34 100% 
Fuente:Elaboración propia 
Gráfica 2. 3 Estudio de la materia de FísicaI en la secundaria. 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos establecen que una mayoritaria cantidad de estudiantes solía 
estudiar Física durante sus años de estudio en el colegio. De esta manera, el 91%, que 
equivale a 31 estudiantes, responde de manera afirmativa. 
 
 
 
 
91%
9%
SÍ
NO
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 30 
Pregunta 4: En sus estudios de secundaria, ¿cuántas horas de Física tenía por semana? 
Tabla 2. 4 Horas de clase por semana destinadas a Física I en la secundaria. 
Respuestas Número de Estudiantes Porcentaje 
(0 a 2) horas 7 21% 
(3 a 6) horas 24 70% 
(6 o más) horas 3 9% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 4 Horas de clase por semana destinadas a Física I en la secundaria. 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos establecen que un 20% tenía una carga horaria de Física de 2 
horas por semana. El 71% de los encuestados afirma haber tenido una carga horaria 
comprendida de entre 3 a 6 horas. Finalmente, un 9% contó con 6 horas semanales de Física. 
 
 
0%
20%
40%
60%
80%
(0 a 2) horas (3 a 6) horas (6 o más) horas
21%
70%
9%
P
o
rc
e
n
ta
je
 d
e
 e
st
u
d
ia
n
te
s 
Categorias 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 31 
Pregunta 5. ¿Cree usted que es capaz de resolver ejercicios de Física 1 de una 
manera ágil y rápida? 
Tabla 2. 5 Facilidad de los estudiantes para resolver ejercicios de Física I. 
Respuestas Número de Estudiantes Porcentaje 
SÍ 26 76% 
NO 8 24% 
TOTAL 34 100% 
Fuente: Elaboración propia 
 
Gráfica 2. 5 Facilidad de los estudiantes para resolver ejercicios de Física I. 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos establecen que una mayoritaria cantidad de estudiantes, 
correspondiente al 76%, se considera en la capacidad de resolver con solvencia los ejercicios 
concernientes a la asignatura de Física I que se dicta en la carrera. Sin embargo, una cantidad 
importante, correspondiente al 24%, considera lo contrario. 
 
 
76%
24%
SÍ
NO
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 32 
Pregunta 6. ¿Tiene usted facilidad para comparar un ejercicio de Física I con la vida 
diaria? 
Tabla 2. 6 Facilidad de los estudiantes para comparar ejercicios de Física I con la vida diaria. 
Respuestas Número de Estudiantes Porcentaje 
SÍ 31 91% 
NO 3 9% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 6 Facilidad de los estudiantes para comparar ejercicios de Física I con la vida diaria. 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos evidencian que una mayoritaria cantidad de estudiantes, 
correspondiente al 91%, se considera capaz de relacionar un ejercicio de Física con el 
contexto cotidiano. Por otro lado, la cantidad restante, equivalente al 9%, no lo ve así. 
 
 
 
 
91%
9%
SÍ
NO
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 33 
Pregunta 7. ¿Cuál cree usted que es su nivel de comprensión de los temas que ha 
estudiado en Física 1? 
Tabla 2. 7 Porcentaje de nivel de comprensión en temas estudiados en Física I 
Respuestas Número de Estudiantes Porcentaje 
BAJO 1 3% 
MEDIO 22 65% 
ALTO 11 32% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 7 Porcentaje de nivel de comprensión en temas estudiados en Física I 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos muestran que el nivel de comprensión de la asignatura por parte 
de los estudiantes se concentra en un nivel medio y alto. De este modo, el 65% manifiesta 
tener un nivel de comprensión medio. El 32% considera que su nivel de comprensión es alto. 
Por otro lado, el 3% reconoce que su nivel de comprensión es bajo. 
 
0% 10% 20% 30% 40% 50% 60% 70%
BAJO
MEDIO
ALTO
3%
65%
32%
Porcentaje de estudiantes
C
at
e
go
ri
as
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 34 
Pregunta 8. ¿En el momento en el que el docente imparte su clase, usted consulta 
sus dudas sin temor? 
Tabla 2. 8 Frecuencia con la que los estudiantes consultaban sus dudas sin temor. 
Respuestas Número de Estudiantes Porcentaje 
SIEMPRE 6 18% 
CASI SIEMPRE 9 26% 
A VECES 14 41% 
RARA VEZ 5 15% 
NUNCA 0 0% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 8 Frecuencia con la que los estudiantes consultaban sus dudas sin temor. 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos muestran que los estudiantes alcanzan diversos niveles de 
confianza, en lo que concierne a la consulta al docente. Un 18% de los estudiantes manifiesta 
que siempre ponía en conocimiento del docente sus inquietudes. El 28% afirma que lo hacía 
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
SIEMPRE CASI
SIEMPRE
A VECES RARA VEZ NUNCA
18%
26%
41%
15%
0%
P
o
rc
e
n
ta
je
s 
d
e
 e
st
u
d
ia
n
te
s
Categoria
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 35 
casi siempre. No obstante, el 41% manifiesta que las consultas eran poco frecuentes. El 15% 
restante reconoce que tenía poca predisposición para consultar al profesor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 36 
Pregunta 9. ¿El docente asigna un tiempo de su clase para despejar dudas e inquietudes 
de los estudiantes? 
Tabla 2. 9 Tiempo dedicado a despejar dudas dentro de la clase. 
Respuestas Número de Estudiantes Porcentaje 
SÍ 30 88% 
NO 4 12% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 9 Tiempo dedicado a despejar dudas dentro de la clase. 
 
 Fuente: Elaboración propia 
 
La mayoría de los estudiantes concuerdan en decir que el docente designó un período 
de tiempo para responder a las consultas de la asignatura. De esta manera, el 88% de los 
encuestados respondieron de manera afirmativa. No obstante, un 12% de los consultados 
afirma no haber recibido precisiones adicionales sobre la asignatura. 
 
 
 
 
88%
12%
12%
SÍ NO
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 37 
Pregunta 10. ¿Considera usted que existió respeto en el aula de clases? 
Tabla 2. 10 Existencia de respeto en el aula de clases. 
Respuestas Número de Estudiantes Porcentaje 
SÍ 31 91% 
NO 3 9% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 10 Existencia de respeto en el aula de clases 
 
 Fuente: Elaboración propia 
 
La gran mayoría, el 91% de los encuestados, concuerda en decir que el ambiente de 
trabajo dentro del aula de clase fue de cordialidad. No obstante, el 9% afirma no haber tenido 
un ambiente de respeto dentro del aula de clases. 
 
 
 
 
91%
9%
SÍ NO
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 38 
Pregunta 11. El docente hace comparaciones del tema estudiado con actividades de la 
vida diaria. 
Tabla 2. 11 Frecuencia con la que el docente comparaba la teoría con la práctica. 
Respuestas Número de Estudiantes Porcentaje 
SIEMPRE 8 23% 
CASI SIEMPRE 15 44% 
A VECES 6 18% 
RARA VEZ 4 12% 
NUNCA 1 3% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 11 Frecuencia con la que el docente comparaba la teoría con la práctica. 
 
 Fuente: Elaboración propia 
 
De acuerdo a las respuestas de los estudiantes, un 23% considera que el docente 
siempre contrastaba las ideas estudiadas con lo cotidiano. El 44% considera que él lo hacía 
casi siempre. Por otro lado, el 18% consideró que el docente aplicaba esta estrategia didáctica 
solo a veces. Finalmente, el restante 12% y 3% se ubicaron en las categorías rara vez y nunca. 
 
 
0%
20%
40%
60%
SIEMPRE
CASI
SIEMPRE
A VECES
RARA VEZ
NUNCA
23%
44%
18%
12%
3%
P
o
rc
e
n
ta
je
 d
e
 e
st
u
d
ia
n
te
s
Categoria
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 39 
Pregunta 12. ¿El docente utilizó la creatividad al momento de efectuar la clase? 
Tabla 2. 12 Frecuencia con la que el docenteutilizaba la creatividad. 
Respuestas Número de Estudiantes Porcentaje 
SIEMPRE 5 15% 
CASI SIEMPRE 14 41% 
A VECES 11 32% 
RARA VEZ 2 6% 
NUNCA 2 6% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 12 Frecuencia con la que el docente utilizaba la creatividad. 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos evidencian una respuesta dividida. El 15% considera que el 
docente siempre ha utilizado creatividad al momento de enseñar Física. El 41% ha 
manifestado que casi siempre las clases han sido creativas. Por otro lado, las categorías 
restantes, las cuales suman 44%, consideran que el uso de este recurso ha sido espontáneo o 
que simplemente no ha sido utilizado. 
 
 
0%
20%
40%
60%
SIEMPRE
CASI
SIEMPRE
A VECES
RARA VEZ
NUNCA
15%
41%
32%
6%
6%
P
o
rc
e
n
ta
je
 d
e
 e
st
u
d
ia
n
te
s
Categoria
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 40 
Pregunta 13. El docente colabora con tutorías para el estudiante. 
Tabla 2. 13 Colaboración del docente con tutorías para los estudiantes. 
Respuestas Número de Estudiantes Porcentaje 
SÍ 13 38% 
NO 21 62% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 13 Colaboración del docente con tutorías para los estudiantes. 
 
 Fuente: Elaboración propia 
 
De acuerdo a los datos obtenidos, un mayoritario 62% manifiesta no haber contado 
con tutorías de la asignatura. El 38% restante afirma haber tenido alguna nivelación 
académica. 
 
 
 
 
38%
62%
SÍ
NO
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 41 
Pregunta 14. El docente estuvo presto para colaborar con el estudiante en tareas 
planteadas en clase. 
Tabla 2. 14 Colaboración del maestro con el estudiante en la realización de tareas. 
 
Respuestas Número de Estudiantes Porcentaje 
SIEMPRE 14 41% 
CASI SIEMPRE 11 32% 
A VECES 8 24% 
RARA VEZ 1 3% 
NUNCA 0 0% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 14 Colaboración del maestro con el estudiante en la realización de tareas. 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos evidencian que la respuesta del docente fue diversa, pero 
mayoritariamente se concentró en las tres primeras categorías. El 41% considera que el 
docente estuvo presto para colaborar en clase. El 32% manifiesta que ayudó casi siempre. Por 
otro lado, un 24% cree que la ayuda del docente con las tareas en clase fue a veces y el 3% 
confiesa no haber recibido ayuda con regularidad. 
0%
50%
SIEMPRE
CASI
SIEMPRE
A VECES
RARA VEZ
NUNCA
41%
32%
24%
3%
0%
P
o
rc
e
n
ta
je
 d
e
 e
st
u
d
ia
n
te
s
Categoria
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 42 
Pregunta 15. Dentro del aula de clase el maestro utiliza material didáctico para lograr 
una mayor comprensión en sus alumnos. 
Tabla 2. 15 Utilización de material didáctico para mayor comprensión en los alumnos. 
Respuestas Número de Estudiantes Porcentaje 
SIEMPRE 5 15% 
CASI SIEMPRE 10 29% 
A VECES 10 29% 
RARA VEZ 3 9% 
NUNCA 6 18% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 15 Utilización de material didáctico para mayor comprensión en los alumnos. 
 
 Fuente: Elaboración propia 
 
Los datos obtenidos evidencian diversas respuestas. El 18% y el 29% consideran un 
uso del material didáctico que oscila entre siempre y casi siempre. Por otro lado, el 56% 
restante considera que la aplicación del material didáctico no fue desarrollada de manera 
estable. 
 
 
0%
5%
10%
15%
20%
25%
30%
SIEMPRE CASI
SIEMPRE
A VECES RARA VEZ NUNCA
15%
29% 29%
9%
18%
P
o
rc
e
n
ta
je
 d
e
 e
st
u
d
ia
n
te
s
Categoria
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 43 
Pregunta 16. Es de ayuda para su comprensión el uso de material didáctico por parte 
del maestro. 
Tabla 2. 16 Utilidad del uso de material didáctico. 
Respuestas Número de Estudiantes Porcentaje 
SÍ 33 97 % 
NO 1 3% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 16 Utilidad del uso de material didáctico. 
 
 Fuente: Elaboración propia 
 
De acuerdo a los datos obtenidos, un contundente 97% establece que el uso de 
material didáctico es necesario para la comprensión de los contenidos de Física. Por otro 
lado, un 3% de los estudiantes cree que pueden prescindir de este. 
 
 
97%
3%
SÍ
NO
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 44 
Pregunta 17. ¿Considera usted que el uso de material didáctico en el aula de clase 
facilita la comprensión en la asignatura de Física 1? 
Tabla 2. 17 Necesidad del uso de material didáctico en el aula de clase. 
Respuestas Número de Estudiantes Porcentaje 
SÍ 34 100% 
NO 0 0% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 17 Necesidad del uso de material didáctico en el aula de clase. 
 
 Fuente: Elaboración propia 
 
Siguiendo la línea de razonamiento anterior, un categórico 100%, manifiesta que el 
material didáctico facilita la comprensión de la asignatura en clase. 
 
 
 
 
100%
0%
SÍ
NO
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 45 
Pregunta 18. De los siguientes materiales, ¿cuál o cuáles considera usted que le será de 
mayor utilidad para su aprendizaje? 
Tabla 2. 18 Material de mayor utilidad para el aprendizaje. 
Respuestas Número de Estudiantes Porcentaje 
MATERIAL CONCRETO 11 32% 
MATERIAL MANIPULABLE 18 53% 
MATERIAL AUDIOVISUAL 5 15% 
MATERIAL IMPRESO 0 0% 
TOTAL 34 100% 
Fuente: Elaboración propia 
Gráfica 2. 18 Material de mayor utilidad para el aprendizaje. 
 
 Fuente: Elaboración propia 
 
Según los datos obtenidos llegamos a la conclusión que, dentro de la carrera de 
Matemáticas y Física, en su mayoría los estudiantes consideran que para su aprendizaje 
tienen una mayor utilidad el uso de material manipulable. 
 
0%
10%
20%
30%
40%
50%
60%
MATERIAL
CONCRETO
MATERIAL
MANIPULABLE
MATERIAL
AUDIOVISUAL
MATERIAL
IMPRESO
32%
53%
15%
0%P
o
rc
e
n
ta
je
 d
e
 e
st
u
d
ia
n
te
s
Categoria
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 46 
Interpretación de resultados. 
De los resultados recolectados en la encuesta, se evidencia diversas tendencias en 
cuanto a la percepción que tienen los estudiantes desde su contexto. No obstante, la mayoría 
de los estudiantes consultados consideran tener un entendimiento de la asignatura, que oscila 
entre medio y alto, e inclusive manifiestan haber generado esa correlación de la Física con la 
vida cotidiana. 
En cuanto al ambiente en el que se desenvolvió la asignatura, muchos estudiantes 
califican al mismo como apto. Sin embargo, en aspectos clave como la confianza hacia al 
docente, la respuesta resultó ser heterogénea. Lo anterior demuestra la necesidad de seguir 
trabajando en un ambiente de clases más abierto para el estudiante. 
En cuanto al aspecto didáctico, las respuestas registradas también muestran diversas 
respuestas, las cuales apuntan al docente y sus diversas estrategias. Por consiguiente, aspectos 
tales como el uso del material didáctico o los trabajos en clase, la labor del docente queda 
retratada como una labor aceptable, pero que, por otro lado, requiere de una mejora. 
Finalmente, el estudiante se mostró optimista en relación a la ayuda que el material 
didáctico podría generar al interior del aula, lo cual sin duda es fundamental, pues permite dar 
sustento a cualquier propuesta metodológica que se intente en este aspecto. Por otro lado, los 
estudiantes han decantado sus preferencias de material didáctico hacia elementos de 
naturaleza más concreta. 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 47 
CAPÍTULO III 
PROPUESTA 
 
 
En el presente capítulo del Trabajo de Titulación se desarrolla una propuesta educativa, cuyo 
fin es diseñar y construir material didáctico que ayude al docente en la enseñanza de varios 
temas del texto de FísicaI de la Carrera de Matemáticas y Física de la Universidad de 
Cuenca. El material didáctico, “proporciona información como función principal, puede guiar 
el aprendizaje organizando los conocimientos, ejercitar habilidades por medio de ejercicios, 
motivar y evaluar los conocimientos. También este tipo de material puede proporcionar 
simulaciones para situaciones difíciles de recrear en la vida real, pero que aportan elementos 
que contribuyen a la formación” (Mena, 9). Para el uso adecuado del material didáctico 
hemos implementado una guía que consta de dos partes: la primera que es de uso exclusivo 
del maestro y la segunda parte que son actividades propuestas para los estudiantes. 
En la guía de uso para el docente se da a conocer los objetivos a los que pretendemos 
llegar, los temas en los que se puede emplear el material ya que una maqueta puede cubrir 
más de un tema, debido a sus múltiples características que nos permiten trabajar 
conjuntamente con el texto guía, además, ciertas maquetas que están diseñadas en tres 
dimensiones nos ayudan a entender lo que una imagen impresa en el texto no puede lograr. 
El marco teórico abarca un resumen con ecuaciones y conceptos más importantes que 
sirven de apoyo para la consolidación del tema. El ejercicio modelo representa una aplicación 
práctica de los conceptos estudiados y la actividad propuesta, destinada a los estudiantes, 
pretenden servir como un refuerzo académico para llenar ciertos vacíos que pueden quedar. 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 48 
Esquema de la Propuesta 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 49 
Matriz de planeación 
Tabla 3.1 Matriz de Planeación 
 
GUÍA DE USO PARA EL DOCENTE 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 50 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 51 
NOMBRE DEL MATERIAL DIDÁCTICO 
VECTORES UNITARIOS EN 3D 
 
TEMAS QUE ABORDA: 
 
Vectores unitarios 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 52 
Tabla 3.2 
 
DESCRIPCIÓN 
ELEMENTO MATERIAL COLOR CANT. REPRESENTA 
 
 
Ejes 
 
 
alambre 
galvanizado 
 
 
negro 
 
 
3 
 
 
ejes de referencia x-y-z 
 
 
Flecha 
 
alambre 
galvanizado 
 
verde 
 
1 
 
vector 𝑉 en el espacio 
 
 
Flecha 
 
alambre 
galvanizado 
 
amarillo 
 
1 
 
vector unitario 𝑖 
 
Flecha 
 
alambre 
galvanizado 
 
Azul 
 
1 
 
vector unitario 𝑗 
 
Flecha 
 
alambre 
galvanizado 
 
rosado 
 
1 
 
vector unitario 𝑘 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 53 
 
 
GUÍA DE USO PARA EL MAESTRO 
 
VECTORES UNITARIOS 
 
Objetivo: Conocer y manejar los vectores unitarios cartesianos y su expresión en forma 
trigonométrica. Producir vectores mediante su utilización. Obtener vectores unitarios co-
rrespondientes a direcciones arbitrarias. Admirar la utilidad de estos entes matemáticos. 
 
 INDICACIONES: 
 
Establezca las características que son parte de un vector unitario. Para ello analice su 
magnitud y dirección en él espacio, según la notación trigonométrica. 
 
 
 
 
𝑣𝑒𝑐𝑡𝑜𝑟 𝑢𝑛𝑖𝑡𝑎𝑟𝑖𝑜 𝑖 ∶ 𝑖 = 1; 0° ; 90°; 90° 
 
 
 
 
𝑣𝑒𝑐𝑡𝑜𝑟 𝑢𝑛𝑖𝑡𝑎𝑟𝑖𝑜 𝑗 ∶ 𝑗 = 1; 90° ; 0°; 90° 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 54 
 
 
 
 
 
 
𝑣𝑒𝑐𝑡𝑜𝑟 𝑢𝑛𝑖𝑡𝑎𝑟𝑖𝑜 𝑘 ∶ �⃗⃗� = 1; 90° ; 90°; 0° 
 
 
Defina un vector 𝑉, de dimensión y dirección arbitraria, al cual se lo divide para su 
magnitud |𝑉|. Al hacer esto, se obtiene el vector unitario �⃗⃗⃗�𝑣, el mismo que se encuentra 
representado en la maqueta, de la siguiente forma: 
 
 
 
 
 
�⃗⃗⃗�𝑉 =
�⃗⃗�
|𝑉|
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 55 
 
COMPONENTES RECTANGULARES DE UN VECTOR 
 
MARCO TEÓRICO: 
Los vectores unitarios son vectores especiales, cuya magnitud es 1, mientras que su dirección 
y sentido siguen, en algunos casos, a los de los ejes del sistema cartesiano utilizado. De esta 
manera, en el plano hay dos vectores unitarios, representados con 𝑖 y 𝑗 que corresponden a 
los ejes 𝑥 y 𝑦, respectivamente. En el espacio hay tres vectores unitarios, representados con 
𝑖 , 𝑗, �⃗⃗� y que corresponden a los ejes 𝑥, 𝑦, 𝑧, respectivamente. 
 
 EJERCICIO MODELO: 
 Determine el vector unitario de 𝐴. 
 
Resolución: 
 Se aplica la fórmula, 
 donde, |𝐴| = √(50)2 + (−90)2 + (70)2 = 124,49 
�⃗⃗⃗�𝐴 =
𝐴
|𝐴|
=
50𝑖 − 90𝑗 + 70�⃗⃗�
124,499
= 𝟎, 𝟒𝟎𝟐𝒊 − 𝟎, 𝟕𝟐𝟑𝒋 + 𝟎, 𝟓𝟔𝟐�⃗⃗⃗� 
 
ACTIVIDAD: 
Encuentre el vector unitario �⃗⃗⃗�𝑩 , donde �⃗⃗⃗� = 𝟐𝟎𝒊 − 𝟕𝟎𝒋 + 𝟖𝟎�⃗⃗⃗�. 
Posteriormente obtenga el vector 𝟓�⃗⃗⃗�𝑩 y grafíquelo. 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 56 
NOMBRE DEL MATERIAL DIDÁCTICO 
JUEGO DE VECTORES EN 2D Y 3D 
 
TEMAS QUE ABORDA: 
 
➢ Componentes Rectangulares de un Vector 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 57 
 
Tabla 3.3 
DESCRIPCIÓN 
ELEMENTO MATERIAL 
COLOR 
(CARAS) 
CANT. REPRESENTA 
 
 
Ejes 
 
 
alambre 
galvanizado 
 
 
negro 
 
 
2 
 
 
ejes de referencia x -y 
 
 
Vector 
 
alambre 
galvanizado 
 
verde 
 
1 
 
Vector 𝑉 en el plano x –y 
 
 
Vector 
 
alambre 
galvanizado 
 
rosado 
 
1 
 
Proyección de 𝑉en el eje x 
 
Vector 
 
alambre 
galvanizado 
 
azul 
 
1 
 
Proyección de 𝑉en el eje y 
 
DESCRIPCIÓN 
 
ELEMENTO MATERIAL 
COLOR 
(CARAS) 
CANT. REPRESENTA 
 
 
Ejes 
 
 
alambre 
galvanizado 
 
 
negro 
 
 
2 
 
 
ejes de referencia x –y-z 
 
 
Vector 
 
alambre 
galvanizado 
 
verde 
 
1 
 
Vector 𝑉 en el espacio 
 
 
Vector 
 
alambre 
galvanizado 
 
amarillo 
 
1 
 
Proyección de 𝑉en el eje x 
 
Vector 
 
alambre 
galvanizado 
 
azul 
 
1 
 
Proyección de 𝑉en el eje y 
 
Vector 
 
alambre 
galvanizado 
 
rosado 
 
1 
 
Proyección de 𝑉en el eje z 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 58 
GUÍA DE USO PARA EL MAESTRO 
 
COMPONENTES RECTANGULARES DE UN VECTOR 
 
Objetivo: Conocer el concepto de componentes rectangulares de un vector. Aplicarlo 
correctamente para la obtención de componentes rectangulares de algunos vectores 
propuestos en las actividades. Despertar el interés por el conocimiento y utilización de 
las componentes rectangulares. 
 
 PROCEDIMIENTO: 
 
Represente los cosenos directores 𝛼 𝑦 𝛽, y señale la relación trigonométrica para 
obtener las componentes 𝑉𝑋 𝑦 𝑉𝑦. 
 
 
 
 
Represente los cosenos directores 𝛼, 𝛽, 𝛾, y señale la relación trigonométrica para 
obtener las componentes 𝑉𝑋, 𝑉𝑦, 𝑉𝑧. 
 
 
 
 
A modo de resumen complete, junto al estudiante, la tabla sobre los vectores y 
su proyección junto con sus versores: 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 59 
 
 denominación magnitud versor 
Proyección en x 𝑉𝑥 
 
𝑉𝑐𝑜𝑠𝛼 i 
Proyección en y 𝑉𝑦 
 
𝑉𝑐𝑜𝑠𝛽 j 
Proyección en z 𝑉𝑧 
 
𝑉𝑐𝑜𝑠𝛾 k 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 60 
 
COMPONENTES RECTANGULARES DE UN VECTOR 
 
 
MARCO TEÓRICO: 
Se denominan componentes rectangulares de un vector �⃗⃗� a las proyecciones de 𝑉 ⃗⃗⃗⃗ sobre cada 
uno de los ejes del sistema de referencia utilizado. Dichasproyecciones resultan en vectores 
que son perpendiculares entre sí y cuya suma resulta ser el vector 𝑉 ⃗⃗⃗⃗ . En el plano se tiene tres 
componentes rectangulares 𝑉𝑋,⃗⃗⃗⃗⃗⃗ 𝑉𝑦
⃗⃗⃗⃗ ; en el espacio existen tres componentes, 𝑉𝑋 ,⃗⃗⃗⃗⃗⃗ 𝑉𝑦
⃗⃗⃗⃗ , 𝑉𝑧
⃗⃗⃗⃗ . 
 
EJERCICIO MODELO: 
 Determine las proyecciones en 𝑥 e 𝑦 del siguiente vector. 
 
 Resolución: 
β = 20°, por tanto α = 70° 
V⃗⃗⃗ = 10𝐶𝑂𝑆20 𝑖 + 10𝐶𝑂𝑆70 𝑗 ; V⃗⃗⃗ = 9,397 𝑖 + 3,420 𝑗 
ACTIVIDAD: 
Encuentre las proyecciones del siguiente vector en x, y, z 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 61 
NOMBRE DEL MATERIAL DIDÁCTICO 
 
VECTOR DESPLAZAMIENTO 
 
TEMAS QUE ABORDA: 
 
➢ Vectores desplazamiento entre dos puntos específicos 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 62 
Tabla 3.4 
DESCRIPCIÓN 
ELEMENTO MATERIAL COLOR CANT. REPRESENTA 
 
 
Ejes 
 
 
alambre 
galvanizado 
 
 
negro 
 
 
3 
 
 
ejes de referencia x-y-z 
 
 
Flecha 
 
alambre 
galvanizado 
 
naranja 
 
1 
 
vector de desplazamiento 
 
 
Segmentos 
 
alambre 
galvanizado 
 
blanco-negro 
 
6 
 
Coordenadas de los puntos 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 63 
GUÍA DE USO PARA EL MAESTRO 
 
VECTORES DESPLAZAMIENTO ENTRE DOS PUNTOS ESPECÍFICOS 
 
Objetivo: Enterarse y aprender la rutina para expresar el vector desplazamiento entre 
dos puntos de coordenadas conocidas. Aplicarla correctamente a la solución de los 
ejercicios propuestos en las actividades. Apreciar esta forma sencilla de determinar 
vectores desplazamiento. 
 
 INDICACIONES: 
 
A partir del modelo didáctico calcule el vector desplazamiento. Para ello establezca las 
coordenadas que tiene el vector en los dos puntos. Haga la resta entre el punto final y el 
punto inicial de coordenadas 
 
 
 
 De este modo el vector posición queda definido como: 
 
𝐴𝐵 ⃗⃗ ⃗⃗ ⃗⃗ ⃗= punto final – punto inicial 
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = (𝑥2 − 𝑥1)𝑖 + (𝑦2 − 𝑦1)𝑗 + (𝑧2 − 𝑧1)�⃗⃗� 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 64 
VECTORES DESPLAZAMIENTO ENTRE DOS PUNTOS ESPECÍFICOS 
 
MARCO TEÓRICO: 
Para generar la expresión analítica de un vector desplazamiento, que parte de un punto inicial 
𝐴 (𝑥1, 𝑦1, 𝑧1) y llega a un punto final 𝐵 (𝑥2, 𝑦2, 𝑧2) se resta las coordenadas respectivas del 
punto final o de llegada menos las del punto de partida y multiplicando la expresión por los 
vectores unitarios correspondientes. 
 
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = (𝑥2 − 𝑥1)𝑖 + (𝑦2 − 𝑦1)𝑗 + (𝑧2 − 𝑧1)�⃗⃗� 
 EJERCICIO MODELO: 
Para los puntos: 
𝐴 ( −36; 50; 25), 𝐵(48; −27; 40) 𝑦 𝐶(57; 45; 31), 
Determinar el vector desplazamiento 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ , sus magnitud y vector unitario. 
Resolución: 
 Se aplica la fórmula: 
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = (48 − (−36))𝑖 + (−27 − 50)𝑗 + (40 − 25)�⃗⃗�) 
 
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = (84𝑖 − 77𝑗 + 15�⃗⃗�) 
�⃗⃗⃗�𝐴𝑏 =
𝐴𝐵⃗⃗⃗⃗ ⃗⃗
|𝐴𝐵|
=
84𝑖 − 77 + 15�⃗⃗�
114,935
= 𝟎, 𝟕𝟑𝟏𝒊 − 𝟎, 𝟔𝟕𝟎𝒋 + 𝟎, 𝟏𝟑𝟏�⃗⃗⃗� 
 
 
ACTIVIDAD: 
Encuentre el vector unitario 𝐴𝐶⃗⃗⃗⃗⃗⃗ del ejercicio anterior. 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 65 
NOMBRE DEL MATERIAL DIDÁCTICO 
PRODUCTO DE VECTORES 
 
TEMAS QUE ABORDA: 
 
➢ Producto Vectorial de Vectores 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 66 
Tabla 3.5 
DESCRIPCIÓN 
ELEMENTO MATERIAL COLOR CANT. REPRESENTA 
 
 
ejes 
 
 
alambre 
galvanizado 
 
 
negro 
 
 
1 
 
 
eje aleatorio 
 
 
flecha 
 
alambre 
galvanizado 
 
amarillo 
 
1 
 
vector 𝐴 
 
 
flecha 
 
alambre 
galvanizado 
 
marrón 
 
1 
 
vector 𝐵 
 
flecha 
 
alambre 
galvanizado 
 
rosado 
 
1 
 
vector 𝑅 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 67 
GUÍA DE USO PARA EL MAESTRO 
 
PRODUCTO VECTORIAL DE VECTORES 
 
Objetivo: Conocer y aprender los conceptos, reglas y propiedades de esta operación tan 
importante. Aplicarlos correctamente al desarrollo de los ejercicios propuestos en las 
actividades. Despertar el interés por este tema y su utilidad teórico-práctica dentro de la 
Física. 
 
 INDICACIONES: 
 
Establezca los parámetros característicos que son parte de la operación vectorial, de esta 
manera: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑: |𝑅| = 𝐴. 𝐵𝑠𝑒𝑛𝜃, 𝑑𝑜𝑛𝑑𝑒 𝜃 𝑒𝑠 𝑒𝑙 á𝑛𝑔𝑢𝑙𝑜 𝑒𝑛𝑡𝑟𝑒 𝑙𝑜𝑠 𝑣𝑒𝑐𝑡𝑜𝑟𝑒𝑠 𝐴 𝑦 𝐵 
𝐷𝑖𝑟𝑒𝑐𝑐𝑖ó𝑛: 𝑅 𝑒𝑠 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑎𝑛𝑡𝑜 𝑎 𝐴 𝑐𝑜𝑚𝑜 𝑎 𝐵 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 68 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑆𝑒𝑛𝑡𝑖𝑑𝑜: Representado por : Si el vector sale del plano del papel. 
 Si el vector ingresa en el plano del papel. 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 69 
 
PRODUCTO VECTORIAL DE VECTORES 
 
MARCO TEÓRICO: 
Una de las maneras en las que dos vectores pueden ser combinados es el producto vectorial, 
también denominado producto cruz. Cuando el producto cruz es calculado el resultado es, 
como el nombre sugiere, otro vector. Para operar dos vectores en producto cruz, su origen 
debe coincidir. El ángulo que se forma entre los dos se denomina 𝜃. 
 
La magnitud del vector resultante queda determinada como 𝑅 = 𝐴. 𝐵𝑠𝑒𝑛𝜃. La direccion de la 
resultante es un vector perpendicular a ambos vectores y su direccion queda determinada por 
la regla de la mano derecha. Para este caso, el producto vectorial no es conmutativo: 
 
𝐴 𝑋 �⃗⃗� = − �⃗⃗� 𝑋 𝐴 
Una de las aplicaciones geométricas más relevantes es el cálculo del área de un 
paralelogramo, la cual está dada por: 
 
 
𝑆 = |𝐴 𝑋 �⃗⃗�| 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 70 
EJERCICIO MODELO: 
Determine el área del paralelogramo formado por los siguientes vectores: 
𝐶 = 12; 50°; 100°; 42° 𝑦 �⃗⃗⃗� = 8; 100°; 60°; 32° 
Procedimiento: 
Se expresa en forma rectangular: 
𝐶 = 7,713𝑖 − 2,084𝑗 + 8,9�⃗⃗� 
�⃗⃗⃗� = −1,389𝑖 + 4𝑗 + 6,784�⃗⃗� 
 Su producto vectorial es: 
 𝐶 𝑋 �⃗⃗⃗� = |
𝑖 𝑗 𝑘
7,713 −2,084 8,9
−1,389 4 6,784
| = −49,808𝑖 − 64,719𝑗 + 27,959�⃗⃗� 
Donde su magnitud es: |𝐶 𝑋 �⃗⃗⃗�| = √49,8082 + 64,7192 + 27,9592 = 𝟖𝟔, 𝟑𝟏𝟓 𝒖𝟐 
 
 
 ACTIVIDAD: 
Encuentre un vector que sea perpendicular a ambos: �⃗⃗� = 𝑖 + 2𝑗 −
3𝑘 𝑦 �⃗⃗� = 2𝑖 + 3𝑗 + 𝑘 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 71 
NOMBRE DEL MATERIAL DIDÁCTICO 
 
JUEGO DE VECTORES DE ÁNGULO PLANO 
 
TEMAS QUE ABORDA: 
 
➢ Vectores ángulo plano y superficie 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 72 
Tabla 3.6 
DESCRIPCIÓN 
ELEMENTO MATERIAL COLOR CANT. REPRESENTA 
 
 
ejes 
 
 
alambre 
galvanizado 
 
 
negro 
 
 
2 
 
 
Sistema de coordenadas 
rectangulares 
 
 
flecha 
 
alambre 
galvanizado 
 
amarillo 
 
1 
 
Magnitud del vector 
ángulo plano 
 
 
flecha 
 
alambre 
galvanizado 
 
rosado 
 
1 
 
Magnitud del vector 
ángulo plano 
 
 
flecha 
 
alambre 
galvanizado 
 
azul 
 
1 
 
Magnitud del vector 
ángulo plano 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad de Cuenca 
Karla Viviana Garcés - Vilma Briseyda Romero 73 
GUÍA DE USO PARA EL MAESTRO 
 
 
VECTORES ÁNGULO

Continuar navegando

Otros materiales